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We show through both theoretical arguments and numerical calculations that graphene discerns
an unconventional sequence of quantized Hall conductivity, when subject to both magnetic fields
(B) and strain. The latter produces time-reversal symmetric pseudo/axial magnetic fields (b).
The single electron spectrum is composed of two inter-penetrating sets of Landau levels (LLs),

located at ±
√

2n|b ±B|, n = 0, 1, 2, · · ·. For b > B, these two sets of LLs have opposite chiralities,
resulting in oscillating Hall conductivity between 0 and ∓2e2/h in electron and hole doped system,
respectively, as the chemical potential is tuned in the vicinity of neutrality point. The electron-
electron interactions stabilizes various correlated ground states, e.g., spin-polarized, quantum spin-
Hall insulators at and near the neutrality point, and possibly the anomalous Hall insulating phase
at incommensurate filling ∼ B. Such broken symmetry ground states have similarities as well
as significant differences from there counterparts in the absence of strain. For realistic strength of
magnetic fields and interactions, we present scaling of interaction induced gap for various Hall states
within the zeroth Landau level.

PACS numbers: 71.10.Pm, 71.10.Li, 05.30.Fk, 74.20.Rp

Successful fabrication of two-dimensional electron gas,
e.g, Galium-Arsenide (GaAs) heterostructure, provided
unique opportunity to observe a novel aspect of low-
dimensional electronic systems, quantization of Hall con-
ductivity (σxy). At weaker magnetic fields (∼ 1 T), even
the low-mobilty samples discern quantized plateaus of
σxy at various integers of e2/h. This phenomena is re-
ferred to as integer quantum Hall effect (IQHE)1. Rather
more striking observation is the plateaus of that quantity
at various, for example 1/3, fractions of e2/h, in improved
samples, however at stronger fields (∼ 10 T)2. Whereas
the IQHE arises from free motion of fermions in mag-
netic fields3, its fractional version necessarily requires
strong electron-electron interactions to develop mobility
gap within a partially filled Landau level4.
Integer quantization of σxy occurs when the chemi-

cal potential (µ) lies within a mobility gap, filled by
localized states, separated by two extended conducting
edge modes carrying the quantized Hall current5. As the
magnetic field (B) is reduced, more and more extended
states, at well separated energies, get occupied. Total
Hall current, the algebraic sum of it carried by each of
the edge modes, then encounters quantized increment,
due to identical chirality of all the edge states6.
Besides the GaAs heterostructure, the new generation

two-dimensional electronic system, graphene, discerns a
sequence of Hall plateaus at fillings ν = ±4(n+ 1

2 ), sub-

ject to relatively low fields7, while additional plateaus,
for example at ν = 0,±1,±4, show up as the field is
enhanced8,9. Otherwise, all the LLs support the cur-
rent carrying states with identical chirality, as in GaAs10.
Moreover, due to its mechanical flexibility under strain,
graphene may experience yet another effective magnetic
field, resulting from deliberate bulging11. Such strain in-
duced pseudo/axial magnetic field (b) preserves the time
reversal symmetry (TRS), and points in opposite direc-

tions at two inequivalent Dirac points, suitably chosen

here at ~K = (1, 1/
√
3)(2π/a

√
3) and − ~K12. Therefore,

subject to strain as well as an external magnetic field,
one can expose the gapless Dirac quasi-particles, near two
Dirac points with different effective fields, |B ± b|, possi-
bly pointing in opposite directions, respectively. Hence,
an interplay of these two gauge fields, concomitantly an
unconventional quantization of the Hall conductivity can
be realized in graphene.
It is perhaps worth considering the Hall response of

this system when B > b(6= 0) first13. The spectrum of
non-interacting Dirac quasi-particles is then comprised of
two inter-penetrating sets of LLs at well separated ener-
gies ±

√

2n(B ± b), with degeneracies (B±b)/2π per unit
area, and all the LLs experience the effective orbital mag-
netic fields in the same direction. Hence, every current
carrying states have identical chirality. Consequently, as
the chemical potential sweeps through various LLs, the
total Hall current adds up, and the quantization of σxy

is expected to occur at all integers of e2/h. However,
the plateaus appear at incommensurate fillings, due to
distinct degeneracies of the LLs14.
Rather more interesting situation arises when b > B.

For B = 0, the pseudo Dirac LLs, placed at ±
√
2nb15–18,

near two valleys have opposite chirality, henceforth the
TRS is preserved. As long as b > B > 0, two inequivalent
sets of LLs, now located at

√

2n(b±B) (Fig. 1, left
column), with respective degeneracies (b±B)/2π per unit
area, continue to enjoy opposite chirality (Fig. 1, lower
right column). Consequently, as the chemical potential
starts to deviate from the charge neutrality point (CNP),
the Hall conductivity is restricted within ±2e2/h (when
more LLs near one valley is filled) and 0 (when both
valleys are equally populated); see Fig. 1(upper right
column). The ± sign corresponds to hole and electron
doped systems, respectively, and note it is opposite to
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what one has in the absence of the strain-induced field,
b.

Even though the Hall conductivity stays bounded,
as the chemical potential is enhanced, more and more
current carrying edge states with opposite chirality get
filled. In the absence of back scattering that equilibrates
these counter-propagating edge modes, the two terminal
conductance Gxx is expected to increase monotonically.
However, the lack of equilibration ruins the quantization
of Hall conductance in a four-terminal measurement19.
But in reality, there is always back scattering between
counter-propagating edge modes that live along the same
edge; this not only equilibrates these modes but also lo-
calize them, except for the two additional modes associ-
ated with the occupied extra LLs. As a result both σxy

and Gxx are quantized at the same value.

The oscillatory sequence of σxy is strictly true only in
the vicinity of the CNP. The spacing of the Dirac LL
decreases with the LL index (n), and the effective mag-
netic field for two sets of LLs are different. Hence, far
away from the CNP, LL crossing is unavoidable, and one
may see quantized plateaus of σxy at 3e2/h or higher. If
B ≪ b, the LL crossing occurs for n ≫ 1. Assuming
that the chemical potential is not too far from the Dirac
points, one can then safely neglect the LL crossing.
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FIG. 1: (Color online) Upper row:: Left: Spin degenerate
interpenetrating LLs of HD[A, a]. Here we have shown the
LLs for n = 0,±1,±2 only. Two LLs have the degenera-
cies 2D± = (b ± B) per unit area. Right: Schematic vari-
ation of Hall conductances Gxy in a hole doped graphene,
without (a) and with (b) Zeeman splitting (∆z). Here,

En
σ =

√

2n(b+ σB), Enα
σ = En

σ + α∆z with σ, α = ±. In
electron doped system, Gxy changes sign. We only show the
spin splitting of n = 1 LL. Splitting of n = 2 LL is identical.
Lower Row:: The energy spectrum (left) and wave-functions
(WFs) (right) for a strained graphene in magnetic field when
B < b. WFs localized on one edge, live on opposite side at
two valleys, explicitly, A(B) and D (C) are localized on left
(right) edge, therefore carrying opposite chirality.

To compute the LL spectrum, we here construct an

8-component Dirac spinor Ψ = (Ψ↑,Ψ↓)
⊤
, where Ψ⊤

σ =

[u†
σ( ~K+~q), v†σ( ~K+~q), u†

σ(− ~K+~q), v†σ(− ~K+~q)], with σ =↑
, ↓ as electrons spin projection along the z−direction.
The orbital effects of the real (B) and pseudo (b) mag-
netic fields can be captured by the Hamiltonian14–16

HD [A, a] = I2 ⊗ iγ0γi (q̂i −Ai − iγ3γ5ai) , (1)

where B(b) = ǫ3ij∂iA(a)j . The gamma matrices are
γ0 = I2⊗σ3, γ1 = σ3⊗σ2, γ2 = I2⊗σ1, γ3 = σ1⊗σ2, γ5 =
σ2⊗σ2

20. The spectrum of HD[A, a] is comprised of two

sets of interpenetrating LLs at energies ±
√

2n(b+ αB),
with respective degeneracies Ω(b + αB)/2π for α = ±,
shown in Fig. 121. Here n = 0, 1, 2, · · · and Ω is the
area of the strained graphene sample. With b > B states
within the zeroth LL (ZLL) are localized on only one
sub-lattice, say A for example, while they reside on com-
plimentary sub-lattices near two Dirac points if B > b14.
For each spin flavor, there exists (b±B)Ω states at pre-
cise zero energy per unit area, guaranteed by an “index

theorem”23,24, respectively near the Dirac points at ± ~K.
However, the valley degeneracy for all the LLs at finite
energies is removed, as they are exposed to different ef-

fective magnetic fields.
Let us first register the Hall response of the non-

interacting system, see Fig. 1(a). For µ = 0, the ZLL,
containing 4Ωb states, is half-filled. Then a particle-
hole symmetry of the spectrum, generated by I2 ⊗ γ0
for example25, guarantees that σxy = 0. Even when

0 < µ <
√
b−B, σxy remains pinned at zero, which can

be confirmed upon subscribing the Středa formula26 for
the Hall conductivity, reads as σxy =

(

∂N
∂B

)

µ
, in the natu-

ral units e = c = 1. N is the electronic density in the bulk
below the chemical potential. Derivative with respect
to B is taken at fixed µ, measured from the half-filled
band. In order to place the chemical potential such that
0 < µ <

√
b−B, one needs to fill N = 2Ωb (independent

of B) states from the CNP, yielding a zero Hall conduc-
tivity. On the other hand, if

√
b−B < µ <

√
b+B,

δN = −2δB and hence σxy = −2. The factor 2 counts
the spin degeneracy of the LL. Upon further doping when√
b+B < µ <

√

2(b−B), the Hall conductivity returns
to zero. Hence, with odd (even) number (modulo 2 due
to spin) of LLs below the chemical potential, one gets
σxy = −2(0), as long as there is no LL crossing. Origin
of such oscillating Hall conductivity is the following. Two
sets of LLs near ±K experience effective magnetic fields
(b ± B) > 0, but point in opposite directions. So, the
current carrying states of these two LLs have opposite
chirality. When odd number (modulo 2) of LLs above
the CNP are filled, σxy = −2, since there is imbalance in
the occupation of the LLs near two Dirac points. With
an even number (modulo 2) of filled LL, the Hall currents

from the LLs near ± ~K exactly cancels each other, giv-
ing σxy = 0. Hall conductivity oscillates between 0 and
+2 e2/h, when µ < 0 (hole doping).
The chiral nature of the edge modes in the presence
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FIG. 2: (Color online) Left: Two possible (a,b) interaction
driven splitting of the ZLL. Dotted lines correspond to req-
uisite location of the chemical potential for σxy = fe2/h.
± corresponds to the ZLL states localized near the valley
at ± ~K. Right: Dimensionless activation gap (∆/Λ) for
σxy = 0,±e2/h (black, red) Hall states when b = 300 T and
0 T < B < 50 T, for δ = 0, 0.03, 0.07, 0.14, 0.3, 0.7 (from top

to bottom), assuming Λ ∼ 1/2.5Å, the ultra-violet cutoff over
which the dispersion is approximately linear. gc is the zero
field criticality. Lower x-axis denotes B/Λ2 (dimensionless).

of strain and magnetic field can also be seen in a finite
honeycomb lattice, with the zigzag edge. The orbital
effect of the real and axial magnetic field can respec-
tively be captured by, attaching a Peierls phase, tij →
tij exp (2πi

e
hc

∫ j

i
~A · d~l), and introducing local modifica-

tion, to the nearest-neighbor (NN) hopping amplitudes.
We here modify the hopping only along one of the three
bonds, oriented orthogonal to the zigzag edge21,22. Such
simple deformation yields slightly inhomogeneous Fermi
velocities and thus LL energies. Nevertheless, one can
still observe the peculiarities of the edge modes arising
from the time-reversal invariance. It is evident from Fig.
1(lower row) that the chiralities of two states localized
near one zigzag edge are opposite if b > B, similar to
when B = 0, but b 6= 0.21 LLs near two Dirac points ap-
pear at different energies. Therefore, as one changes the
chemical potential the Hall conductivity keeps oscillating
between ±e2/h and 0 (we consider spinless fermions). If
on the other hand, the real magnetic gets stronger, the
edge modes near two Dirac points share identical chiral-
ities, and σxy changes monotonically.14,21 An interesting
possibility is B = b. Only one of the Dirac points is
then exposed to finite magnetic field, yielding plateaus
of σxy at ν = 2(n + 1

2 ), while the other one remains

semi-metallic, contributing to σxx simultaneously.21,27

The Zeeman splitting (∆z) lifts the spin degeneracy

from all the LLs,
√

n(b±B) →
√

n(b ±B) ± ∆z. The
Zeeman gap scales as ∆z ∼ B(Tesla) K. Hence, it can-
not cause LL crossing near the CNP. The Hall conduc-
tivity remains pinned to zero, when µ = 0 due to the
particle-hole symmetry, generated by σ1 ⊗ γ0.

25 It re-
mains so even when the chemical potential lies in be-
tween the Zeeman shifted ZLL at ∆z, and

√
b−B−∆z,

since then δN = 2bΩ in the Středa formula. Oth-
erwise, for

√
b+ σB + σ∆z < µ <

√
b+ σB − σ∆z ,

σxy = −
(

3+σ
2

)

e2/h, where σ = ±1. Therefore, the
Zeeman splitting introduces additional Hall plateau at

∓e2/h, in electron and hole doped systems, respectively;
see Fig. 1(b).
A strain induced charge density wave order (not spon-

taneously generated) always persists within the ZLL,
since all these states are localized on one sub-lattice.
This configuration is a natural ground state for the

residual NN Coulomb repulsion. Two valleys at ± ~K
hosts Ω(b ±B) states, hence a ‘valley polarized’ anoma-

lous Hall insulator cannot develop at the CNP. It may
however be realized at incommensurate filling, ν ∝ B
about the neutrality point. A spin Hall (SH) order,
∆SH = 〈Ψ†

σ~σ ⊗ iγ1γ2Ψσ〉28,29, corresponding to a spin-
triplet, intra-sublattice circulating currents, can however
develop upon occupying two valleys with opposite spin.
It also carries a finite ferromagnetic moment ∝ B, the
difference of LL degeneracies. Since the entire ZLL is lo-
calized on one sub-lattice, a ferromagnet (FM) order is
tied with an anti-ferromagnet (AF) order. Yet another,
namely a spin polarized (SP) state can also be realized at
the CNP. It carries FM (∆FM = 〈Ψ†

σ~σ⊗ I4Ψσ〉) and AF
(∆AF = 〈Ψ†

σ~σ ⊗ γ0Ψσ〉) orders, simultaneously16. The
Zeeman coupling locks the spin of the SP state along
the direction of the real field (B), and gives ∆FM 6= 0.
However, the onsite-Hubbard interaction (U), possibly
the strongest interaction in graphene30, favors an AF
order in the vicinity of the CNP. The second-neighbor
repulsion (V2) favors the SH state31. The spin polar-
ized state can also be realized even when B = 017,
which has been identified as pure ferromagnetic state
in Ref.17. The AF/SH order parameter anti-commutes
with HD[A, a]. Hence, apart from splitting the ZLL,
they optimally lower the energy of the filled Dirac sea by
shifting all the LLs at finite energies, ±

√

2n(b±B) →
±
√

2n(b±B) + ∆2
AF/SH . The spin-polarized gap within

the ZLL is ∆SP = ∆AF +∆FM ∼ U , whereas ∆SH ∼ V2,
to the leading order.32 Though such insulations in pris-
tine graphene can only take place for sufficiently strong
repulsive interactions,20 existence of macroscopically de-
generate LLs permits such ordering even when the in-
teractions are infinitesimal, in the presence of magnetic
fields.14,15,33,34 Next we study the interplay of these or-
ders.
For small Zeeman coupling the ground state energy per

unit area at half filling with AF ( ~N) and SH (~C) orders
is

E[ ~N, ~C] =
~N2

4ga
+

~C2

4gc
+ E0[ ~N, ~C], (2)

where ga(c) ∼ U(V2). E0[ ~N, ~C] is the ground state energy
per unit area of the effective single particle Hamiltonian

HHF = HD[A, a]−
(

~N · ~σ
)

⊗ γ0 −
(

~C · ~σ
)

⊗ iγ1γ2. (3)

With negligible Zeeman coupling a spin-anisotropy can

be neglected and one can take ~N(~C) = (N(C), 0, 0), for
simplicity. The spectrum of HHF is composed of LLs at
energies ±en,α, with degeneracies Ω(b + αB)/4π, where
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en,α = [2n(b + αB) + (N + αC)2]1/2, and α = ±. The
ground state of HHF at half filling, has all the states
with negative energies filled, while the rests are empty.
Minimization of E[N,C], with respect to N and C, yields
two coupled gap equations, which for N > C read as

π3/2

2gi
=

ξi
Xi

+

i6=j
∑

n≥1,α=±

(

b+ αB

2en,α
+

Xj

Xi
α
b + αB

2en,α

)

(4)

for i, j = 1, 2, where g = (ga, gc), X = (N,C), ξ = (b, B).
The ultra-violet divergent in the first term of the gap
equations is independent of AF or SH orders. The cut-
off (Λ) independence of the physical observable gap, then
demands ga ≡ gc for both AF and SH order to be finite
simultaneously. Since in graphene U > V2, possibly a
spin polarized state (N ≡ ∆AF 6= 0, C ≡ ∆QSH = 0)
is formed at the CNP. Even though, with b > B, there
exists a series of σxy = 0 plateau, only the one near
µ = 0 bears an AF order, while the rest arises from lack
of ‘valley reflection symmetry’. Placing the chemical po-
tential close to the first excited state at ±∆SP , a spin
Hall order develops additional incompressible Hall state,
leading to σxy = ±e2/h, see Fig. 2(a). If on the other
hand, V2 > U , yielding C > N , the splitting of the ZLL
gets reversed, see Fig. 2(b).
Minimizing the ground state energy, one can find the

gap equation for σxy = 0 Hall state near the CNP. For
fixed axial magnetic field (b = 300T ), the interaction in-
duced gap at the neutrality point increases linearly with
the real magnetic field, when 0 T < B < 50 T, (Fig. 2,
right column). Scaling of the gap is insensitive to ex-
act nature of the order parameter. The activation gap
for σxy = ±e2/h state within the ZLL is smaller than,
but similar to that for σxy = 0. Such hierarchy comes
solely from the ZLL. Exactly half of the ZLL contributes
to the gap for σxy = 0 state, whereas fewer states from
the ZLL contribute to the gap for σxy = ±1 Hall state.21

Otherwise, activation gaps for both the Hall states scale
sub-linearly with the interaction, δ = (gΛ)−1 − (g∗Λ)

−1,
where g∗ is zero field criticality for insulation. If the
magnetic fields become inhomogeneous, the LLs at finite
energies disappears, giving rise to a continuous spectrum,
though the ZLL, protected by the “index theorem”, stays
unaffected. Therefore, interaction induced gap formation
occurs even when the fields are non-uniform. However,
the gaps then closely follow the profile of the magnetic
fields.24 With weak inhomogeneous fields, the quantiza-
tion of σxy is expected to survive.
In the absence of the axial field or even when B > b,

the states within the ZLL, localized near two valleys live
on complimentary sub-lattices14,34. Therefore, a con-
ventional AF order develops by filling up states on two
sublattices with opposite spin projections. However, the

staggered spin moments on two sub-lattices are of differ-
ent magnitudes. Therefore, one may argue such a corre-
lated phase as ferrimagnetic as well14.

In experiment11, the uniform axial field is localized
only in certain region of the sample. Particles cir-
cling that region pick up an axial Aharonov-Bohm phase
(ABP), only if they travel through the strained region,
since the axial gauge potential is proportional to strain.
It is identical for the trajectories in opposite directions,
whereas the ABP due to the real magnetic field are of
opposite sign for these trajectories.35 Consequently, the
trajectories with opposite circulation, acquires different
effective ABP, namely, sum and difference of it due to
two fields. In Hall conductivity measurement, the termi-
nals need to be attached to the regions with at least finite
strain, though b can be zero. In molecular graphene36,
and strained graphene on Ru substrate37, the axial field
can possibly be realized in the entire sample. Hence the
peculiar Hall conductivity, we propose here, may become
easily observable in those systems.

To summarize, we here demonstrate the possible quan-
tization of Hall conductivity (σxy) in strained graphene,
subject to magnetic fields. We show that when strain
induced pseudo magnetic field is stronger than the real
one, Hall conductivity remains bounded between 0 and
∓2e2/h, in electron and hole doped graphene respec-
tively. The Zeeman coupling introduces additional Hall
plateaus at ∓e2/h. Such quantization relies on suf-
ficient backscattering among the counter propagating
edge modes, and only true in the vicinity of the CNP,
where LL crossing can safely be neglected. Depending
on the relative strength of the finite ranged components
of the Coulomb interaction, various broken symmetry
phases can be realized within the ZLL. For example, on-
site and next neighbor repulsion respectively favors anti-
ferromagnet and spin Hall ground state. In contrast to
conventional situation, the anti-ferromagnet order, in the
strain dominated regime (B ≪ b), is always tied with a
ferromagnet order. For fixed b, the many-body gaps in-
side the ZLL, scales linearly with real magnetic field (B)
and sublinearly with interaction (δ), as long as B ≪ b.

Author B.R. acknowledges the support by National
Science Foundation Cooperative Agreement No. DMR-
0654118, the State of Florida, and the U.S. Department
of Energy. Z. X. H. is supported by NSFC No. 11274403
and DOE grant No. de-sc0002140. K. Y. is supported
by NSF grant No. DMR-1004545. B. R. is grateful to
Igor F. Herbut for many useful discussions. B.R. thanks
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30 T. O. Wohling, E. Şaşıoğlu, C. Friedrich, A. I. Lichtenstein,
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