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We propose an out-of-equilibrium impurity model for the dynamical mean-field description of the
Hubbard model driven by a finite electric field. The out-of-equilibrium impurity environment is
represented by a collection of equilibrium reservoirs at different chemical potentials. We discuss the
validity of the impurity model and propose a non-perturbative method, based on a quantum Monte
Carlo solver, which provides the steady-state solutions of the impurity and original lattice problems.
We discuss the relevance of this approach to other non-equilibrium steady-state contexts.

PACS numbers:

The understanding and techniques of condensed mat-
ter theory are such that it is possible nowadays to make
reliable quantitative predictions on equilibrium prop-
erties of many materials, including strongly-correlated
many-body systems. Despite those many progress, very
little is know in comparison for correlated systems far
from equilibrium. Even for simple measurements such
as current-voltage characteristics, one can only hope
for some qualitative theoretical understanding. In this
perspective, the study of non-equilibrium steady states
(NESS) is paramount for understanding which of the
equilibrium concepts, techniques and results can be
adapted to non-equilibrium situations.

The adaptation of equilibrium numerical methods
to time-dependent situations (e.g. exact diagonaliza-
tion, density matrix renormalization group, diagram-
matic Monte Carlo, dynamical mean-field theory, vari-
ational methods) enable the study of complex transients
such as the dynamics after a quench in temperature or in-
teraction. However, the limitations in time of such time-
dependent methods (e.g. size or Poincare recurrence ef-
fects for close systems, growth of entanglement entropy,
sign problem) usually make them unsuitable for the study
of steady-state physics.

Recent theoretical efforts have been done to address
the non-equilibrium steady-state physics of quantum dots
driven by a constant voltage by developing steady-state
formalisms that bypass the transient dynamics [1, 2].
Among several promising steady-state techniques [3], a
remarkable leap forward has been recently achieved by
Han and Heary who developed a non-equilibrium steady-
state impurity solver based on a Matsubara-like for-
malism and a Hirsch-Fye algorithm (NESS-HF) [4, 5].
Progress has also been made in describing the non-
equilibrium steady-state dynamics of correlated electrons
on finite dimensional lattices [6, 7]. In the context of cor-
related systems driven by electric fields, non-perturbative
steady-state solutions have been computed by adapting
the dynamical mean-field theory to these non-equilibrium
steady states (NESS-DMFT) [8, 9].

In this work, we give substance to the NESS physics

of such lattice problems by focusing on their local mean-
field description (the so called impurity problem), estab-
lishing the connection with the out-of-equilibrium physics
of quantum dots. In the framework of the electric-field-
driven Hubbard model, we model the environment of the
related impurity problem by a collection of equilibrium
leads at different chemical potentials. We show how non-
equilibrium properties on the lattice side, such as the
energy distribution function or the dissipation, translate
on the impurity side. Simplifying the impurity model by
truncating it to the first relevant leads, we solve it numer-
ically via a generalized NESS-HF solver à la Han-Heary,
and we obtain the corresponding NESS-DMFT solution
of the electric-field-driven Hubbard model. We compare
the results with the ones obtained by solving the impurity
to the second order in the interaction with the so-called
iterated perturbation theory (IPT).
Lattice model. We consider the Hubbard model on a

d = 2 square lattice. It is driven out of equilibrium by
a static and uniform electric field set along the x-axis of
the lattice: E = Eux with E > 0. The corresponding
Lagrangian reads (we set ~ = 1)

Ls =
∑

iσ

c̄iσ [i∂t − φi(t)] ciσ − U
∑

i

c̄i↑ci↑c̄i↓ci↓

+
∑

〈ij〉σ

c̄iσtije
iαij(t)cjσ + conj.

(1)

where ciσ and c̄iσ are the Grassmann fields representing
an electron at site i with spin σ ∈ {↑, ↓}. The Hubbard
U term accounts for the on-site Coulombic interaction
and tij ≡ (a/2π)2

∫

dk eik·xijǫ(k) is the hopping ampli-
tude between two nearest neighbors distant of a: ǫ(k) =
ǫ0 [cos(kxa) + cos(kya)]. αij(t) ≡ q

∫ xi

xj
dx ·A(t,x) are the

Peierls phase factors, q is the charge of the electrons and
A (φ) is the vector (scalar) potential: E = −∇φ− ∂tA.
To allow for non-trivial steady states, we couple

the system to a thermostat composed of independent
reservoirs in equilibrium at temperature T : Lsb =
γ
∑

iσl e
iθi(t)b̄iσlciσ + conj. [10]. The biσl’s are non-

interacting electrons, and l labels their energy level. The
phases θi(t) ≡

∫ t
dt′ φi(t

′) ensure the U(1) gauge invari-
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ance and we work with a particle-hole symmetric sys-
tem by simply considering half-filled reservoirs with a
flat density of states of bandwidth W . The thermostat
introduces a local (gauge-invariant) retarded hybridiza-
tion ImΣR

th(ω) = −Γ where Γ ≡ γ2/W sets the dissi-
pation rate. The corresponding Keldysh component of
the hybridization is fixed by the fluctuation-dissipation
theorem: ΣK

th = (2fT − 1)ImΣR
th where fT (ǫ) ≡ [1 +

exp(ǫ/T )]−1 is the equilibrium Fermi-Dirac distribution
at temperature T . We take this temperature to be the
lowest energy scale (kB = 1). We restrict ourselves to
the paramagnetic solution and drop the spin indices. In
the numerics, we use q = a = 1 and measure energies in
units of ǫ0.

For uniform non-equilibrium steady states, the
Schwinger-Dyson equations of motion read [9]

{ [

ω + ǫ(k)− ΣR(ω,k)
]

∗GR(ω,k) = 1 ,
GK(ω,k) = GR(ω,k) ∗ ΣK(ω,k) ∗GR(ω,k)∗ ,

(2)

where GR/K(ω,k) and ΣR/K(ω,k) are respectively
the gauge-invariant retarded/Keldysh Green’s functions
and self-energies that correspond to GR/K(̟,κ) and
ΣR/K(̟,κ) in [9]. Both the thermostat and the
Coulombic interaction contribute to the self-energy ker-

nels: ΣR/K = Σ
R/K
th + Σ

R/K
U . The star product ∗ ≡

exp ( i
2q[
←−
∂ω
−−−→
E ·∇k−

←−−−
E ·∇k

−→
∂ω]), in which left (right) ar-

rows indicate derivative operators acting on the left
(right), is a consequence of working with gauge invari-
ance quantities.

Dynamical mean-field approach. In equilibrium, the
self-energy of a d-dimensional Hubbard model reduces
to the one of a dimensionless Anderson Impurity Model
in the limit of infinite connectivity. Dynamical mean-
field theory (DMFT) uses this result to compute non-
perturbative mean-field solutions of finite dimensional
lattice problems by solving auxiliary impurity problems
defined self-consistently [11]. Here, we propose to gener-
alize this mapping for non-equilibrium steady states.

The Keldysh action of a single-band Hubbard-U im-
purity in a generic steady state reads

S =
∑

ab

∑

σ

∫∫

dt dt′ c̄aσ(t)G
−1
0

ab
(t− t′)cbσ(t

′)

−
∑

a

a

∫

dt U c̄a↑(t)c
a
↑(t)c̄

a
↓(t)c

a
↓(t) ,

(3)

where the indices a, b = ± refer to the forward and back-
ward branch of the Keldysh contour. The Gab0 are the im-
purity non-interacting Green’s functions (often referred
as the Weiss effective fields) that include the local hy-
bridization with the thermostat. The two quantities that
fully describe the non-equilibrium steady-state physics
of the impurity are its density of states ρ(ǫ) and its en-
ergy distribution f(ǫ) (given by the Fermi-Dirac distribu-
tion in equilibrium). Both are encoded in the interacting

E

FIG. 1: The impurity model consists in an impurity coupled to
a local thermostat (th) and a set of leads with chemical potential
µl = l qEa, l ∈ Z. In the framework of NESS-DMFT, the electric-
field-driven Hubbard model in contact with a thermostat is solved
through a self-consistent mapping to the impurity model.

Green’s functions through the relations

{

ImGR(ω) = −π ρ(ω) ,
GK(ω) = [2f(ω)− 1] ImGR(ω) ,

(4)

where GR = G++ − G+− and GK = i[G++ + G−−]/2 are
respectively the retarded and the Keldysh Green’s func-
tions of the impurity. They obey the following Schwinger-
Dyson equations

{

GR(ω) =
[

GR0 (ω)−1 − ΣR
U (ω)

]−1
,

GK(ω) =
∣

∣GR(ω)
∣

∣

2
[

GK
0
(ω)

|GR
0
(ω)|2

+ΣK
U (ω)

]

,
(5)

where Σ
R/K
U are the impurity self-energy kernels stem-

ming from the local Coulombic interaction in Eq. (3).
DMFT consists in approximating the lattice self-
energy by the one of the auxiliary impurity problem:
ΣR/K(ω,k) ≃ ΣR/K(ω). In order for the impurity prob-
lem to locally describe the lattice problem, one imposes
that it has the same (local) density of states and distri-
bution function. This corresponds to the following self-
consistent equations for the interacting Green’s functions

{

GR(ω) = GR(ω) ,
GK(ω) = GK(ω) ,

(6)

where GR/K(ω) = (a/2π)2
∫

dk GR/K(ω,k) are the local
Green’s functions of the lattice model.
We solve for all of the lattice and impurity Green’s

functions with the NESS-DMFT algorithm described

in [9]. The self-energy kernels Σ
R/K
U are now computed

by solving the following impurity model with the steady-
state impurity solver that we describe at the end of this
Letter. The IPT solution is used as an initial guess.
Impurity model. Let us re-interpret the Weiss fields

as the result of integrating over the degrees of freedom
of an effective environment described by the hybridiza-

tion kernels Σ
R/K
env . The out-of-equilibrium nature of the

environment is encoded in its energy distribution func-
tion fenv(ǫ) defined by ΣK

env = (2fenv − 1) ImΣR
env. The

non-interacting Green’s functions of the impurity obey
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the following Schwinger-Dyson equations (assuming that
a steady-state can be reached)

{

GR0 (ω) =
[

ω − ΣR
env(ω)

]−1
,

GK0 (ω) =
∣

∣GR0 (ω)
∣

∣

2
ΣK

env(ω) .
(7)

Similarly to the equilibrium case, there is no unique
way of modeling the impurity environment since different
environments can yield the same hybridization kernels.
Nonetheless, a model motivated on solid physical ground
will facilitate suitable solution schemes. Below, we first
propose a generic impurity model, then we specialize it
to the case of the electric-field-driven Hubbard model.
Let us represent the non-equilibrium environment as a

collection of equilibrium non-interacting fermionic reser-
voirs, labeled by l, with different density of states ρl(ǫ),
temperatures Tl and chemical potentials µl. These reser-
voirs are linearly coupled to the impurity with the cou-
pling constants tl. The corresponding hybridization ker-
nels read
{

ImΣR
env(ω)= −π

∑

l t
2
l ρl(ω) + ImΣR

th(ω) ,

ΣK
env(ω)= π

∑

l t
2
l tanh

(

ω−µl

2Tl

)

ρl(ω) + ΣK
th(ω) ,

(8)

in which we explicitly included the hybridization with
the local thermostat. This representation is fairly generic
and can be adapted to a wide class of steady-state im-
purity problems since it can accommodate any ΣR

env(ω)
and ΣK

env(ω).
We now specialize this approach to the case of the

electric-field-driven Hubbard model. Let us consider for a
while the potential gauge in which the electric field is ren-
dered by a linear ramp of the scalar potential throughout
the lattice: φ(t,x) = −qE ·x. If one singles out a site, its
direct environment is composed of the local thermostat
and of its four neighbors: two are on the equi-potential
(along the y direction) and the two others are shifted by
±qEa. All sites being equivalent, each of these neigh-
bors feels the same kind of environment, and so on and
so forth.
Based on this discussion, we model the impurity envi-

ronment by the local thermostat and a discrete “ladder”
of leads shifted in energy by Vl ≡ l ϕ with ϕ ≡ qEa and
l ∈ Z. Their chemical potentials are shifted accordingly:
µl = Vl. A schematic representation of the model is de-
picted in Fig. 1. In our symmetric case, we have tl = t−l

and we expect t0/2 ≥ t1 ≥ t2 ≥ ... .
In the absence of a drive (E = 0), all the leads be-

come degenerate and they can be considered as a unique
equilibrium lead at temperature T and zero chemical po-
tential. When the electric field is larger than any other
energy scale (E → ∞), the subsequent dimensional re-
duction [9] implies that only the l = 0 lead is relevant,
and that it is in equilibrium at temperature T and chem-
ical potential µ0 = 0. In the atomic limit (U → ∞),
the impurity decouples from the leads, tl → 0, and it
equilibrates with the local thermostat.
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FIG. 2: fenv(ǫ) obtained with the IPT solver is fitted by the ex-
pression (9) for two values of the dissipation Γ, U = 6 and E = 3
(T = 0.05). The lead temperature is found to be TL ≈ 0.2 for
Γ = 0.3 and TL ≈ 0.3 for Γ = 0.15. The hopping parameters are
(t0, t1, t2) ≈ (0.38, 0.10, 0.020) and (0.34, 0.13, 0.022) respectively,
and tl ≈ 0 for l ≥ 3 in both cases.

This impurity model is strictly equivalent to an impu-
rity coupled to equilibrium reservoirs at the same chemi-
cal potential (i.e. µl = 0) via some time-dependent cou-
plings tle

iVlt. This equivalence corresponds on the lattice
side to the U(1) gauge invariance which states that the
electric field can be rendered by a linear ramp potential
(potential gauge) or by some time-dependent hopping pa-
rameters (so-called temporal gauge).
We now make the simplifying assumptions that the

leads are in equilibrium at the same temperature Tl = TL

and have the same density of states (modulo the energy
shift) so that ρl(ǫ) = ρL(ǫ−Vl). This particular environ-
ment yields a steady-state energy distribution function

fenv(ǫ) =
π
∑

l t
2
l ρL(ǫ − Vl)fTL

(ǫ− Vl) + ΓfT (ǫ)

π
∑

l t
2
l ρL(ǫ − Vl) + Γ

, (9)

where fTL
(ǫ) is the equilibrium Fermi-Dirac distribution

at temperature TL. Notice that although the distribution
function fenv is clearly not thermal for finite electric fields
(see for instance Fig. 2), TL sets a new thermal fluctua-
tion scale in the problem. TL reduces to T in equilibrium
(E = 0 or E → ∞) and it diverges for a vanishing dis-
sipation (Γ → 0) as soon as both the drive E and the
interaction U are finite because the lattice side overheats
in the absence of a dissipation mechanism.
We validate the model by demonstrating that the right-

hand sides of Eqs. (8) and (9) can successfully reproduce
their left-hand sides that are generated by the NESS-
DMFT algorithm. In practice, we use a Newton’s steep-
est descent method to fit the parameters of the model
(the tl’s, TL and ρL). In Fig. 2, we provide some ex-
amples of this fitting procedure on the DMFT solutions
obtained with the IPT solver for U = 6, E = 3. At
this value of the interaction, the Hubbard bands are al-
ready present in the spectrum and the quasi-particle peak
melts down when qEa ∼ U/2 [12]. Figure 2 shows that
this melt-down translates on the impurity side into a high
lead temperature TL ≫ T which increases as Γ decreases.
We now discuss the case in which the DMFT solutions
are obtained with the non-perturbative steady-state im-
purity solver that is to be introduced below. Given the
limitations of this solver, we work with parameters E
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FIG. 3: Fit of the environment: joint determination of ρL(ǫ), TL,
t0, and t1 for U = 3 and E = 3 (T = 0.05,Γ = 0.3). (a) ImΣR

env(ǫ)
(plain line) is fitted with the dashed line which is the sum of the
terms l = −1 (green), l = 0 (blue), l = 1 (red) and Γ (orange) in
Eq. (8). (b) fenv(ǫ) (plain line) is fitted with the dashed line by
the expression (9). The other parameters of the fit are TL ≈ 0.05,
t0 ≈ 0.32 and t1 ≈ 0.18.

and U such that: (i) T ≃ TL, (ii) we can truncate the
model to a small number of leads, l = −1, 0, 1, and dis-
card the other leads [18]. In Fig. 3(a), we give the results
of the fitting procedure for U = 3 and E = 3 by plotting
ImΣR

env(ǫ) as the sum of t21ρL(ǫ−ϕ), t20ρL(ǫ), t
2
1ρL(ǫ+ϕ)

and Γ. The local maxima of ImΣenv(ǫ) at ǫ = ±qEa and
ǫ = 0 naturally come from the replication of the unique
maximum of ρL(ǫ) at ǫ = 0. In Fig. 3(b), we plot the
corresponding energy distribution function fenv(ǫ). The
jump around ǫ = 0 is accounted by the l = 0 lead and
the thermostat while the two symmetric jumps around
ǫ = ±qEa are described by the leads l = ±1. As a
result of the truncation, the high-energy features above
|ǫ| > |q|Ea are not properly captured and t1 is slightly
overshot.

Impurity solver. To demonstrate the practical rele-
vance of the impurity model we introduced, we solve it
and compute non-perturbatively the interaction contri-
bution to the retarded self-energies ΣR

U by generalizing
to multiple leads the steady-state impurity solver that
was recently developed by Han and Heary in the context
of a two-lead environment [4, 13]. Unlike the IPT solver,
this solver provides conserving solutions even away from
particle-hole symmetry.

Building on Hershfield’s expression for the steady-state
density matrix [14], Han and Heary gave an effective Mat-
subara description of the steady state. This allows the
use of standard many-body equilibrium tools to tackle
the strong interaction at the cost of introducing some
imaginary chemical potentials: iϕm ≡ i 2mπTL, m ∈ Z.
After the impurity problem is solved in imaginary time
for each m, the solutions are analytically continued to
the real-time real-voltage domain.

We refer the reader to [5] for the technical details as
we follow closely the steps explained there. The non-
interacting impurity Green’s function in Matsubara fre-
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FIG. 4: (a) Retarded self-energy ImΣR

U
(ω) obtained by the NESS-

HF solver. (b) Local density of states ρ(ǫ). The dashed lines cor-
respond to the IPT solution. (U = 3, E = 3, T = 0.05, Γ = 0.3).

quency and imaginary-voltage reads:

G0(iωn, iϕm) =
∑

l=0,±1

∫

dǫ
πt2l ρL(ǫ− Vl) + Γδl0
π
∑

pt
2
pρL(ǫ − Vp) + Γ

ρ0(ǫ)

znm,l − ǫ
,

(10)
with znm,l ≡ iωn − l(iϕm − ϕ), iωn ≡ i(2n + 1)πTL,
ρ0(ǫ) ≡ −ImG

R
0 (ǫ)/π and δl0 = 1 if l = 0 and 0 oth-

erwise. The differences with Eq. (32) in [5] lie in the
presence of the l = 0 term and the frequency-dependent
environment which is determined self-consistently.
The retarded self-energies ΣR

U (iωn, iϕm) are obtained
by means of a Hirsch-Fye algorithm [15]. More sophisti-
cated algorithms have already been used in the context
of a two-lead static environment [16]. ΣR

U (ω) is then ob-
tained after a double analytical continuation: iωn → ω
and iϕm → ϕ. This is performed numerically by fit-
ting all the ΣR

U (iωn, iϕm) by the following ansatz which
is guessed from the expression of the self-energy to the
second order in U and which has been validated in our
regime of parameters [5],

ΣR
U (iωn, iϕm) =

∑

γ∈Z

∫

dǫ
σγ(ǫ)Qγ(ǫ, iϕm − ϕ)

znm,γ − ǫ
. (11)

We truncate the sum at the order γmax = 5 and the func-
tion Qγ(ǫ, z) is fitted by the simple Padé approximant
1+Cγ(ǫ)z
1+Dγ(ǫ)z

. The parameters of the fit are the functions σγ ,

Cγ and Dγ . The real-frequency retarded self-energy is
obtained by

ImΣR
U (ω) = −π

∑

γ

σγ(ω) . (12)

We used a minimization procedure based on Newton’s
steepest descent method. Although the success of ana-
lytical continuations is never exempt from some numer-
ical ‘cooking’ techniques, this double analytical continu-
ation was unexpectedly rather easy to perform, perhaps
thanks to the presence of a finite dissipation in the bulk
that moves dangerous poles away from the real axis. In
Fig. 4(a) we plot ImΣR

U (ω) for U = 3 and E = 3 and com-
pare with the result obtained with the IPT solver. The
sharper edges around ω = 0 are responsible for a better
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defined quasi-particle peak in the local density of states
[see Fig. 4(b)] but altogether, the results are quite close
to the ones obtained with IPT. This agreement for rela-
tively small U validates our impurity model and impurity
solver.
We approximate the steady-state distribution function

of the interacting impurity by the one of its environment:
f(ǫ) = fenv(ǫ). It is a reasonable approximation for the
following reasons: (i) it is exact in equilibrium (E =
0 and E → ∞), (ii) it is exact in the non-interacting
case (U = 0) and in the atomic limit (U → ∞), (iii) it
is consistent with charge and energy conservations. In
turn, this gives us a simple way to estimate the Keldysh
component of the self-energy:

ΣK
U (ω) = [2f(ω)− 1] ImΣR

U (ω) . (13)

Once the impurity is solved, the self-energy kernels Σ
R/K
U

are used to recompute the lattice Green’s functions in
Eqs. (2), a new impurity problem is defined and solved
again, so on and so forth until convergence is reached.
Conclusion. Although the work presented here is cen-

tered around the electric-field-driven Hubbard model, the
impurity model, the dictionary between the lattice side
and the impurity side, and the steady-state impurity
solver allow to consider further questions, such as the
effect of chemical substitution (doping) and pressure ef-
fects under an electric field, not achievable with simpler
perturbation methods. Also, not only the steady-state
impurity solver enables to study the transport properties
of quantum dots driven by leads with a realistic density
of states, it can also address fundamental questions such
as the effect of a quantum critical point (gapped leads)
on the out-of-equilibrium Kondo physics [17].
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