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We investigate the scattering of electrons belonging to Shockley states of (111)-oriented noble metal surfaces
using angle resolved photoemission (ARPES) and scanning tunneling microscopy (STM). Both ARPES and
STM indicate that monatomic steps on a noble metal surface may act either as strongly repulsive or highly
transmissive barriers for surface electrons, depending onthe coherence of the step lattice, and irrespectively of
the average step spacing. By measuring curved crystal surfaces with terrace length ranging from 30 to 180Å, we
show that vicinal surfaces of Au and Ag with periodic step arrays exhibit a remarkable wave function coherence
beyond 100Å step spacings, well beyond the Fermi wavelength limit and independently of the projection of the
bulk band gap on the vicinal plane. In contrast, the analysisof transmission resonances investigated by STM
shows that a pair of isolated parallel steps defining a 58Å wide terrace confines and decouples the surface state
of the small terrace from that of the (111) surface. We conclude that the formation of laterally confined quantum
well states in vicinal surfaces as opposed to propagating superlattice states depends on the loss of coherence
driven by imperfection in the superlattice order.

PACS numbers: 79.60.Bm, 73.20.Dx

I. INTRODUCTION

Scanning tunneling microscopy (STM) has made widely
popular the scattering of electrons at surface defects, such as
atomic and molecular adsorbates and monatomic steps1–9.
The importance of such interference patterns goes beyond
their aesthetic appeal, since they actually mirror fundamen-
tal properties of solid crystals related to electron transport and
quantum confinement. For example, the inelastic lifetime and
quantum coherence of a scattered electron, which is derived
from the decay length of standing waves away from surface
steps7. And the contrary case, i.e., the lack of back-reflected
waves near a step, which straightforwardly proves the time-
reversal spin-orbit asymmetry of surface bands in topological
insulators10,11.

The absence of chiral spin textures in noble metal surfaces
such as Ag and Cu, makes them very attractive as reference
systems for surface scattering phenomena. Based on the earli-
est analysis of STM interference patterns1,8, steps and metal-
lic adsorbates at (111)-oriented surfaces are frequently as-
sumed as canonical hard-wall potential barriers, on which sur-
face electron waves undergo substantial reflection (R) and ab-
sorption (A) but negligible transmission (T ). However, the
nature of the step potential in a noble metal surface is more
complex and fundamental questions remain open. First, the
fact that, in contrast to the hard wall behavior observed in
STM, angle resolved photoemission (ARPES) experiments,
performed in vicinal (111) noble metal surfaces, have repeat-
edly shown dispersing bands with clear signatures of weak re-
pulsive scattering at steps, namely small size effects and nar-
row gaps at the Brillouin zone boundary12–15. This behavior is

only compatible with a high transmission coefficientT across
the step barrier. The weak scattering in the step array of the
vicinal surface demonstrated in ARPES is consistent, though,
with the only STM study of the Shockley state performed on a
vicinal plane. In fact, Hansmannet al. analyzed the standing
wave patterns around a defect in Cu(554)16, and determined a
surface band energy that completely agrees with ARPES re-
sults14. Altogether, ARPES and STM studies agree with the
double scenario sketched in Fig. 1. Incoherent, random steps
act as quasi-hard-wall potentials that confine electrons inside
(111) terraces, whereas periodically arranged steps behave as
transparent barriers, which allow coherent coupling from ter-
race to terrace, and hence Bloch states of a step superlattice.
But, why does the step barrier strength change that much when
going from a defect-like, random step, to the staircase of the
vicinal surface?

The different scattering behavior of surface steps as single
entities or as periodic arrays is surely connected with the so-
called wave function modulation plane17. In reality a true
surface state is defined by the crystal plane of the surface.
In a vicinal surface, such plane is coherently determined by
step edge atoms that define a step superlattice. The surface
state becomes a Bloch state of the superlattice, with its twodi-
mensional, dispersing component of the wave function being
modulated by the steps of the average (vicinal) surface plane,
as sketched in Fig. 1(a). If the surface state looses coherence,
it gets confined within a single terrace, and the wave function
component perpendicular to the step becomes a quantum well
oriented along the (111) terrace, as represented in Fig. 1(b).
The second question that arises is whether a critical step spac-
ing exists in a superlattice, for which coherence is lost12, or
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it is simply disorder in the step array that causes the lack of
coherence and the confinement of the surface state13.

In this paper we revisit these concepts combining STM and
ARPES experiments in decoupled and coherent step arrays,
respectively. By examining the same step spacing range, we
confirm the distinct scattering scenario depicted in Fig. 1,but
discard the existence of any critical superlattice constant. In
ARPES we make use of state-of-the-art curved surfaces to ac-
curately determine the surface state wave function modula-
tion plane for periodic step arrays with large spacing. We ob-
serve coherent superlattice states beyondd >100Å periodic-
ity, in the limits of ARPES resolution. In STM, following the
method of Seo et al.11, we carefully check for the existence
of transmission resonances out of an isolated (111) terrace,
defined by two parallel steps separated byd <100Å. We ob-
serve traces of leakage out of such narrow terrace, but close
to the limits of the STM detection, i.e., we confirm that indi-
vidual steps act as quasi-hard-wall potentials for (111) surface
states.

II. EXPERIMENTAL METHODS

ARPES measurements were carried out at the PGM beam-
line of the Synchrotron Radiation Center (SRC) in Stoughton
(Wisconsin). We used a hemispherical Scienta SES200 an-
alyzer with energy and angular resolution set to∼30 meV
and 0.1◦, respectively, andp-polarized light with the polariza-
tion plane parallel to surface steps. Au and Ag single crystals
are cut and polished defining aα = ± 15◦cylindrical sur-
face (11.6 mm radius) around the [111] direction (α = 0).
Such cylindrical surfaces are prepared in vacuum following
standard ion sputtering plus annealing cycles. The 100µm
diameter photon beam is scanned on top, allowing to select
the crystal orientation (or miscut angleα) with an effective
∆α ∼0.25◦spread of the beam. The samples were mounted
with the [112̄] crystal direction running parallel to the ana-
lyzer entrance slit, such that the 1D step superlattice banddis-
persion could be directly imaged in the channelplate detec-
tor of the analyzer. For linefit analysis, channelplate images
were decomposed in single energy dispersion curves (EDC)
for each of the 127 channels. Peak fits were carried out using
distinct lorentzian lines for the pair of umklapp surface states
(when visible), convoluted by gaussians to account for tem-
perature and experimental resolution. The series of fits deter-
mined peak energy, width and intensity at all photon energies.

STM experiments were performed at 5 K, using isolated
terraces on the surface of a Ag(111) single crystal. Conduc-
tance (dI/dV ) spectra were obtained with the lock-in tech-
nique, using a bias voltage modulation of frequency 3 kHz and
amplitude 3 mVrms. The energy-dependent modulation of
thedI/dV signal originating from the electronic structure of
the tip was effectively removed by subtracting a background
spectrum to the data18. The latter was acquired at least 600Å
away from any step or impurity in order to avoid any modu-
lation resulting from scattering. The spatial modulation of the
quantum well states (QWS) was deconvoluted from intensity
variations related to changes in tip-sample distance by sub-
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FIG. 1: Side-view sketch of (a) Step-modulated superlattice states
for a 1D periodic potential in a vicinal surface with latticeconstantd
and weakU0b barriers at step edges. (b) Surface quantum well states
confined by effectively strongerU0b potentials in (111) terraces. As
depicted in both panels, the modulation plane in each case determines
the direction along which the wave function decays towards the bulk
crystal, i.e., perpendicular to the average surface plane in (a) and
perpendicular to the (111) terrace in (b). Such decaying part of the
wave function is essential to understand the diffraction-plot of Figs.
3 and 4.

tracting the otherwise featureless pre-edge intensity below the
onset of the surface state.

III. SUPERLATTICE STATES MODULATED ON THE
VICINAL PLANE: PHOTON-ENERGY DEPENDENT ARPES

Figure 2 illustrates the photon-energy dependence of sur-
face bands measured in step arrays of Au and Ag with rela-
tively large step spacing. Data have been taken using curved
crystals at -1.9◦and 3.6◦miscuts, which correspond to the
Au(13 14 14) and Ag(778) surface planes, withd = 71 Å
andd = 38 Å lattice constants, respectively. Both surfaces
exhibit a two dimensional surface band with the characteris-
tic signatures of scattering by the step superlattice, namely
the upwards shift of the band with respect to the (111) sur-
face, analyzed in detail in Ref. 14, and the presence of2π/d
superlattice folding. There is a significant superlattice zone-
edge gapping, although it is blurred by the inherent size distri-
bution broadening of the step array. Superlattice gaps can be
made visible in second derivative intensity plots at low photon
energies19.

The strong photon-energy dependent cross section shown
in Fig. 2 is related to the nature of the superlattice state wave
function, and it is better explained through Fig. 3. Notice that
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FIG. 2: Photon-energy dependent band dispersions for (a) Auand
(b) Ag step lattices, respectively measured at -1.9◦and 3.6◦from the
(111) surface in a curved crystal. Vertical dotted and solidlines re-
spectively mark zone-boundary edges and zone centers of thestep
superlattice. Umklapp bands align at zone boundary edges, as ex-
pected for the step-modulated surface state shown in Fig. 1(a). By
increasing the photon energy, the intensity jumps from firstorder
(π/d) to second order (3π/d) rods, as in low energy electron diffrac-
tion from vicinal surfaces20.

the wave vector axis in Fig. 2 is referred to the respective lo-
cal surface plane, i.e., the vicinal surface, where umklapps
perfectly align atπ/d and3π/d zone boundary edges. The
umklapp alignment at zone boundary edges is the important
feature that proves that superlattice states are step-modulated,
as described in Fig. 1(a), and hence that the step barrier poten-
tial needs to be relatively weak. The latter can be determined
from the fit to the gapped superlattice band structure13,19, al-
though it can be estimated in a more straightforward way from
the surface band shift with respect to the (111) direction and
using a 1D Kronig-Penney model14. In sparsely separated
step lattices, the latter procedure givesU0b = 2.0 eV.̊A and
U0b = 0.6 eV.̊A for Au and Ag, respectively, whereU0 is the
height andb the width of a square potential barrier. Finally, in
Fig. 2 the observation of well-separated umklapps is not only
restricted to the intermediate photon-energy range, but also
to the ability to resolve the split bands. The latter is limited
in Ag, due to the close proximity of the Fermi edge and its
broader terrace-width distribution14.

The superlattice state in Fig. 2 is the well-known 2D
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FIG. 3: Analysis of the Fourier components of the surface states
through diffraction plots. The bottom panel sketches the exponential
decay of the surface state wave function (wavelengthλL) towards the
bulk (z-direction) in the two different cases of Fig. 1, namely coher-
ent surface states of the 2D step lattice plane (red wave) andquantum
wells, confined in (111) terraces (blue wave). Such exponential at-
tenuation gives rise to the complete broadening in reciprocal space
in the corresponding bulk directions, with maximum weight at theL
point (wave-vectorkL = 2π/λL). For coherent waves, the spectrum
is broadened along thekz direction (red cigar), for confined states
Fourier components spread along the [111] direction (blue cigar).
The coherent,kz-broadening is experimentally demonstrated in the
top panel. Here we represent (red rectangles) the photoemission in-
tensity of the surface state band minimum as a function ofkx andkz.
The width of each rectangle represents the peak intensity, such that
the set of data mirrors the red-cigar-shaped Fourier composition of
the bottom panel. Two umklapp rods are observed, with the spacing
corresponding to coherent superlattice states of the 2D step array.

Shockley-like surface state that undergoes Bloch scattering
by the step lattice14,21. Its physical nature can be probed
by ARPES, and rationalized through the so-called diffraction
plot of Fig. 3. The name comes from the resemblance with
the low energy electron diffraction analysis of vicinal sur-
faces20. Fig. 3 displays the same(x, z) plane of Fig. 1, at
which superlattice states are defined by, first, Bloch waves in
the perpendicular direction of the steps (x), and second, the
exponentially decaying tail in the orthogonal bulk direction
(z). The decaying tails of the two types of surface states, i.e.
coherent 2D states and confined 1D states are shown in the
bottom panel of Fig. 3. The corresponding reciprocal space
description of the Shockley electron is sketched right above
this panel. The thick curved line represents any constant en-
ergy surface of the bulk s,p-band close toEF in thekx − kz
plane, with its characteristic neck at theL symmetry point.
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FIG. 4: Diffraction plots for Ag (top) and Au (bottom) step arrays.
Step lattice constants are indicated in the figures. Red databelong to
lattices that exhibit split bands, where band minima (kx in the figure)
are determined by parabolic fitting.3π/d and theπ/d vertical rods
with peaking intensity near theL point are probed, demonstrating
superlattice Bloch scattering. Blue data points correspond to lattices
where a double band can not be resolved, andkx data are determined
from intensity maxima. In this case, split-rods are not perfectly re-
solved around at intermediate energiesΓ, although alignment along
the [111] direction (solid black lines) never occurs.

Superlattice Bloch waves in thex direction transform in2π/d
umklapps alongkx, whereas the oscillatory damping in the
bulk direction results in a completekz broadening centered
around the fundamental frequency (kL =

√
3π/a, wherea is

the bulk lattice constant) at theL-point neck (gap). Thus, the
intensity distribution alongkz can be represented by the width
of the cigar-shaped rod in Fig. 3, with maximum weight at the
L neck. The Fourier space representation of the modulation
plane is beautifully tested by ARPES, as shown on the top
panel of Fig. 3. Rectangular red data correspond to the sur-
face state band bottom measured for ad=30 Å step array in
the curved Ag crystal at different photon energies (from 21
eV to 90 eV). The photon energy (hν) defines the constant
energy curve (dashed curve) reachable by the photoelectron
and hence thekx − kz plane can be scanned by varyinghν.
The peak intensity is reflected in the width of the rectangles,
which define the expected cigar-shape. In reality the spectral
distribution is not perfectly mirrored, since it is affected by the
complex photoemission process22. Nonetheless, theπ/d and
3π/d vertical ”diffraction” rods are clearly demonstrated, as
well as the peaking intensity aroundL.

Using the framework of Fig. 3, in Fig. 4 we explore the
limits of coherent superlattice Bloch scattering for Au andAg
step arrays. The diffraction plot analysis is extended to the

smallest miscut that can be reliably probed in ARPES. Red
and blue data points respectively refer to cases for which one
can resolve two separate split bands, as in Fig. 2 (a), or cases
where such bands are not resolved, although their existenceis
clearly suggested, as in Fig. 2 (b),hν=33 eV. For the former
we determine the two band minima by parabolic fit to the split
bands, and for the latter we choose thekx value at which the
intensity is maximum. Both Ag and Au exhibit, within error
bars, the same behavior observed in Fig. 3, namely two sepa-
rate(2n+1)/2×π/ddiffraction rods and theL-point peaking
intensity. Au band data align vertically atkx = π/d and3π/d
zone-boundary-edges for 27̊A, 35 Å, and 46Å superlattice
constants23. Vertical zone-boundary-edge alignment of sur-
face bands is also observed in the 71Å lattice of Fig. 2 (a),
but for the 108Å superlattice one cannot resolve two separate
π/d and3π/d rods around the zone centerΓ (or bulkΓ pro-
jection). This results in the apparent alignment of data points
along the [111] direction at this energy range. A similar be-
havior is found for 42Å and 67Å lattices in Ag, i.e., a clear
alignment at zone-boundary-edges, but inability to resolve the
splitting around the bulkΓ point. Nonetheless, a perfect align-
ment of the whole set of data points along the [111] direction,
as expected for confined quantum wells (blue cigar in Fig. 3),
is not observed.

The deviation of vertical zone-boundary-edgealignment to-
ward the [111] direction, shown in Fig. 4 for Au and Ag step
lattices with large spacing, was also observed in the early
diffraction plots of vicinal Cu(111), and attributed to a switch
in the modulation plane of the superlattice state17,21. Fig. 4
suggests that this is just an apparent alignment at intermedi-
ate photon energies, when both split bands are detected but
not resolved, which in turn depends on both the experimental
accuracy and the quality of the step array. The latter may be
worse in Cu(111), which shows structural instabilities14. A
change in modulation plane can exist, but triggered by a loss
of superlattice coherence, which results in an effective con-
finement within randomly decoupled terraces13. Only if the
latter affects to a sizeable portion of the crystal it could also be
detected with ARPES15. Interestingly, despite the higher step
barrier potential measured for Au superlattices14, we observe
in Figs. 3 and 4 the perfect alignment of the Aukx − kz data
along theπ/d and3π/d umklapp lines. Au in fact exhibits
the sharpest step lattices19, and hence it is the superlattice or-
der and not the barrier potential itself the key parameter that
determines coherent coupling through steps. Therefore, we
conclude that, in the limit of the ARPES ability to resolve
superlattice diffraction, Ag and Au step lattices behave asco-
herent crystals that scatter Shockley-like2π/d Bloch waves.

Figures 3 and 4 are the most straightforward proof that
surface states in step arrays are 2D superlattice states, which
in turn are only possible for partially transparent step barri-
ers that allow coherent coupling. In the past, the question
arose whether such coupling occurred for a sufficiently large
step spacingd. Indeed, it was argued that surface states in
step arrays undergo a transition at a criticald ∼ 17 Å value
12,17,24, such that they become effectively decoupled and con-
fined within (111) terraces. For such transition two reasons
were given. First, the appearance of lattice instabilitiesand
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disorder at the critical value ofd = λF /2 ∼17 Å13. Terrace-
width instabilities are in fact observed in STM experiments
on curved Cu crystals aroundd = λF /2

14. And second, the
closing of the bulk projected gap atd ∼11-17Å, which leads
to the smooth transformation of the surface state into a sur-
face resonance, and its corresponding reduction of the sen-
sitivity of electrons to the step barrier12. Figure 4 discards
such critical transformation in the surface state, provingthat
coherent coupling dominates for step arrays up tod ∼ 100
Å lattice constant, i.e., well beyond the criticald = λF /2 or
the projected bulk-gap closing value in both Ag or Au vicinal
surfaces.

IV. 1D QUANTUM WELL STATES ON ISOLATED (111)
TERRACES: MEASURING LEAKAGE THROUGH STEPS

WITH STM

Our study of the surface state dispersion along step super-
lattices suggests that disorder in the step array, althoughnot
linked to any critical phenomenon, may in fact be the de-
terminant factor for the loss of coherence of the superlattice
Bloch state and its consequent localization on individual ter-
races. The lack of coupling through disordered steps can be
understood on grounds of the energy mismatch between elec-
trons in adjacent terraces, since the resonant conditions de-
pend critically on terrace size25. A more critical test of the
transmission of surface waves across steps can be performed
by studying the limiting case where an isolated terrace con-
taining QWS is surrounded by large terraces with a contin-
uum density of states (DOS). Here, coupling between terraces
is not forbidden by energy matching conditions and leaking
QWS with finite transmission through steps could in principle
be found even in the absence of an ordered step array. Such
systems can be ideally explored using the local spectroscopic
capability of the STM.

Quantum confinement on single Ag(111) terraces of sim-
ilar and smaller size have previously been studied8,25. Yet,
studying leakage out of an isolated terrace has proven to be
a difficult task. The analysis of the energy and spatial dis-
tribution of the QWS within the Fabry-Perot interferometer
model leads to an accurate determination of the reflection co-
efficient. However, this method is not appropriate to study
transmission, since the latter is only reflected in the phaseof
the QWS, which in the model depends on the correct defini-
tion of the step boundaries. Models based on fitting the DOS
at a confining terrace by using a pair of complex square poten-
tial barriers also fail by giving inconsistently large transmis-
sion probabilities25. Recently, Seo et al. proposed a multiple
electron scattering method to study transmission through steps
in a more direct way, by measuring the intensity modulation of
the continuum DOS of a large terrace adjacent to a small ter-
race exhibiting QWS11. The transmission probability between
terraces resonate at energies of the QWS, which produces dips
in the intensity of the Friedel oscillations at the large terrace
at the resonating energies. By using this method we study the
leakage out of isolated Ag(111) terraces of sized < 100 Å,
range where vicinal surfaces clearly exhibit dispersing super-
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FIG. 5: Standing wave patterns inside and outside an isolated ter-
race ofd = 57.5 Å. The color plot corresponds todI/dV data ac-
quired along the line represented by the topographic profileon top.
The spectra, obtained with setpoint values of I = 0.43 nA, Vb= -100
mV, has been normalized as indicated in the Experimental Methods.
Inside the terrace the coherent scattering at both steps produces non-
dispersing quantum well states (dashed lines) separated byenergy
gaps, whereas scattering at a single step in the neighboringlarger
terrace produce Friedel oscillations in the continuum of the surface
state band.

lattice states.
Figure 5 shows an example of such study with an isolated

terrace ofd = 57.5 Å surrounded by two large terraces. We
focus our study on the right terrace. With its size of 1220Å
much larger than the coherence length of the Shockley state7,
we can consider it as a semi-infinite terrace with a single
step, namely the one separating it from the smaller terrace
on the left. dI/dV spectra acquired along the line indicated
on the topographic image are plotted in color scale after prop-
erly normalizing it as described in the Experimental Methods.
Here we can easily differentiate the QWS of the small ter-
race from the Friedel oscillations of the large one: coherent
scattering at the two steps results in non-dispersing, discrete
electronic levels (dashed lines) separated by forbidden energy
gaps in the small terrace, whereas in the large one scattering
at a single step generates standing waves at the continuum of
the surface DOS.

The spectra can also be presented by spatially averaging
them on each terrace in thex direction (perpendicular to the
steps), as displayed in Figs. 6(a) and (b) before and after the
normalization respectively. The spectra of the small terrace
(blue) exhibits a strong modulation in energy arising from the
quantum confinement. In contrast, the averaged spectra at the
large terrace (red) is rather featureless. In fact, after subtract-
ing the reference spectra, and hence any variation related to
the electronic structure of the tip and the DOS of the infi-
nite terrace, the normalized spectra become totally flat [see
Fig. 6(b)]. The lack of any energy-dependent modulation in
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Ag(111) indicates that transmission through steps in this sur-
face approaches zero at the level of resolution of our experi-
ment.

Next we compare the energy of the QWS with that of
an infinite quantum well, which are given byEN = E0 +
~
2/2m∗ × (Nπ/d)2. We can do that without using any free

parameter, since we know the terrace size (d = 57.5 Å)
from the topography, and the band bottomE0 and effective
massm∗ can be derived by fitting the experimental disper-
sion relation of Fig. 6(c) with that of the nearly free electron
E = E0 + ~

2/2m∗k2. The dispersion relation can be directly
obtained by Fourier transforming the spectroscopic data ofthe
large terrace of Fig. 5 along thex axis, which transforms the
periodicity of Friedel oscillations at each energy in the corre-
sponding wave vectork. From the parabolic fit to the band,
we obtainE0 = −66± 2 meV andm∗/m0 = 0.43± 0.04, in
close agreement with previous measurements6,26,27. By using
these values we see how the peak energies of the QWS at the
small terrace fits very well with the energy levels of the infinite
quantum well [vertical lines in Figs. 6(a) and (b)], indicating
again that transmission is negligible in this surface.

Finally, we check any possible quantum well leakage
through the spectral weight variation along the dispersing
band in Fig. 6(c). This leads to an energy-dependent curve
that, after the subtraction of a smooth exponential back-
ground, can be fitted with an analytical function that depends
onT ,R andA11. As in real space, the possible leakage effects
should appear as an energy-dependent modulation, with dips
at the energies of the QWS of the adjacent terrace. Such analy-
sis is shown in Fig. 6(d), where we plot the spectral weight in-
tensity variation along the band of Fig. 6(c), after subtraction
of the exponential damping. We indeed observe a small dip
at an energy slightly below theN=2 resonance (arrow), and a
much less defined one around theN=3 QW energy. Although
they fall at the limits of the experimental accuracy and appear
slightly shifted to lower values as compared to the resonance
energies, we may still consider such dips to obtain an upper
estimate for the quantum well leakage, following the model
of Ref.11. For the sake of comparison, in Fig. 6(d) we plot
the curve forR=0.8 and different values ofT . We note again
that we have to shift the energy axis of the curves by -42 meV
to account for the observed shift of the dip atN=2. Although
the possible interference from other scattering sources such
as surface impurities have been carefully avoided, the mis-
match between the energy of the dip and that of the QWS of
contiguous terraces suggest that they may originate from the
contribution of weak scatterers that cannot be easily detected
from dI/dV maps, such as buried impurities. In any case, for
a reflection coefficientR=0.6-0.8 obtained by the Fabry-Perot
model in this energy range8, reasonable fits are obtained only
for transmission probabilitiesT 2 < 0.1.

The upper estimate ofT 2 < 0.1 for the transmission proba-
bility sets a limit to the hard-wall potential generally assumed
for a noble metal surface1,8,11. However, this value is still too
low compared with the high transmission required to explain
the ARPES data. In particular, at the energy of theN=2 reso-
nance of Fig. 6, and assuming the weakU0b ∼0.6 eV.Å step
barrier deduced for Ag steps in the 1D Kronig-Penney analy-
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FIG. 6: Analysis of the transmission through steps via the intensity
modulation of Friedel oscillations. (a)dI/dV spectra spatially aver-
aged over the small (blue) and large (red) terraces of Fig. 5.(b) Same
as (a) after background subtraction. (c) Fourier transformof the spec-
tra of the large terrace along the x direction. Under such transforma-
tion, the wavelength defined by the Friedel oscillations transforms as
momentum, and the energy dispersion relation is derived. From the
fit of the data with a parabola, the values ofE0 = −66 ± 2 meV
andm∗/m0 = 0.43 ± 0.04 are obtained. (d) Normalized intensity
of the parabolic dispersion as a function of energy, after anexponen-
tial background substraction. Small dips appear at energies slightly
bellow theN=2 andN=3 resonances, which may be viewed as traces
of leakage out of the QW (see the text). The data is compared tothe
intensity modulation function of Ref. 11, for a reflection coefficient
of R=0.8, and using different values of transmissionT . The three
curves are shifted in energy by -42 meV. Vertical lines in (a), (b) and
(d) represent the energies of an infinite 1D QW, using the values of
E0 andm∗ obtained in (c).

sis of Ref.14, it is straightforward to determine a transmission
coefficientT 2 ∼ 0.78 for step arrays12. One may be tempted
to question the excessive simplicity of a 1D Kronig-Penney
analysis based on the bare shift of the surface band with re-
spect to the (111) surface state12,14. However, the Kronig-
Penney model can be successfully used to fit the entire super-
lattice band structure in Au(788), where the quality of the step
array allows a clear observation of dispersing bands and zone-
boundary edge minigaps19. On the other hand, since the prob-
ing depth in STM is limited to the outermost surface layer, one
may appeal to a more complex Fourier composition of the sur-
face state in thekz − kx plane in subsurface layers28, which
would be dominant in ARPES measurements. Unfortunately,
an accurate, first-principles calculation of surface states in vic-
inal planes with large step spacing is unfeasible yet. The real-
ity is that isolated steps, which STM probes as defects in real
space, possess very weak transmissivity, whereas Bloch waves
formed in periodic arrays exhibit high transmission probabil-
ity. Traces of the coexistence of 1D confined states and 2D
coherent bands in real space have been found in STM con-
ductance spectra performed on Cu(554)16. Yet, the question
remains why the barrier strength is different in each case.
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V. CONCLUSION

The two systems studied in this work represent limiting
cases in the correlation of electron scattering at monatomic
steps of the Ag(111) surface. In high quality step superlat-
tices, coherent coupling through steps result in highly trans-
missive barriers that allow the formation of 2D Bloch su-
perlattice states even for step separationsd >100 Å, which
are comparable to the intrinsic coherence length of the sur-
face state at an infinite terrace7. Previously suggested terrace
size dependent transitions in the step potential barrier are dis-
carded by both the fit of the energy shift with a single value
for the barrier14 and the observation of step-modulated super-
lattice states up to the largest step separation measurableby
photoemission, which is well-above the critical terrace sizes
predicted in the past. We observe similar behavior for vici-
nal Ag(111) and Au(111) surfaces, where the potential barrier
differs by as much as a factor of 5. Thus, we conclude that, al-
though the magnitude of the step potential barrier could play
a role, the determinant factor for the formation of QWS in
vicinal surfaces observed in some cases is the loss of coher-
ence driven by imperfections in the superlattice order. This is
further demonstrated by studying the transmission in isolated
terraces of similard <100 Å size. By using a method that
directly addresses transmission resonances between confining
(small) and semi-infinite (111) terraces, we demonstrate that
Shockley electrons confined between a pair of isolated steps
reveal negligible leakage (T 2 < 0.1 at ∼ EF ), even in the
presence of a continuum of states at the adjacent terrace.
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Michel, A. Närmann, A. Mugarza, A. Rubio, and F. J. Himpsel,
Phys. Rev. Lett.84, 6110 (2000).

18 P. Wahl, L. Diekhoner, M. A. Schneider, and K. Kern, Rev. Sci.
instrum.79, 043104 (2008).

19 M. Corso, F. Schiller, L. Fernández, J. Cordón, and J. E. Ortega,
Journal of Physics: Condensed Matter21, 353001 (2009).

20 M. Henzler, Applied Physics9, 11 (1976).
21 A. Mugarza, A. Mascaraque, V. Repain, S. Rousset, K. N. Alt-

mann, F. J. Himpsel, Y. M. Koroteev, E. V. Chulkov, F. J. Garc´ıa de
Abajo, and J. E. Ortega, Phys. Rev. B66, 245419 (2002).

22 P. Borghetti, J. Lobo-Checa, E. Goiri, A. Mugarza, F. Schiller,
J. E. Ortega, and E. E. Krasovskii, Journal of Physics: Condensed
Matter24, 395006 (2012).

23 For the red data we have applied a self-correction process for the
surface orientation, in order to achieve vertical(2n+1)π/2d rods.
The output is the effective miscut angle, which is found to deviate
less than 5% from the nominal value. A similar process applied to
nanostripes demonstrated that ARPES is coherently restricted to
local nanofacet planes (see J. Lobo-Checa et al., New Journal of
Physics 13, 103013 (2011).

24 K. Morgenstern, K.-F. Braun, and K.-H. Rieder, Phys. Rev. Lett.
89, 226801 (2002).

25 T. Uchihashi, P. Mishra, K. Kobayashi, and T. Nakayama, Phys.
Rev. B84, 195466 (2011).

26 O. Jeandupeux, L. Bürgi, A. Hirstein, H. Brune, and K. Kern,
Phys. Rev. B59, 15926 (1999).
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