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We calculate the finite-frequency conductivity of bilayer graphene with a relative twist between
the layers. The low frequency response at zero doping shows a flat conductivity with value twice
that of the monolayer case and at higher frequency a strong absorption peak occurs. For finite
doping, the low frequency flat absorption is modified into a peak about zero frequency (the Drude
response) accompanied by an interband edge which results from the transfer of spectral weight
from interband to intraband absorption due to Pauli blocking. If the system is doped sufficiently
such that the chemical potential reaches beyond the low-energy saddle point in the twisted bilayer
band structure, a strong low frequency absorption peak appears at an energy related to an effective
interlayer hopping energy, which may be used to identify this parameter and confirm the existence
of the saddle point which gives rise to a low energy van Hove singularity in the electronic density of
states.

PACS numbers: 78.67.Wj,78.30.-j,78.20.Ci,81.05.ue

Graphene remains a material of considerable promise
both for technological applications and for revealing un-
usual and unexpected physics.1,2 Key to this enterprise is
the ability to manipulate its band structure and change
the Fermi level through charge doping by electrons or
holes. In the former, the layering of graphene sheets in
various stacking arrangements can produce very differ-
ent dispersions at low energy, such as quadratic in the
Bernal-stacked bilayer versus linear in the monolayer.
Recently, it has been noted that layers of graphene with
a rotational misorientation can give rise to surprising be-
havior at low energy. Indeed for small rotational angles
of a bilayer of graphene, it is predicted that the low en-
ergy dispersion will be linear not unlike the monolayer3

and a low energy van Hove feature will also appear in the
density of states.4–6 Moreover, the Fermi velocity vF is
reduced for small rotation angles3 until localization ap-
pears to set in.7,8 These features have been the subject
of a number of theoretical works, such as Refs.3,7,9, and
have been verified by experimental groups performing
scanning tunneling microscopy (STM) measurements,4–6

although controversy remains as will be discussed below.

The origin of these features is found in the details of the
modified energy dispersion. In twisted bilayer graphene,
the Dirac cones at the K points of the Brillouin zone in
one layer undergo a relative rotation to those in the other
layer (as shown in Fig. 1). The two Dirac cones which
are slightly shifted relative to each other then overlap
and the band structure is reconstructed to form a sad-
dle point in between. The final modified band structure
around the midpoint of the split Dirac point near K is
illustrated in the lower part of Fig. 1 for the two lowest
energy bands in the model discussed here. At low energy,
the slope of the linear band structure gives a Fermi veloc-
ity which is reduced from the graphene monolayer value,
and the saddle point in between produces a van Hove
singularity (VHS) in the density of states at low energy.

FIG. 1. (Color online) Top: The First Brillouin Zones of
two graphene layers where one layer is twisted (dashed red)
relative to the other (solid black). The two K points, K and
K

θ, are separated by ∆K. Middle: The relative rotation
shifts the Dirac cones in one layer relative to those in the
other layer, as shown schematically with blue and green cones
for each layer, respectively. Bottom: The low-energy band
structure about the midpoint between the two Dirac cones
shifted relative to the K point due to a twist angle of θ = 5◦.

One might have naively considered the graphene sheets to
have decoupled with the relative rotation, but the pres-
ence of the renormalized Fermi velocity and VHS point to
a different interpretation. In spite of a growing literature
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on twisted bilayer graphene, there have been few experi-
ments which have verified these unusual results. In par-
ticular, the VHS saddle point and renormalized velocity
are not seen in some angle-resolved photoemission exper-
iments (ARPES)10, but these features are very clear in
the STM4–6 and some ARPES measurements do confirm
the VHS11. The predicted behavior of the Landau lev-
els in twisted bilayer graphene12,13 as measured through
the quantum Hall effect has not been seen in rotated
layers,14 but Raman spectroscopy of the rotational-angle
dependent graphene 2D peak15 points to the existence of
the VHS in the band structure. Further experiments are
required to resolve this situation and indeed other spec-
troscopies should be brought to bear on this question.
The interplay of theory and experiment for the dynam-
ical conductivity of graphene and bilayer graphene has
been quite successful in the past16–35 and consequently,
we provide here the theoretical calculation for the dynam-
ical conductivity of twisted bilayer graphene, illustrating
how the VHS will be manifest in this experiment.
A literature has developed for modelling misorientated

bilayer graphene. A popular model for describing the
state of twisted bilayer graphene is the continuum model
put forth by Lopes dos Santos and coworkers3 where the
Hamiltonian is written as12

H(k) =

(

H0(k +∆K/2) H⊥

H†
⊥ H0(k −∆K/2)

)

, (1)

with

H0(k) =

(

0 f∗(k)
f(k) 0

)

, (2)

where f(k) = h̄vF (kx + iky) and

H0
⊥(k) = t̃⊥

(

1 1
1 1

)

, H±
⊥ (k) = t̃⊥

(

e∓iφ 1
e±iφ e∓iφ

)

, (3)

where φ = 2π/3 and t̃⊥ is an angle-dependent inter-
layer hopping parameter typically quoted as being be-
tween 100-150 meV. Here, the rotation between the lay-
ers is captured by the monolayer graphene Hamiltonian
of Eq. (2), where the argument is replaced by k±∆K/2
with ∆K = K −Kθ. The expansion in k is taken about
the midpoint between the two shifted Dirac cones as
shown in Fig. 1. The interlayer hopping terms represent
the dominant Fourier amplitudes in the interlayer hop-
ping as described in Ref.3. This Hamiltonian and also ab
initio and tight-binding methods have been employed by
various authors to determine the band structure and den-
sity of electronic states. However, when including a mag-
netic field, some authors12–14 have examined the Landau
level structure using a low-energy effective Hamiltonian
where the interlayer hopping is taken as the standard
Bernal bilayer form:12,13

Heff
⊥ (k) = t̃⊥

(

0 0
1 0

)

. (4)

In zero magnetic field, this leads to an analytic expression
for the low energy dispersion given by

ε2α(k) =
1

2

(

t̃2⊥ + ε+2
G + ε− 2

G + (−)αΓ
)

,

Γ =

√

(

t̃2⊥ + ε+2
G + ε− 2

G

)2
− 4 ε+2

G ε− 2
G , (5)

where α = 1 and 2 and ε±G = |f(k ± ∆K/2)|. In these
works, extensive arguments for the validity of the approx-
imation have been given, including that the Hamiltonian
remains in the same topological universality class, pre-
serves the chirality of the wavefunctions, and exhibits a
low energy band structure, similar to the other meth-
ods, including split Dirac points and saddle points giving
rise to the low energy VHS in the DOS. We have ex-
amined this latter form and made comparisons to band
structure of both the G=0 approximation of the Lopes
paper and with their full numerical results presented in
that paper and find reasonable agreement between the
two approaches. As the low energy effective Hamilto-
nian is much more tractable for a calculation of the op-
tical properties using Green’s functions and the Kubo
formula, we proceed with this effective Hamiltonian as
used recently by other authors12–14 in the spirit of cap-
turing the essence of the effect of rotational misalignment
on the finite frequency conductivity. Note that this ap-
proach will not be appropriate for very small twist angles,
where localization effects appear to set in, but should be
suitable for13 3◦ <

∼ θ <
∼ 10◦ which is the region in which

experiments have been performed. For much larger ro-
tation angles it has been argued36,37 that the model of
Mele38 should be used. This latter model has been used
for the calculation of magneto-optics39.
In Fig. 1, we show the band structure evaluated from

this approach for an angle of 5◦. A cut of this band struc-
ture along the line connecting the shifted Dirac cones is
shown in Fig. 2. Typically the interlayer hopping t̃⊥(θ)
depends on angle and the specific value varies in the lit-
erature. Consequently, to make our calculation more ap-
plicable, we chose a value of t̃⊥(θ) = 150 meV in our
approach to give a band structure with a k = 0 saddle
point energy and upper band minimum to approximately
match the energy scales found in Ref.6 from ab initio and
tight-binding calculations, and also confirmed therein by
experimental data. With this simplified model, we cap-
ture the essential features found in the more numerical
approaches: a linear dispersion at low energy at each of
the two shifted Dirac points and a saddle point in the
band structure at low energy. This should allow us to
examine the signatures of these features in the optical
properties, at least at a qualitative level.
For a calculation of the dynamical conductivity, we fol-

low the method based on many-body Green’s functions
which is shown in the work by Nicol and Carbotte24

and Tabert and Nicol40 for the cases of AB- and AA-
stacked bilayer graphene, respectively. Specifically, we
can determine the Green’s function Ĝ(z) from Ĝ−1(z) =

zÎ − Ĥ along with its spectral representation Ĝij(z) =
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FIG. 2. (Color online) (a)-(c) Band structure along a line
connecting the two K points K and K

θ for θ = 5◦. In each
successive frame, the chemical potential is changed from (a)
µ = 0, (b) 240 meV, (c) 450 meV, and various significant op-
tical transitions are indicated which give rise to structure in
the conductivity curves shown to the right. (d)-(e) The finite
frequency longitudinal conductivity at zero temperature for
varying chemical potential. The arrows indicate the transi-
tions shown in the band structure to the left. σ0 = e2/4h̄.

∫∞

−∞
dω Âij(ω)/[2π(z − ω)]. Using the Kubo formula,41

where the conductivity is written in terms of the retarded
current-current correlation function, we can express the
real part of the finite frequency longitudinal conductivity,
at zero temperature and for photon energy Ω, as24

σ(Ω) =
2 e2

Ω

∫

Tr
[

v̂xÂ(k, ω +Ω)v̂xÂ(k, ω)
]

, (6)

where

∫

≡

∫ |µ|

|µ|−Ω

dω

2π

∫

d2k

(2π)2
(7)

with the k integration over a region containing two
shifted Dirac points. Here, µ is the chemical potential

and h̄v̂x = ∂Ĥ/∂kx. While the conductivity shown in
Eqn. (6) is for σxx, it is the same for σyy, and is there-
fore isotropic. The velocity operator brings in only the
transport associated with a single graphene sheet, while
the reconstructed band structure enters only through the
energies in the spectral functions.

We now present the longitudinal conductivity which
we obtain by a numerical evaluation of Eqn. (6) with
the appropriate substitutions of the calculated spectral
functions. The calculation follows steps similar to those
already in the literature24,40,42 and the final expressions
are lengthy and so we refrain from repeating them here.
For the delta functions that appear in our expressions for
the spectral functions, we use the Lorentzian representa-
tion δ(x) → (η/π)/[η2 + x2] with a broadening parame-
ter η = 7 meV in order to do the numerical work. This
broadening parameter manifests itself in the conductivity
as an effective transport scattering rate of 1/τimp = 2η
due to the convolution of two Lorentzians in the conduc-
tivity formula that result from the multiplication of the
spectral functions.

In Fig. 2, we show the essence of the optical con-
ductivity in twisted bilayer graphene within the model
used here. Plots of the conductivity at various dopings,
marked by µ, are exhibited in Fig. 2(d)-(f). For compari-
son the band structure is shown at the left in Fig. 2(a)-(c)
indicating the prominent absorptive transitions identified
by arrows on the plots at the right. Note that the photon
momentum q ∼ 0 here and hence there can only be verti-
cal transitions in this diagram. We have chosen to show
our results for θ = 5◦ as such an angle has been consid-
ered for other properties9,13 and it is intermediate to the
data shown in Ref.6. The conductivity curves are scaled
by σ0 = e2/4h̄ which is the background conductivity of
monolayer graphene.

The values of µ were chosen to span a range of be-
havior and to sample different regions of the band struc-
ture. In Fig. 2(d), charge neutrality is considered with
µ = 0. As expected, the low energy band structure seen
in Fig. 2(a) allows solely for interband transitions and a
flat conductivity is found at low photon energy reflect-
ing the low energy linear Dirac cones that are also found
in monolayer graphene and emerge here with finite twist
angle. The main difference is that there are now double
the number of Dirac cones compared to graphene due
to the two layers in the bilayer, and hence the univer-
sal background conductivity is 2σ0. This correlates with
the linear behavior in the low energy electronic density
of states seen in STM and the monolayer behavior noted
in those experiments. However, in the optics the Fermi
velocity does not enter this universal background value
and as a result, the reduction in vF with angle seen in
STM experiments would not be evident here. At higher
photon frequency, for µ = 0, transitions between the sad-
dle point (VHS) in the band structure to other parts of
the band structure begin to occur. This results in the
dip-peak structure seen around Ω ∼ 900 meV, for the
case shown here, which is very similar to the structure



4

calculated for unrotated Bernal-stacked bilayer graphene
at charge neutrality but found, in that case, at low en-
ergy starting from Ω = 0.22 Here, the peak arises from
k = 0 transitions involving the VHS and hence its ob-
servation should provide evidence for the VHS, even in
the presence of reduced absorption at high energy due to
limits on the k integration that result from a Moiré Bril-
louin zone which is not included here. As θ is increased,
this structure is moved to higher energy in our model,
but the low energy behavior remains the same.
With doping away from charge neutrality to µ = 240

meV, the low energy interband transitions are blocked by
Pauli exclusion principle and intraband transitions, facil-
itated by the impurity scattering rate, now give rise to a
narrow Drude absorption centered about Ω = 0. This
Drude absorption acquires the optical spectral weight
that is removed at low frequencies below Ω = 2µ = 480
meV. The dip-peak feature at higher photon energy re-
mains the same which would not be the case for ordinary
Bernal-stacked bilayer graphene24 where the peak would
be split into two and reduced. Thus, we find for low
doping that the low energy behavior in the dynamical
conductivity will mimic the classic monolayer graphene
behavior subject to a factor of two increase in the overall
magnitude of the conductivity.
Turning now to a more interesting result, shown in

Fig. 2(f), if µ = 450 meV, the Fermi level is now above
the low energy saddle point (VHS) but below the next
band in Fig. 2(c). At this doping, a new peak appears
in the conductivity at low energy marking the transi-
tion between the VHS to the second band, which in this
model measures t̃⊥. As this is a result from transitions
at k = 0 and is at low photon energy, it should be a very
robust feature in far infrared measurements. Further-
more, the peak shown in the model here is very strong.
In graphene systems, the impurity scattering rate is typ-
ically small on the order of a meV and hence, the width
of the Drude would not be expected to interfere with
this feature for intermediate rotation angle where our
model applies. The spectral weight for this new VHS
peak comes from the higher photon energy region in the
conductivity where a number of transitions involving the
VHS point in the band structure are now blocked. These
are illustrated and understood by examining the arrows
shown in Fig. 2(b) and (c). One sees that the dip-peak
structure at high energy is indeed diminished in this case.
Thus, we predict that there should be a signature of the

existence of the controversial low energy VHS in the op-
tical conductivity at low photon energy with appropri-
ate doping which could be achieved by voltage gating or
by other means as has been done for ordinary bilayer
graphene.33,43

Finally, not shown here, but if µ is further increased
to a value which places it in the upper band (µ greater
than ∼ 550 meV), then the VHS peak at low energy
will be lost due to Pauli blocking. Varying µ, therefore,
would provide a sensitive probe as to the energy of the
saddle point VHS (εVHS ≡ ε1(k = 0)) and the energy
of the second band at the k = 0 point just above the
saddle point, ie., ε2(k = 0). The photon energy for the
absorption peak seen in Fig. 2(f) would give |ε2(k = 0)−
εVHS| and the values of µ at the first appearance and then
disappearance of the peak would give εVHS and ε2(k = 0),
respectively, for a further check on the numbers.
In summary, we have examined the optical conductiv-

ity of twisted bilayer graphene using a simplified model
for the low energy band structure in order to bring out
the qualitatively new features for this system. The mono-
layer graphene-like behavior at low energies that has been
seen in STM measurements manifests itself in the con-
ductivity as a flat universal background as a function
of photon energy but with magnitude twice that of the
monolayer. Finite doping introduces Pauli blocking in
the band structure for interband transitions but spec-
tral weight is transferred to a Drude response due to in-
traband processes. At higher energy, features analogous
to unrotated bilayer graphene may be found but shifted
in energy and different in origin. The saddle point be-
tween split Dirac cones in the band structure which is at-
tributed to a VHS in the density of states, seen in STM,
may be identified by the high energy peak and the ap-
pearance of a new peak at low energy in the dynamical
conductivity when the Fermi level sweeps through this re-
gion of the band structure. Thus, we provide a suggestion
for a way to confirm the existence of this VHS through
the spectroscopy of optical conductivity measurements
which may provide further confirmation of the existence
of this unique band structure in twisted bilayer graphene
that has been a source of dispute.
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