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We study the n = 2 Rényi entanglement entropy of the triangular quantum dimer model via Monte
Carlo sampling of Rokhsar-Kivelson(RK)-like ground state wavefunctions. Using the construction
proposed by Kitaev and Preskill [Phys. Rev. Lett. 96, 110404 (2006)] and an adaptation of
the Monte Carlo algorithm described in [Phys. Rev. Lett. 104, 157201 (2010)], we compute
the topological entanglement entropy (TEE) at the RK point γ = (1.001 ± .003) ln 2 confirming
earlier results. Additionally, we compute the TEE of the ground state of a generalized RK-like
Hamiltonian and demonstrate the universality of TEE over a wide range of parameter values within
a topologically ordered phase approaching a quantum phase transition. For systems sizes that are
accessible numerically, we find that the quantization of TEE depends sensitively on correlations.
We characterize corner contributions to the entanglement entropy and show that these are well
described by shifts proportional to the number and types of corners in the bipartition.

PACS numbers: 75.10.Jm, 05.30.Rt, 03.67.Mn

I. INTRODUCTION

Quantum liquid phases of matter that do not break
conventional symmetries can have “hidden” non-local
quantum orders. Such quantum liquids are ordered quan-
tum phases that are not described by a local order param-
eter. Topologically ordered phases in particular, are of
great interest because of their potential to form the basis
of a physically fault-tolerant quantum computer.1 There
is therefore a strong incentive to realize such phases in
experimental systems as well as to identify theoretical
models which posses topologically ordered phases.

However, the lack of a local order parameter inhibits
the identification of topological ordered phases in theo-
retical models. Kitaev & Preskill2 and Levin & Wen3

identified a sub-leading negative constant term in the bi-
partite entanglement entropy, the topological entangle-
ment entropy (TEE), which allows for the identification
and classification of topological order. Constant sublead-
ing terms can arise in other contexts including critical
systems,4–7 from Goldstone modes in symmetry broken
states,8 and from corners in non-smooth bipartition as
seen in integer quantum hall wavefunctions.9

Lattice models with hard local constraints, such as
quantum dimer and loop models, possess quantum liq-
uid ground state phases, including topological phases. In
particular, the hard-core quantum dimer model on the
triangular lattice (TQDM) has a Z2 topologically ordered
dimer liquid phase.10,11 Since topological phases gener-
ally arise in strongly interacting systems which are not
always tractable by analytic methods, numerical studies
of these models are often necessary. Lanczos diagonaliza-
tion may be used to compute the bipartite-entanglement
entropy in small systems.12 However, computing the sub-
leading term in the entanglement requires using moder-

ately large systems which are not generally accessible via
Lanczos diagonalization.

At the RK point the TEE of the TQDM has been
computed using Pfaffian (Kasteleyn) methods with high
(10−9) numerical accuracy,12,13 and away from the RK
point using exact diagonalization on small lattices.12

Recent work by Hastings et al.14 has demonstrated a
method for computing the Rényi entanglement entropy
via Monte Carlo methods. This is attractive, since these
techniques generally allow for the study of moderately
large systems.

Demonstrating the universality of the TEE within a
topological phase and its behavior across phase tran-
sitions, is an area of ongoing research. Temperature
induced transitions have been explored in the work of
Isakov et al.15 The behavior of TEE approaching a quan-
tum phase transition was previously studied by Stephan
et al. by interpolating between the triangular to the
square lattice dimer models.6

Here we adapt the method of Hastings el al14 to
the TQDM. We confirm the previous results for the
TEE,12,13 and characterize constant contributions due to
corner effects at the RK point which may compete with
the TEE. Additionally we compute the TEE of a “gen-
eralized” RK wave-function, using the model of Trous-
selet et al.,16 and show the evolution of TEE approach-
ing a first order quantum phase transition. The results
strongly suggest the universal nature of the TEE inside
the dimer liquid phase in the thermodynamic limit, al-
though correlations are found to limit convergence in fi-
nite systems.
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A. Triangular Quantum Dimer Model

The fully-packed hard-core dimer model is defined on
a lattice with degrees of freedom labeled by the occupa-
tion of dimers on links, and the constraint that exactly
one dimer must touch each vertex. The Hilbert space is
comprised of the fully packed dimer coverings on the lat-
tice satisfying the vertex constraint (≡ |{C}〉). Different
dimer coverings are defined to be orthogonal. Rokhsar
and Kivelson first introduced this model on the square
lattice.17 It was subsequently generalized by Moessner
and Sondhi10 to the triangular lattice, where indications
of a Z2 topologically ordered ground state emerge.11 The
Hamiltonian for the TQDM is:

H =
∑
p

−t(| 〉〈 |+h.c.) + v(| 〉〈 |+ | 〉〈 |) (1)

where p labels all minimal Rhombus plaquettes on the
triangular lattice, and the kinetic (t) term which flips
parallel dimers around a plaquette is the minimal dimer
hopping that respects the vertex constraint (here t > 0
always). The v term acts as a potential energy between
parallel dimers. At the RK point, defined by v = t, the
ground state can be written as

|Ω〉 =
∑
C

1√
Z
|C〉 (2)

where the sum is over configurations reachable by plaque-
tte flips (Z is the number of elements in the sum). On
the torus, plaquette flips conserve two parities that are
defined by counting the occupation of dimers intersect-
ing the two non-contractible loops of the torus. Dimer
coverings are split into four topological sectors defined by
these parities, such that local rearrangements of dimers
cannot connect configurations in two different topologi-
cal sectors. Plaquette flips on the triangular lattice are
believed to be nearly ergodic within a topological sector,
with the exception of 12 symmetry related “staggered”
configurations that have no flippable plaquettes. There-
fore four distinct ground states are defined by these par-
ities which we label Ω = (0, 0), (1, 0), (0, 1), (1, 1) (0 for
even parity). This topological degeneracy is a character-
istic of the topological order present in the ground state
at the RK point.

On the triangular lattice the topologically ordered
dimer liquid phase persists for a finite region below the
RK point, in the range 0.86 ' v/t ≤ 1.10,18 Outside
of this region (v/t . 0.86 and v/t > 1), the ground
state is one of several symmetry broken ordered crys-
talline phases.18

The RK wave function can be generalized to weighted
superpositions of dimer configurations {C},

|Ψ〉 =
∑
C

1√
Z
e−E(C)|C〉, (3)

with Z =
∑
C

e−2E(C), and E(C) is the “classical” energy

of C. Such a generalized RK wave function is the exact

zero energy ground state of a corresponding RK-like local
Hamiltonian.19 In Sec. IIIB, we compute the TEE of a
generalized RK wave function that was previously stud-
ied in Refs. 19 and 20, and seen to interpolate between
the topologically ordered phase and a symmetry broken
phase.

B. Entanglement Entropy and Topological Phases

Bipartite entanglement entropy has emerged as a pow-
erful probe of quantum systems. The bipartite entangle-
ment entropy of a pure state |Ψ〉 is defined with respect
to a bipartition of the lattice into a region A and its
compliment B. The von Neumann entropy is defined as

S(ρA) ≡ −TrρA ln ρA (4)

and the Rényi entropy is defined as

Sn(ρA) ≡ 1

1− n
TrρnA (5)

where ρA ≡ TrB |Ψ〉〈Ψ| is the reduced density matrix
of A. The Rényi entropy reduces to the von Neumann
entropy in the limit n→ 1 and both are symmetric under
exchange of A and B, Sn(ρA) = Sn(ρB). Ground states
of local Hamiltonians are known to exhibit a boundary
law scaling in region size (i.e., in 2D the scaling is with
the perimeter length),21 although critical fermions are a
notable exception to this rule.22 In two dimensions this
scaling can generically be written as

S(ρA) = αLA + β log(LA/a) + C0 +O(1/LA) (6)

where the leading term is proportional to the perimeter
LA, and α is a non-universal constant. The logarithmic
term appears in certain quantum critical theories, but for
gapped phases, it is expected that β = 0. The constant
term C0 has been shown to arise in critical phases as well
as in topologically ordered phases.2–7

For topological phases, there is a universal, negative,
constant subleading term, the topological entanglement
entropy: −γ ∈ C0 (with γ, also referred to as γtopo,
> 0).2,3 Topological phases may be described by an effec-
tive topological quantum field theory:1,23 such theories
are categorized by the so-called total quantum dimen-
sion, D. For conventional ordered phases D = 1 and for
topologically ordered phases D > 1. The TEE is given
by:

γ = lnD (7)

and therefore is an witness of topological order (γ = 0
for conventional phases).

Physically the origin of this term can be seen by con-
sidering string-net wavefunctions as an effective theory
of topological order.23 The non-local order encoded in a
topologically ordered phase can be understood in terms of
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effective loop or string-net degrees of freedom describing
the wavefunction. Specifically, for discrete gauge theo-
ries, wavefunctions are comprised of different types of
non-branching loops with (counting the absence of a loop
as one type), the relation: the number of types of loops
= to the elements of the group = the total quantum di-
mension, D. Then as a direct consequence of the fact
that each type of loop must enter and exit the boundary
an even number of times, the effective degrees of free-
dom crossing the bipartition boundary as probed by the
entanglement entropy, is corrected by a factor of 1/D.
This is responsible for the reduction of the entanglement
entropy scaling by lnD.

The dimer model belongs to the Z2 class11 of topo-
logically ordered phases2,3,24 (the effective loop degrees
of freedom are so-called transition loops,20,25,26 see sup-
plementary material27). Therefore for the dimer model
and other Z2 topologically ordered phases γ = ln 2. Fur-
thermore it has been shown,28 that γ is independent of
the Rényi parameter n, so that any Rényi entanglement
entropy can be used to compute the quantity γ.

In Sec. IV we show that for non-smooth bipartitions
on a lattice, there can be non-universal constant con-
tributions to C0. We will split C0 into universal and
non-universal parts by writing C0 = −γ + κ. Our re-
sults are consistent with a non-universal term κ of the
form κ =

∑
aini where ni is the number of corners of

type i. As discussed in Sec. IV, the origin of these corner
terms can be thought of coming from a substitution in a
generalized linear scaling SA ∼

∑
i αi`i where boundary

vertices i contribute different constants αi.

II. MONTE CARLO SAMPLING FOR
ENTANGLEMENT ENTROPY

In Ref. 14 Hastings et al. describe a SWAP algorithm
to compute S2(ρA) via Monte Carlo simulations (in the
following, SA will always be taken to mean S2(ρA)). In
the current work we will be considering generalized RK
points, characterized by wavefunctions that are explicitly
written as a weighting of configurations. Therefore we are
able to compute expectation values of estimators using
classical Monte Carlo sampling of the wavefunction.

To estimate the entanglement entropy, following
Ref. 14, we define a new “doubled” system as two non-
interacting independent copies of the original, labeled 1
and 2. Each corresponding copy has the identical bipar-
tition A and B so that the Hilbert space of the doubled
system is a tensor product of the two copies with a state
labeled by degrees of freedom in A1, B1 and A2, B2 re-
spectively. Then SA is related to the expectation of the
SWAPA operator defined on the doubled Hilbert space
by its action in swapping the degrees of freedom in A:

SWAPA|A1B1〉 ⊗ |A2B2〉 = |A2B1〉 ⊗ |A1B2〉. (8)

Hastings et al. showed that Trρ2
A = 〈SWAPA〉, and

therefore SA = − ln〈SWAPA〉.

Taking C to represent a “doubled” dimer covering, the
matrix elements of the SWAP operator are

〈C ′|SWAPA|C〉 = δC′CA
δ(C|A), (9)

where CA is the configuration resulting from swapping C
over region A, and δ(C|A) is one if the swapped config-
urations do not violate the hard-core dimer constraint,
and zero otherwise. We can write the expectation value
of SWAP as weighted sum over configurations C:

〈SWAPA〉 =
1

Z

∑
C′,C

e−E(C′)−E(C)〈C ′|SWAPA|C〉

=
1

Z

∑
C

e−E(CA)−E(C)δ(C|A)

=
∑
C

e−∆E(C|A)δ(C|A)Π (C) ,

(10)

where Z =
∑
C exp(−2E(C)), Π (C) ≡ exp(−2E(C))/Z

can be viewed as a probability distribution, and
∆E(C|A) ≡ E(CA) − E(C). We see then that by clas-
sical Monte Carlo sampling of Π (C), we can compute
the expectation value of SWAP with use of the estimator
e−∆E(C)δ(C|A). For the RK ground state, the expecta-
tion value of the swap operator is simply the fraction of
the dimer configurations that are A-swappable.

As a direct consequence of the perimeter law scaling,
the principle limitation of this approach is the exponen-
tial decay of 〈SWAPA〉 with boundary length. Following
Ref. 14, a “ratio method” may be employed in which the
ratio of expectation values of SWAP can be computed
more efficiently:

〈SWAPA′〉
〈SWAPA〉

= e(SA−SA′ ) ∼ e−α(LA′−LA), (11)

where region A′ is larger than A but with perimeter LA′

sufficiently close to LA such that the ratio is not too
small. While a single ratio combination gives the dif-
ference of the entanglement entropy of two regions, the
entanglement entropy of a single (large) region, required
to compute the TEE, can be determined by computing
the entropy of a single small region and adding succes-
sively the computation of differences (swap ratios): (i.e.
SAn = SA0 +

∑n
i=1(SAi − SA(i−1)), for An > · · · > Ai >

· · · > A0).
The ratio method can be specialized to the dimer sys-

tem at generalized RK points. An example of two over-
lapping regions A′ and A is shown in Fig. 1. Because the
estimator used to compute 〈SWAPA〉 (Eq. 10) does not
have support everywhere in the doubled Hilbert space
(it is non-zero only for swappable configurations), a diffi-
culty with directly computing the ratio in Eq. 11 is that
swappable configurations overA′ are not a subset of those
over A or vice-versa. Instead, what is actually directly
possible to compute are the following ratios:

R′ =
〈SWAPA′SWAPA〉
〈SWAPA′〉

, R =
〈SWAPA′SWAPA〉
〈SWAPA〉

.

(12)
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FIG. 1. (Color Online) Regions A′ and A as described in the
text. Note A′ also includes the blue links. Shaded plaquettes
are examples of constrained plaquettes for the case where A
is kept flippable.

From these, the ratio we want is simply R/R′. Each of
these ratios has a simple Monte Carlo interpretation. For
example, inserting 1 =

∑
C |C〉〈C| into the numerator

of R, and acting each SWAP towards the center readily
leads to:

R =

∑
C

δ(C|A)δ(C|A′)e(−E(CA)−E(CA′ ))∑
C

e−E(CA)−E(C)δ(C|A)

=
∑
C|A

e−∆E(C|A′ )δ(C|A′)ΠA(C)

(13)

where the sums have been explicitly written as restricted
to A-swappable configurations, ∆E(C|A′) ≡ E(CA′) −
E(C), and

ΠA(C) =
exp(−E(CA)− E(C))∑

C|A
exp(−E(CA)− E(C))

. (14)

To compute R, we sample dimer configurations (weighted
by e−E(CA)−E(C)) in such a way that the A-boundary al-
ways remains swappable, and then measure the estimator
δ(C|A′)e−∆E(C|A′ ). At the standard RK point one may
set exp → 1, and R is simply the ratio of configura-
tions that are swappable for both A and A′ to those only
A-swappable. To compute R′, the region which is kept
swappable is reversed.

To generate configurations which always remain swap-
pable over A, updates are done independently for each
copy, except for certain constrained plaquettes which
must be flipped simultaneously in copy 1 and 2. The
constrained plaquettes are those which are not entirely in
region A or B (the complement of A). Some examples are
shown in Fig. 1. For simply-connected bipartitions these
updates should be ergodic over all possible A-swappable
configurations. However, if A is not simply connected,
it can be shown that this is not be the case, and an-
other method for ratio updates are needed. Details are
presented in the supplementary material.27

III. COMPUTATION OF TOPOLOGICAL
ENTANGLEMENT ENTROPY

The TEE has been computed at the RK point in
Ref. 12 and 13 using Kasteleyn matrices.29 Here we re-
port computations of this quantity using Monte Carlo,
which also allows us to sample generalized RK points
whose ground states exhibit a quantum phase transition.
Our findings are useful for further numerical studies away
from RK-like wavefunctions.

There are two routes to compute the TEE term nu-
merically. The first is to use extrapolations: that is, to
extrapolate the linear part of the entanglement entropy
scaling for different perimeter-sized bipartitions and de-
duce the intercept. The second is to make use of can-
cellations: i.e., to consider a difference of bipartitions
whose total net perimeter cancels while the net number
of boundaries do not, thereby leaving the topological con-
tribution γ.

When using extrapolations, one has the further op-
tion of employing simply connected polygonal biparti-
tions such as parallelograms of various sizes, or splitting
the torus–the topology of periodic boundary conditions–
into two pieces with two separate smooth boundaries. In
the latter, each region is a non-simply connected strip
and tori of different widths must be used for boundary
scaling (Fig. 2). Polygonal bipartitions suffer from cor-
ner contributions masking the TEE, which we describe in
detail in Sec. IV. Extrapolations from strips, which have
smooth boundaries, avoid these corner effects. Also these
types of non-trivial bipartitions can yield more informa-
tion regarding the topological phase, such as S-matrix
terms.30–32 In recent work,33 a single smooth bipartition
of a cylinder has been employed to detect TEE using den-
sity matrix renormalization group (DMRG). However,
there are difficulties with this approach using current
methods. First, we found that strips on thin tori appear
to have substantial even-odd finite-size effects. Also, it is
more difficult to formulate an appropriate ratio method
for this strip geometry, given the ergodicity problems dis-
cussed in the supplementary material.27 Therefore, the
alternative cancellation strategy turns out to be more
useful for Monte Carlo simulations.

Two cancellation geometries are typically used: a
Levin-Wen type construction3 shown in Fig. 3 gives the
TEE as two pairs −2γ = (SABCD − SABC) + (SAC −
SADC), while the Kitaev-Preskill construction2 (Fig. 3)
gives the TEE as three pairs plus an extra region: −γ =
(SABC−SAB)+(SA−SAC)+(SB−SBC)+SC . It turns
out that in both of these constructions the number and
type of corners cancel as well.

In practice, however, using the types of updates de-
scribed in Sec. II the Levin-Wen construction turns out
to not be possible for the ratio method. The issue is
that the updates fail to be ergodic in the configuration
space. The problem occurs for calculations when the re-
gions SABCD and SAC are the constrained regions (de-
nominators in the ratios of Sec. II, see supplementary
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FIG. 2. Sample parallelogram extrapolation (left); strips with
periodic boundary conditions assumed (right).

FIG. 3. Levin-Wen (left), Kitaev-Preskill (right) construc-
tions.

material27). Consequently the Kitaev-Preskill construc-
tion offers the best method for extraction of γ.

A. RK point

We take region ABC to be an inscribed regular
hexagon with divisions as shown in Fig. 4. Note that
since the Hilbert space is defined on links, partitions are
uniquely defined by specifying to which region every link
belongs. w is the outer hexagon side width. Our results
for the RK point wavefunction are summarized in Fig. 5
and Table I for various sized hexagons and lattices. If the
spacing from the outer hexagon edge to the lattice edge
is kept on order of the hexagon side width or greater, the
resulting TEE depends little on lattice sizes, except in
limiting the size of the outer hexagon that can be used
(this turns out not to be the case for more general wave-
functions). For w = 6 convergence to the expected value
of ln 2 is seen (within the error bars). We also computed
the TEE for the different ground states on the torus,
Ω = (1, 0), (1, 1) (in the notation of Sec. I A). These
states also converge to the expected value, ln 2.

TABLE I. Numerical values for selected points of Figure 5.

Monte Carlo Run γ/ ln 2
w = 6 (18× 18 lattice) 1.001± 0.003
w = 6 (16× 16 lattice) 0.994± 0.002
w = 5 (18× 18 lattice) 0.995± 0.003
w = 5 (16× 16 lattice) 0.995± 0.001

FIG. 4. (Color Online) Triangular lattice version of the
Kitaev-Preskill construction used in the Monte Carlo runs.

FIG. 5. (Color Online) Net entanglement entropy (TEE) from
the Kitaev-Preskill construction, for the RK wavefunction on
the triangular lattice, computed using the partitions shown
in figure 4. Unless noted, that ground state parity Ω is (0, 0).
The solid horizontal line is the predicted value of the TEE
= ln 2.

B. TEE approaching a quantum phase transition:
generalized RK wavefunction

A number of phases from other classical weightings
have been studied.16,19,20 One class of modifications in-
terpolate between the liquid-like RK point and sym-
metry broken phases by preferentially weighting dimers
on links reflecting the desired ordered configuration.20

These wavefunctions, however, explicitly break transla-
tion invariance and therefore constructions which rely on
perimeter cancellations fail to accurately probe the TEE
unless very large regions can be used.

A classical dimer model that preserves translation in-
variance was discussed by Trousselet et al. in Ref. 16.
In this model the wavefunction was weighted to favor
dimers in parallel (equivalent to a flippable plaquette), as
if they would “interact classically” in the sense of E(C)
as a classical energy. In this case, E(C) = ln(α)Nf (C),
where Nf (C) is the number of flippable plaquettes for a
covering C, and α is an adjustable parameter. α = 1
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corresponds to the RK point while α < 1 favors flip-
pable plaquettes. Such interacting wavefunctions are the
groundstate of the RK-like Hamiltonian:19,20

Hα = t
∑
p

− (| 〉〈 |+ h.c.) +

(α−∆Nf/2| 〉〈 |+ α∆Nf/2| 〉〈 |)
(15)

with ∆Nf = Nf ( )−Nf ( ) (the difference in flippable
plaquettes due to a flip of plaquette p).

The topological liquid phase with a finite correlation
length persists for α < 1 until the wavefunction under-
goes a first order phase transition near αc ∼ 0.2.16,20

Below this value only configurations that have the max-
imum number of flippable plaquettes contribute to the
wavefunction. These are 12 columnar symmetry-broken
configurations, plus a large number of configurations re-
lated by single line shifts across the lattice.10,16

Using the ratio method and the Kitaev-Preskill con-
struction we are able to probe the TEE of such inter-
acting wavefunctions in the liquid regime as the system
approaches the transition point. Although the TEE is
believed to be universal in the topological liquid regime,
there is to date only one known example at T = 0,
namely, that given by Stephan et al. in Ref. 6 These
authors computed the TEE for a dimer model starting
on the triangular lattice (at the RK point) and interpo-
lated to the square (critical) lattice using Kasteleyn ma-
trices.29,34 At a critical point the entanglement entropy
is predicted to have a constant positive shift. However
Stephan et al. found that the TEE decreased below− ln 2
before rising toward a positive value. The flow was well
described by a single combination of parameters t · L,
where L is simultaneously the cylinder circumference (the
geometry used) and bipartition boundary, while t is the
fugacity for dimers on diagonal bonds (t = 0 is the square
lattice fugacity; note this is a different t then in Eq. 1).
Deviation away from ln 2 begins for as large a value as
t · L ∼ 9 (for Rényi parameter n = 1.5).

Our results for the interacting wavefunction are pre-
sented in Fig. 6 as a function of the parameter α. Since
the ordered state involves many local minima, we can-
not go through the transition without non-local updates,
which we have not implemented in the current variant
of the ratio method. The TEE appears to be a robust
indicator of topological order for a reasonable range of α.
However, below α ∼ .5 stronger finite size effects begin to
affect the result. An investigation of dimer-dimer corre-
lations, discussed below, suggests that larger correlations
are the main reason for the deviation. While the scaling
with outer hexagon width w is not clear for the system
sizes studied (inset to Fig. 6), it suggests convergence to
the expected value of ln 2.

The value where the TEE begins to diverge from the
theoretical value, occurs when the bipartite region length
scale, w, is on order 10× the correlation length ξ (for the
current Rényi index n = 2). For the interacting wave-
function (ground state of Eq. 15), the dimer-dimer cor-
relation length does not diverge, since the transition is

FIG. 6. (Color Online) TEE for the ground state of Eq. 15 as
a function of the parameter α. All points are computed on an
18×18 lattice, with the TEE extracted from a Kitaev-Preskill
construction with outer hexagon width w.

FIG. 7. (Color Online) Negative log of the dimer-dimer corre-
lation at 6 lattice spacings apart on an 18× 18 lattice for the
ground state of Eq. 15 as a function of the parameter α. ‖, ⊥
refer to dimers relatively parallel or offset by 60◦ respectively.

first order, however, it grows compared to the RK val-
ues. Figure 7 shows the negative log of dimer-dimer cor-
relation at 6 lattice spaces apart–the length scale of the
boundary bipartitions w on an 18 × 18 lattice (the lat-
tice size for the results on Fig. 6). We use the negative
log of the correlation function at a characteristic length,
w(= 6), to estimate w/ξ , where ξ is an effective cor-
relation length. The divergence from − ln 2, beginning
around α = .5, corresponds to a value of 8 in Fig. 7.
Expressed in this way, the value can be compared to the
results of Stephan et al.,6 where a deviation can also be
seen at similar values (since t ∼ 1/ξ,35 and deviations
begin near L · t ∼ O(10)). Taken together, these re-
sults suggest that at least for dimer systems, the TEE is
quite sensitive to finite correlations, requiring bipartition
length scales up to O(10) times the correlation length. If
such scaling holds more generally, it would constitute an
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FIG. 8. (Color Online) Entanglement entropy and best fit
line as a function of polygonal region perimeters, L, show-
ing offsets for different polygonal regions. Fits include total
constant term; for comparison the expected γ = ln 2 = .693
(solid line in the inset).

important limitation on numerics to extract the TEE.

IV. CORNER CONTRIBUTIONS TO
ENTANGLEMENT ENTROPY

As noted earlier, bipartitions with corners contribute a
non-universal constant, κ, to the entanglement entropy.
The presence of corner shifts can be readily seen in the
scaling of various polygonal regions, in particular, of the
hexagons, triangles, and rhombi shown in Fig. 8. The
offset appears to be a constant shift. This is more pre-
cisely measured by computing differences of bipartitions
as discussed below.

Corner effects have been studied for the integer quan-
tum hall wavefunction.9 In other topological phases there
have not been any studies on corner contributions that
we are aware of, although Ref. 13 also noted the poten-
tial for non-universal constant corner contributions away
from the critical point. Our results are consistent with
a total contribution κ of the form κ =

∑
i

aini as found

for quantum Hall systems in Ref. 9, where i labels the
types of corner, ni the number of corners of type i while
{ai} are coefficients to be determined. With this form,
κ exactly cancels for the Kitaev-Preskill construction if,
as required by the symmetry of entanglement entropy
ai = aĩ, where ĩ is the complement of i (the angle which
combines to form a closed circle). Apart from the nu-
merical values, the most important result of this section
is that corner effects do saturate to constant shifts, al-
lowing for the extraction of the TEE by the approach of
canceling regions.

Since the linear shifts in Fig. 8 include the topologi-
cal term, the triangles actually have the smallest shift,

FIG. 9. (Color Online) Six lattice corners. Type I corner
(top), left to right: α, β σ. Corresponding type II on bottom.

TABLE II. Corner shifts ai. The estimate is computed from
the analysis described in the appendix. See text and figure 10
for details on Monte Carlo runs employed.

Corner Estimate Measured
Iα −0.02 0.008 ± 0.002
IIα 0.09 0.0946 ± 0.0001
Iβ −0.26 −0.2592 ± 0.0004
IIβ −0.02 −0.0011 ± 0.0004
Iσ −0.62 −0.677 ± 0.002
IIσ −0.23 −0.238 ± 0.002

despite having sharper corners. More precise results con-
firm this. To see why sharper corners can have a small
effect, first note that unlike the continuum, the types
of corners i are not solely determined by angle. Micro-
scopically, on the triangular lattice there are a total of
6 types of corners (plus complements) labeled as i ∈ Iα,
Iβ, Iσ, IIα, IIβ, and IIσ. The Roman numeral refers
to the angle I = 60◦, II = 120◦ and the Greek let-
ter as to whether incoming links are included or not,
as shown in Fig. 9. Measured values of the shifts ai
are presented in Table II. Estimates are obtained from
a mean-field-like analysis presented in the appendix and
supplementary material.27 Two important points can be
deduced from the analysis that give intuition both as to
the form of κ and for the original question, i.e. why
sharp corners have a small contribution. First, the cor-
ner terms can be thought of most naturally as part of
a generalized linear scaling with boundary vertices {v},
SA ∼

∑
j αj`j =

∑
j αj` for j ∈ {v} where ` is the lat-

tice spacing. When all αj are equivalent (αj = α), as
in a straight side, this becomes a linear scaling = LAα.
Then the corner shift can be understood as single dislo-
cation α → αi, so that ai = ∆α = αi − α. Secondly,
to first order, the scaling αj is determined by the num-
ber of links in region A versus B (the complement) that
meet at boundary vertices. For side vertices away from
corners these are 4 and 2, therefore corners Iα and IIβ
which have the same incoming links have the smallest
shift, followed by (3, 3) which adds entropy for IIα, then
(1, 5) for Iβ and IIσ, and (0, 6) for Iσ. These values are
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all in agreement with the ordering shown in Table II.
Several Monte Carlo runs were used to extract the mea-

sured ai. The types I(II)α were taken from combining
the information from: 1) the linear scalings in Fig. 8
removing the TEE entropy (assuming it is ln 2), 2) the
differences between those polygons (note any combina-
tion of those only gives 2a(IIα)−a(Iα)), and 3) specially
constructed combinations called “Iα, IIα combinations”
shown in Fig. 10. The measured I(II)β are easily ob-
tained solely from the L-shaped combination shown in
Fig. 10 (“Iβ, IIβ combinations”); similarly for I(II)σ.

In Fig. 10, the most important feature is that corner
effects do indeed saturate to constant shifts, rendering
constructions like the Kitaev-Preskill useful for extract
the TEE.

V. CONCLUSIONS

We have demonstrated that Monte Carlo techniques
provide a viable method for the numerical calculation of
the TEE of the ground states of generalized RK points.
In addition to confirming existing results, we have also
been able to apply the method to a generalized RK wave-
function and to thereby investigate the behavior of TEE
approaching a quantum phase transition. Our results
suggest that the TEE is indeed a robust indicator of
topological order in the thermodynamic limit through-
out the quantum liquid regime. However, we also find
a strong dependence on correlations that requires bipar-
titions with side lengths of order at least 10 times the
correlation length. If this estimate applies generally, this
implies that numerics will be severely constrained in the
vicinity of a second order phase transition. These re-
sults are therefore an important guide for future quantum
Monte Carlo studies.

The third aspect that we have been able to study here
is the nature of corner contributions. First the magni-
tude of corner shifts are of order γ so their effects must be
controlled either by canceling them out or by dealing ex-
clusively with smooth boundaries. On a lattice with pe-
riodic boundary conditions, however, these are not topo-
logically trivial. For example, difficulties in the linear ex-
trapolations of Ref. 12 may have been due to the effective
variation of edges associated with the radial-like region
definitions. Second, at least for the RK point, we can
verify that corner shifts do indeed saturate to constant
values, thereby making possible constructions which can-
cel corners linearly. It remains to be seen whether this is
also the case for more general wavefunctions.

Our results are important for future work employing
quantum Monte Carlo and for conclusions about the
practical utility for TEE as probe of topological order.
In this regard, the present results allow us to conclude
that TEE is a useful tool as long as correlation lengths
are small enough in at least one point of the topologi-
cally ordered liquid phase. While the only other known
example of the behavior of the TEE on approaching a

quantum phase transition does suggest a similar behav-
ior,13 further numerical studies of TEE in exotic phases
of matter should be of great value.

After completion of this manuscript we became aware
of a similar work by Pei et al.36
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Appendix A: Estimate of corner effects.

Using Kasteleyn matrices,29,34 an estimate for corner
effects can obtained. Kasteleyn showed that the number
of dimer coverings on a lattice is given by the Pfaffian of a
matrix Kij , with i, j labeling lattice sites and Kij±1 (or
suitable weights in generalizations) for nearest neighbors
and zero otherwise; the sign is determined according to
a convention of arrows placed on the lattice. We refer
readers to Refs. 13 and 35. Only two facts will be used
for the following arguments. First, Z ≡ the number of
coverings = the Pfaffian of K (written Pf(K)). Second,
the square of the Pfaffian is the determinant for an even-
dimensional matrix: (Pf(K))2 = Det(K).

For a configuration to be swappable, one simply needs
to satisfy the dimer constraint along boundary vertices
≡ {v}, which are vertices that have links belonging to
both B and A. For each boundary vertex in each config-
uration, a dimer can be on a B link or an A link, which we
will consider as a “side parity” labeled as either v = a, b
if the vertex has a dimer in A or B. Then swappabil-
ity simply imposes that for every boundary vertex, the
dimer in copy 1 is in the same side as the dimer in copy
2 (v1 = v2). Using a similar notation to Ref. 13, the
number of swappable configurations can be written as:

ZSWAP =
∑
{v}

Z1|{v} · Z2|{v}, (A1)

where Z1,2|v is the set of dimer coverings in copy 1(2)
given a set of A, B occupations, or side parities of {v};
the sum runs over the combinations specifying a or b
for the number of boundary vertices ≡ Nv. Note that
Z1|{v} = Z2|{v}, and each can be written as a Pfaffian,
with certain constrained links removed. The links to be
removed are those which touch a vertex v on the side
A if v = b, or on the side B if v = a (the Pfaffian will
then generate combinations on the occupied side). An
example is shown in Fig. 11. An “exclusion matrix” E
can be defined so that for a removed link from site r to
s, Ers = Krs and it is zero otherwise, so that:

ZSWAP =
∑
{v}

(Pf(K − E|{v}))2 =
∑
{v}

Det(K − E|{v})

(A2)
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FIG. 10. (Color Online) Bipartition geometries used to extract corner contributions. Entropy differences are computed between
the black and red regions. The dotted line represent sides with “missing links” used to form β corners. The Iα and IIα
combinations involve pairs plus an extra region, thereby requiring a subtraction of the TEE (taken to be ln 2). The blue
horizontal lines are the values used for table II.

FIG. 11. (Color Online) Boundary vertices in black shown
taking values {v} = {baabba} (periodic boundary conditions
are not assumed). The lattice to be included in K − E are
the darkened links.

with K and E now referring to only a single copy. Finally
from Eq. 10 the entanglement entropy can be written as:

SA = − ln
ZSWAP

Z2
1

= − ln
∑
{v}

Det(K − E|{v})
Det(K) (A3)

which matches the n = 2 Rényi entropy in Ref. 13. Next
we can employ a perturbation theory of matrices37 and

the trace identity,

Det(K − E|{v})
Det(K)

=
Det(K)Det(1−K−1E|{v})

Det(K)

= exp(Tr ln(1−K−1E|{v}))

= exp(Tr(−K−1E − 1

2
K−1EK−1E . . . )),

(A4)

with E|{v} implied in the last line. K−1 can be diagonal-

ized in Fourier space.35 It decays exponentially in vertex
separation; for nearest neighbors i, j K−1

i,j = ±1/6, it van-
ishes for next to nearest, and is ∼ 0.02 for a three-link
separation. Because of the number of terms contributing
to the trace also grows, the series does not converge as
fast as K−1 ∼ 1/6, but roughly ∼ 1/2, so that at least
these two terms should be kept, and we expect the es-
timates to be accurate to the order of 10% if we ignore
higher order terms of the expansion. Ignoring those terms
and making the definitions T1|{v} ≡ Tr(−K−1E|{v}) and

T2|{v} ≡ Tr(− 1
2K
−1E|{v}K−1E|{v}), the resulting form

is

SA = − ln
∑
{v}

exp (T1|{v} + T2|{v}). (A5)

The sum ranges over the a, b choices for each vertex.
If T1(2) depended only on the number of a versus b

vertices Eq. A5 could be written as a binomial expan-
sion or Gaussian in the large Nv limit. However, in gen-
eral T1(2) depend on the details (ordering) of a particu-
lar set of a, b choices of {v}. Specifically, the first term
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T1 = (K−1)ij(E|{v})ji is only non-zero for i, j nearest
neighbors of the “excluded lattice”. It is evaluated as
− 1

6

∑
i zi ≡ T1, where the sum is over all vertices i,

zi is the number of nearest neighbors for the ith ver-
tex (of the excluded lattice). T1 can readily summed to
− 2

6×(number of removed links). This value depends on
the number of a versus b values and also the ordering.
For example, the number of links in the“excluded lat-
tice” increases by 2 for every v = b, but may increase by
3 or 4 for v = a, depending on whether it follows an a
or b, respectively. Therefore to proceed, one can define
a mean-field contribution as − 2

6 × 2 per v = b vertex

while − 2
6 × (3P + 4(1 − P )) per v = a vertex where P

is the likelihood of finding a v = a neighbor, which can
be determined self-consistently. The second term T2 can
be put in a similar form provided one ignores K−1 terms
connecting three links or more, as this contains a factor of

0.02. Then T2 can be shown to be − 1
72

∑
i[z

2
i +zi(zi−1)].

One can also make a mean field estimate for the average
contribution to T2 by considering combinations of neigh-
boring preceding vertices. Note, that the form of these
terms as a sum suggests the potential for the generalized
linear scaling mentioned in Sec. IV, SA ∼

∑
i αi`i.

If we call the average contribution to T per v = a
vertex on a straight side, ≡ τside,a and similarly per v = b
vertex ≡ τside,b, then given a combination of vertices {v}
(along a side) having na, v = a vertices, T ≡ T1 +T2 can
be written in terms of these average values:

T = naτside,a + (Nv − na)τside,b. (A6)

Put into this form (depending only on the number of
a’s, na, in {v}), the sum (Eq. A5) can be written as a
binomial expansion and approximated as the Gaussian
integral in the large Nv limit:

SA ≈− ln

∫
dna

√
2

πNv
exp

(
−2(na −Nv/2)2

Nv
+Nv ln(2) + τside,b(Nv − na) + τside,ana

)
=Nv

(
− ln(2)− τside,b + τside,a

2
− (τside,a − τside,b)2

8

)
≡ σA(Nv),

(A7)

Finally a corner shift for a corner of type c, can be ex-
tracted from the difference ∆SA(c) ≡ SA(Nv−1 side ver-
tices +c ) −SA(Nv side vertices); with the exception of Iσ
discussed below. One can think of the first term as a bi-
nomial(Gaussian) sum over Nv−1 non-corner terms mul-
tiplied by a factor of ×(eτc,a + eτc,b) which generates the
last two possibilities at the corner with similar mean-field
contributions for corner vertices: τIα,a, τIα,b, τIβ,a, τIβ,b,
etc.27 Then we can write:

∆SA = σ(Nv − 1)− ln(eτc,a + eτc,b)− σ(Nv), (A8)

or,

∆SA =

(
ln(2) +

τside,b + τside,a
2

+
(τside,a − τside,b)2

8

)
− ln(eτc,a + eτc,b).

(A9)

For the case of Iσ, since at the “corner” there is no bound-
ary vertex. To compute the shift in this case, instead two
vertices are removed, and the factor τ∗Iσ,a refers to a sub-
stitution of the vertex just before the corner. So the
above formulae can be used with τ∗’s and the first term
(enclosed in parentheses) multiplied by 2.

Inserting estimates for the τ ’s (see supplementary ma-
terial27) yields the results given in Tab. II and are in
good agreement with the measured valued. Also, note
that the term multiplying Nv in σA(Nv) (Eq. A7) is an
estimation of the slope of the entanglement entropy. The
value for the slope obtained by plugging in the mean-field

values gives 0.51, which is on order 10% from the fitted
slope values near 0.58. The relative success of the sub-
stitutions suggest that the corners can be seen explicitly
in the generalized linear scaling

∑
i αi`i noted above and

in Sec. IV.
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9 I. D. Rodŕıguez and G. Sierra, Journal of Statistical Me-

chanics: Theory and Experiment 2010, P12033 (2010).
10 R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881

(2001).
11 R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B

65, 024504 (2001).
12 S. Furukawa and G. Misguich, Phys. Rev. B 75, 214407

(2007).
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