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Abstract 
In the near-field, radiative heat transfer can exceed the prediction from Planck’s law by several orders 

of magnitude, when the interacting materials support surface polaritons in the infrared range.  

However, if the emitter and absorber are made from two different materials, which support surface 

polariton resonances at different frequencies, the mismatch between surface polariton resonance 

frequencies will drastically reduce near-field radiative heat transfer. Here, we present a broadband 

near-field thermal emitter/absorber based on hyperbolic metamaterials, which can significantly 

enhance near-field radiative heat transfer with infrared surface-polariton-resonance materials and 

maintain the monochromatic characteristic of heat transfer. Instead of using effective medium 

approximation, we perform a direct numerical simulation to accurately investigate the heat transfer 

mechanisms of metamaterials based on the Wiener-chaos expansion method.



 

 

I. Introduction 
In the near-field, when the gap distance between objects is smaller than the dominant thermal 

wavelength predicted by Wien’s displacement law, radiative heat transfer can be greatly enhanced by 

photon tunneling through evanescent electromagnetic waves1–3. In particular, it has been demonstrated 

that near-field radiative heat transfer can exceed the prediction from Planck’s law by several orders of 

magnitude4–6, when the interacting materials support infrared surface-polariton resonances (IR-SPRs), 

including surface phonon polaritons in polar dielectric materials4 (e.g., cBN, SiC or SiO 2 ) and 

surface plasmon polaritons in doped semiconductors7. In contrast to far-field radiation in which the 

spectral distribution of emissive power is usually broadband, near-field thermal emission from an IR-

SPR material is almost monochromatic8. The IR-SPR based near-field radiation is practically 

important due to the significant heat transfer enhancement and quasi-monochromatic emission, and 

has been suggested to be used to increase the efficiency of thermophotovoltaic devices9,10 and create 

vacuum thermal rectifiers11,12.  

However, the IR-SPR based near-field heat transfer is strongly material-dependent. The 

enhancement of heat transfer between two identical IR-SPR materials arises from the coupling of 

surface polariton waves8. If the emitter and absorber are made from different materials which support 

SPRs at different frequencies, the mismatch between SPR frequencies will result in much less heat 

transfer. For instance, SiC supports surface phonon polaritons in the infrared range, but gold supports 

surface plasmon polaritons in the visible range. As shown in Fig. 1, near-field radiative heat transfer 

between semi-infinite SiC and gold plates is found to be three orders of magnitude less than that 

between two SiC plates.  
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FIG.1: (color online). Plot of radiative heat transfer between two semi-infinite plates maintained at 0K 



and 300K against the vacuum gap size d . SiC-SiC case (red curve) is compared with SiC-gold case 

(blue curve). Blackbody radiation limit is also plotted for reference (black dashed line).  

 

To overcome the material limitation of the IR-SPR based near-field radiation, "metamaterials" 

have been proposed to enhance near-field radiative heat transfer by designing SPRs at desired 

frequencies13. Metamaterials, which are typically structured at a scale smaller than 1/10th of 

wavelength, are artificial composite materials whose electromagnetic properties are engineered by 

sub-wavelength structures such as split-ring resonators and dilute metal wires14,15. If the gold plate in 

Fig. 1 is replaced by the arrays of sub-wavelength gold wires or split ring resonators, the effective 

resonant frequency of surface plasmon polaritons in the metamaterial can be shifted to match the 

resonant frequency of surface phonon polaritons in SiC. However, in order to maintain designed 

effective properties and manipulate thermal radiation in the near-field, a metamaterial needs to meet 

two criteria: (i) the feature size of the metamaterial (e.g., period of sub-wavelength structures) must be 

much smaller than the gap size between the emitter and the absorber, which can be in the range of 

tens of nanometers16, and (ii) the metamaterial must have an effective resonant frequency in the 

infrared range (e.g., wavelength around 10 mμ ) in order to match the resonant frequency of an IR-

SPR emitter. For both criteria to be fulfilled simultaneously, the diameters of dilute metal wires and 

the thicknesses of split ring resonators are predicted to be in the sub-nanometer scale. Although these 

resonant metamaterials show potential for manipulating near-field radiation, they are very difficult to 

be experimentally realized with current fabrication technologies. 

In this paper, we present a broadband non-resonant heat emitter/absorber based on hyperbolic 

metamaterials17–19, which can significantly enhance near-field radiative heat transfer between metals 

and IR-SPR thermal emitters, and maintain the monochromatic characteristic of the IR-SPR based 

near-field radiation. In order to elucidate the heat transfer mechanisms of complex three-dimensional 

metamaterials, we directly calculate near-field radiation based on the Wiener-chaos expansion method, 

rather than using effective medium theory (EMT). Previous studies on metamaterial based near-field 

radiation generally adopted EMT to approximate electromagnetic properties13,20. However, EMT 

approximation has two drawbacks: (i) It may not be applicable in the near-field because, instead of 

effective or averaged properties, inhomogeneous behaviors of individual sub-wavelength structures 

dominate the responses of metamaterials to the exponentially decaying evanescent waves.   (ii) EMT 

is essentially an approximation which cannot provide detailed information on the electromagnetic 

fields in metamaterials. A direct numerical simulation is thus crucial for accurately predicting the 

near-field responses of complicated geometries like metamaterials. 

 



II. Enhanced near-field heat transfer between an IR-SPR 
emitter and a hyperbolic metamaterial 

Hyperbolic metamaterials are non-resonant and can potentially manipulate near-field 

radiation17,21. The effective permittivity of this type of metamaterials has a negative vertical 

component ( 0zε < ) and positive horizontal components ( , 0x yε > ), with the materials assumed to be 

uniaxial (i.e., ,x y x yεε ε= = ) for simplicity. Since zε  and ,x yε  are opposite in sign, the dispersion 

relation for TM (transverse-magnetic, zH =0) waves is a hyperbolic function  
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where K  is the lateral wave vector 2 2
x yK k k= + , and 0k  is the wave vector in vacuum. As shown 

in Eq. (1), one intriguing property of hyperbolic metamaterials is that they allow propagating TM 

waves with no upper bound for K . The IR-SPR based near-field heat transfer is dominated by the 

contribution from the TM waves that have a purely imaginary zk  and a large surface wave vector K  

( 0K k> )1. These waves are evanescent in vacuum but can be converted into propagating waves by 

hyperbolic metamaterials for arbitrarily large K .  

Hyperbolic metamaterials can be realized by a number of structures such as alternating metal-

dielectric layers17 and metal wire arrays (MWAs)18,19. In the infrared regime, metals behave like 

perfect electric conductors (PEC) with permittivity iε = −∞ + ∞ . A metamaterial made of MWAs can 

have the hyperbolic dispersion given by Eq. (1) in a broad frequency band for pω ω< without relying 

on the intrinsic resonant properties of metals. Here, ωp is the equivalent plasma frequency of MWAs, 

which can be expressed by the wire period a  and the radius r  as 2 2
02 [ ln( )]p c a a rω π≈ / /  22. The 

vertical components of the effective permittivity ,x yε  can be approximated as the vacuum permittivity 

0ε due to the negligible polarizability in x- or y- direction. However, the estimation of the parallel 

component zε  is not straightforward. The local EMT model for “diluted metal wires” proposed  by 

Pendry et al. 22 cannot interpret the dispersion of the propagating waves inside the MWAs18,19. Belov 

et al.18 proposed a non-local EMT model for MWAs which requires evaluating the microscopic 

structure details 

2

0 2 2 2
0

( ) 1 ,, p
z z

z

k
kc

ε ε
ω

ω
ω

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

  (2) 



which is always negative for pω ω< . If the period of MWAs is chosen to be hundreds of nanometers, 

pω  of MWAs is typically in the visible range, and MWAs can maintain the hyperbolic dispersion in 

the infrared range.  

The performance of MWAs can be evaluated by the photon local density of states (LDOS) 

above the surface of semi-infinite MWAs. According to Ref. [23], the photon tunneling rate through 

evanescent waves increases with the increase of the LDOS immediately above the surface of the 

thermal emitter/absorber. Therefore, by enhancing the LDOS, near-field radiative heat transfer can be 

increased. The LDOS, ( , , )i d Kρ ω , at the distance d  above the surface of a medium for parallel 

wave vector K  and frequency ω  is related by 

( , , ) Im[ ]exp( )i TM
ird K dρ ω γ∝ − , (3) 

where i
TMr  is the Fresnel factor of the medium i∈{emitter, absorber} for TM waves, and 

2 2
0k Kγ = − . Here, we ignore the contribution from the transverse-electric (TE) wave since the 

near-field heat transfer with an IR-SPR emitter is dominated by TM waves. Furthermore, the profile 

of the spectral heat flux ( )ωΦ  between a thermal emitter and absorber separated by a vacuum gap d  

can be estimated by the product of the LDOS above the surface of each individual medium 

0

2 ( , ,· )· ( , , )ek mitter absorberd dK Kd Kρ ω ρ ω
∞

∫ .  (4) 

Due to the hyperbolic dispersion, the LDOS above MWAs can be dramatically increased compared to 

that of bulk metals. However, the exact value of the LDOS of MWAs is difficult to be calculated 

based on the non-local EMT model (Eq. (2)), because the calculation of the Fresnel factors of non-

local media requires to scrutinize the structure details24.  Hence, we consider a limiting case with local 

dispersion relation to predict the general trend of the LDOS above MWAs. If the period of MWAs is 

infinitely small, the equivalent plasma frequency approaches infinity, pω → ∞ , then the effective 

permittivity of this limiting case of MWAs is 0 ,x y zε ε εε= = = −∞  according to Eq. (2). The 

limiting case is a reasonable approximation to the actual MWAs in the near-field because it can lead 

to the same dispersion relation of the propagating waves inside MWAs as that of the actual cases 

when pω ω< 18,19. The LDOS can thus be easily evaluated by calculating the Fresnel factor for an 

anisotropic medium with local EMT model 16. In Fig. 2, we estimate the LDOS at 100nm above the 

surface of the semi-infinite SiC, gold and the limiting case of MWAs by 

calculating Im[ ]exp( )TMr dγ− . The LDOS of MWAs is largely enhanced in a broad frequency band 



compared to that of gold. The LDOS of SiC has a sharp peak at the SPR frequency. The LDOS of 

MWAs as shown in Fig. 2 is almost evenly distributed in the infrared regime. Hence, MWAs can 

strongly interact with an IR-SPR emitter (e.g., SiC) and simultaneously maintain the monochromatic 

near-field heat transfer with the IR-SPR emitter, according to Eq. (4).  
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FIG. 2: (color online). Plot of the expression Im[ ]exp( )TMr dγ−  to estimate the photon local density 

of state (LDOS) at d = 100nm above the surface of semi-infinite (a) SiC, (b) Au, and (c) limiting case 

of metal wire arrays (MWAs).  

 

III. Wiener-chaos expansion method 
Since conventional approaches for directly calculating near-field radiation mainly rely on the 

analytical forms of dyadic Green functions25, these calculations can only be conducted for simple 

geometries: e.g., semi-infinite plates, spheres and multi-layers. For complex structures such as 

metamaterials, EMT is often employed to approximate the arrays of inhomogeneous sub-wavelength 

structures as a homogenous medium with effective electric and magnetic properties. There exist few 

direct numerical methods to simulate near-field radiation. Guérout et al.26 developed a method based 

on scattering theory to calculate the radiative heat transfer between one-dimensional gratings. 

Rodriguez et al. 27 conducted a direct simulation to investigate the near-field radiative heat transfer 

between two photonic crystal slabs using the Monte Carlo method. Very recently, Rodriguez et al.28 

proposed a fluctuating surface-current (FSC) formulation to evaluate radiative heat transfer for 

arbitrary geometries based on the boundary element method (BEM). Badieirostami29 and Wen30 

conducted non-stochastic direct simulations for incoherent light sources and radiative heat transfer 

between two parallel plates, respectively, based on the Wiener-chaos expansion method. Here, we 

perform a direct numerical simulation of near-field radiation for complex three-dimensional 

geometries (e.g., MWAs) using the Wiener-chaos expansion method29,30 by finite-difference time-

domain (FDTD) technique.  



The unique properties of the Wiener-chaos expansion method are summarized below. First, 

unlike the scattering theory formulations described in Ref. [26], the Wiener-chaos expansion method 

does not require any modes expansion over wave vector. It only relies on finding a proper 

orthonormal basis of the geometries. Thus, the Wiener-chaos expansion method can be used to 

calculate the thermal radiation from arbitrary geometries. Second, the Wiener-chaos expansion 

method is a non-stochastic method and it does not need any random number generators, whereas a 

proper random number generator is critical for the efficiency and accuracy of the Monte Carlo 

method29. Furthermore, the Wiener-chaos expansion method can be implemented by the standard 

FDTD technique, which can obtain the spectrum information (i.e., spectral energy flux from each 

mode) from a single simulation. However, the data points at different frequencies need to be 

simulated separately by the frequency-domain methods, such as the FSC method28 and the finite-

difference frequency-domain implementation of the Wiener-chaos expansion method in Ref. [30].  

Thermal radiation from an object physically originates from thermally induced random 

currents ( )J r ω,l  whose mean value is equal to zero. According to fluctuation electrodynamics31, the 

thermally induced random currents are spatially and temporally incoherent, which satisfy  

 2( ) ( ) ( ) ( ) ( )J r J r V T r rω ω ω δ ω ω δ δ∗ ′ ′ ′ ′, , = , − − ,k l kl (5) 

where 0( ) 4 Im[ ] ( )rV T Tω ε ε ω π, = Θ , /  is a deterministic function, the bracket ·  denotes the 

statistical ensemble average, 0ε  is the permittivity of vacuum, Im[ ]rε  is the imaginary part of the 

dielectric function of the object, and ( ) [exp( ) 1]BT k Tω ω ωΘ , = / / −  is the Planck distribution. 

( )r rδ δ ′−kl  are the Kronecker delta and Dirac delta functions that indicate the random currents are 

incoherent at different polarization ( l  and k ) and different locations, respectively. ( )δ ω ω′−  

indicates the temporal incoherence. Due to the spatial incoherence, ( )J r ω,l  at a certain frequency 

can be constructed as ( ) ( ) ( )J r V T dW rω ω, = ,l l , where ( )dW r  is the white noise function (i.e., the 

derivative of Brownian motion) that has the properties ( ) 0dW r = and 

( ) ( ) ( )dW r dW r r rδ′ ′= − . ( )dW r  has been extensively studied in stochastic process theories and 

can be expanded by the Karhunen-Loève expansion as 
1

( ) ( )n nn
dW r c f r∞

=
=∑  32, where { }nf  is an 

orthonormal basis for a volume S with thermal sources defined by 3( ) ( )i j ijr S
f r f r d r δ∗

∈
=∫ , and nc  

are the uncorrelated random variables satisfying 0ic = , i j ijc c δ= . Thus, the random current 

sources can be expanded as the linear combination of the orthogonal current modes 

}{ ( ) ( ) ( )}n nj r V T f rω ω, = , , such that 
1

( ) ( )n nn
J r c j rω ω∞

=
, = ,∑l l . Now Eq. (5) can be rewritten as 
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 According to Maxwell’s equations, energy flux ( )q ω  is usually related to the current source 

term ( ) ( )J r J rω ω∗ ′, ,  by a linear operator [ ]L ⋅  as ( ) [ ( ) ( )]q L J r J rω ω ω∗ ′= , , 1,2. Here, [ ]L ⋅  is the 

standard dyadic Green function, which is the electromagnetic response to a point dipole source.  From 

Eq. (6) the average energy flux from the random currents ( ) [ ( ) ( ) ]q L J r J rω ω ω∗ ′= , ,  can be 

expanded as the sum of the energy flux from each current mode ( ) [ ( ) ( )]n n nq L j r j rω ω ω∗ ′= , ,  : 
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 which is illustrated in Fig. 3.  
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FIG. 3: (color online). Average energy flux radiated from random current sources is expanded as the 

sum of the energy flux from each orthogonal current mode. Fast convergence can be achieved when 

the current modes are chosen in sinusoidal forms.  

 

The primary challenge of the Wiener-chaos expansion method is to find proper current modes 

of thermal sources. For instance, when the current modes are chosen in sinusoidal forms, their 

expansion can be physically viewed as classical multipole expansion (Fig. 3), which leads to fast 

convergence for energy flux calculation33. Hence we can truncate the expansion and only keep the 

lower order current modes without losing accuracy. For complicated geometries, the current modes 

can be generated in spherical harmonic forms using the algorithms developed in Ref. [34].  



IV. Simulation results 
Here, we investigate the near-field radiative heat transfer between an IR-SPR emitter and MWAs 

placed in vacuum. The IR-SPR emitter is assumed to be a 1 mμ  thick plate. Metal wires are aligned in 

the z-direction with radius r =50nm and period a =300nm. The IR-SPR emitter is kept at 300K, and 

the MWAs are at 0K. The heat flux between them is evaluated by calculating the amount of energy 

transmitted into the MWAs. As the MWAs are at a finite temperature, the net heat flux can be solved 

by the reciprocity of radiative heat transfer27. In our simulation, the current modes in the IR-SPR 

emitter are chosen in sinusoidal forms (see Appendix) because of the resulting high convergence 

speed of numerical simulation. The MWAs at 0K do not emit thermal radiation, and we only consider 

their electromagnetic response in the infrared range. The metal wires in our simulation are assumed to 

be PEC wires, which is verified by comparing the energy fluxes into PEC and gold wire arrays for 

current Mode 1. We find that the results from PEC and gold wires are almost the same, as shown in 

Fig. 4.  
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FIG. 4: Spectral heat flux into PEC MWA and gold MWA due to current Mode 1. The MWAs have 

the same geometry: wires radius r = 50nm, wires period a = 300nm. The vacuum gap size d  

between the MWAs and SiC plate is 100nm. 
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FIG. 5: (color online). (a): Schematic diagram (3D view and top view) of the SiC plate heat emitter (at 

300K) and the metal wire arrays heat absorber (at 0K) separated by a vacuum gap. Metal wires have 

infinite length, radius r =50nm and period a =300nm. (b) Spectral heat flux into metal wire arrays 

from sinusoidal current modes in the SiC plate at a 100nm vacuum gap. (c), (d) Electric and magnetic 

field profiles in metal wire arrays at the SPR frequency ( 141 78 10. × rad/s) of SiC, measured at the 

plane 2 mμ  above the gap.  

 

The spectral heat flux between a SiC emitter and the MWAs with a 100nm gap is plotted in 

Fig. 5(b). The first current mode (dipole-like mode) contributes 40%≈  of the total heat flux, and the 

first two modes contribute 80%≈ . The monochromatic feature of heat transfer is denoted by the 

peaks corresponding to the symmetric and antisymmetric SPR modes of the 1 mμ  thick SiC plate, 

where near-field heat transfer clearly exceeds the Planck law. The broadband response from the 

MWAs can be found by introducing an “ideal SPR emitter” that has a frequency-independent 

permittivity equal to 1 bi− + . The real part, -1, indicates that the material supports SPR at any 

frequency, and the imaginary part b  is an arbitrary number associated with the magnitude of thermal 

induced currents in Eq. (5). In Fig. 5(b), b  is assumed to be 0.1. The spectral heat flux between the 

“ideal SPR emitter” and the MWAs is plotted in Fig. 5(b). Heat transfer enhancement is observed for 

all the frequencies of interest in the infrared regime.  

The mechanism with which MWAs absorb heat is directly elucidated in our simulations. The 

field profiles inside the MWAs at the SPR frequency of SiC are shown in Fig. 5(c) and (d). The highly 

spatial dispersion of MWAs leads to the TEM (transverse electromagnetic, zE = zH =0) propagating 

modes18. At the frequencies below the equivalent plasma frequency pω , the hyperbolic dispersion 

relation becomes flat as 2 2
0zk k= . Thus, the MWAs support the TM waves with arbitrary K  

propagating only along the z direction (i.e., TEM waves)19. For real MWAs (e.g., gold wire arrays), 



they couple the TM waves (both propagating and evanescent components) from the IR-SPR emitter 

into the TEM waves propagating along the wires, which will eventually be absorbed by metals due to 

the ohmic loss. In the frequency range of thermal radiation, the MWAs can be viewed as a system of 

coupled low-loss transmission lines18. The decay length dL  of the gold wires in Fig. 5 is estimated to 

be on the order of 100 µm by the approach described in Ref. [19] that 1[ ]d zL Im k −≈  for the TEM 

waves with 0K = . With this low-loss feature, MWAs can also be used as “near-field thermal 

waveguides” which can couple the evanescent radiative energy at the nanoscale and transfer it to a 

macroscopic scale.  
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FIG.6: (color online). (a) Comparison between heat fluxes from 1 mμ  thick SiC plate (at 300K) to 

MWAs (at 0K) and semi-infinite gold plate (at 0K), as a function of the vacuum gap size. Also the 

performance of ideal MWAs is plotted for reference. (b) Spectral heat flux between the SiC plate and 

the MWAs with different ( a , r ) at a 100nm gap. Here a , r  denote the period and the radius of metal 

wires, respectively.  

 

In Fig. 6(a), we plot the total heat flux between the SiC IR-SPR emitter and the MWAs 

against gap sizes. Compared with the SiC-gold case, MWAs can enhance the near-field heat transfer 

with SiC by one order of magnitude without having to match the SPR in SiC. These results show that 

MWAs significantly modify the radiative thermal properties of bulk metals in the near-field. For a 

fixed gap, the performance of MWAs is determined by wire density and size. As shown in Fig. 5(c) 

and (d), the transmitted energy in the MWAs is concentrated on the surface of each wire. MWAs with 



smaller radii and periods are expected to absorb more energy. This trend is demonstrated by 

calculating the spectral heat fluxes to MWAs with different wire radii and periods (Fig. 6(b)). The 

performance of MWAs can be maximized when the period of the wires is infinitely small, which is 

the limiting case presented in Sec. II. The radiative heat transfer between this limiting case of MWAs 

and a SiC emitter can be calculated analytically by modeling the MWAs as an anisotropic medium 

with local dispersion relation based on EMT16,35, as shown in Fig. 6(a). At large gaps, the limiting 

case EMT approximation gives an accurate prediction. However, for small gaps, it overestimates the 

heat transfer in actual cases. Therefore, a direct numerical simulation is required to accurately predict 

the performance.  

V. Conclusion 
In this paper, we described a hyperbolic metamaterial based heat emitter/absorber made of 

metal wire arrays (MWAs), which can greatly enhance near-field heat transfer with IR-SPR materials. 

Rather than match the resonant frequencies of IR-SPR materials, MWAs are non-resonant and have 

enormous enhancement of the LDOS in a broad frequency range. We directly simulated the near-field 

radiative heat transfer between MWAs and an IR-SPR emitter based on the Wiener-chaos expansion 

method. The direct numerical simulation is demonstrated to be critical for accurately predicting the 

near-field radiation of complex geometries like metamaterials. Manipulation of near-field radiation 

using metamaterials has been considered in theory for a long time but is difficult to be experimentally 

realized. The results presented in this paper provide a feasible way to achieve the metamaterials which 

can work in the near-field and enhance radiative heat transfer beyond material limitation. 
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Appendix: Current Modes 
As discussed in Sec. III, a proper set of current modes in thermal emitters 

{ ( ) ( , ) ( )}i iTr fj V rω= can be selected by choosing a set of orthonormal basis functions { }if in 

sinusoidal forms. When dealing with the periodic structures such as metamaterials, the quality of the 

current modes can be further improved by taking advantage of the periodicity and symmetry of the 

geometries.  

In the simulation of the heat transfer between the IR-SPR emitter and MWAs, as shown in Fig. 

5(a), the orthonormal basis { }if  is defined in the volume of the 1 mμ -thick SiC plate. Since the 



structure is periodic in x,y direction, the infinite plate can be divided into cuboid cells with a height of 

1h mμ=  and a length and a depth of / 2a . Thus, the orthonormal basis { }if  for this infinite plate 

can be chosen as the union of the orthonormal basis for all the cuboid cells. Consider the cuboid cell 

centered at ( , ) 1][2 [2
4 4

, 1]c c x y
a ac cx y ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
, where xc and yc are integers. The orthonormal basis 

for this cell is chosen as the Fourier-series basis , , , , ,{ }
x yl cm n cf k , where  

 , , , , , ( , , ) ( )· ( )·( )
x yl m n c l c m c ncf x y z H x x y y z hP G= − − +k k , (A8) 
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Here, [ / 4, / 4, ]c cx x y y a a∈ −− − , [ ,0]z h∈ − , , ,{ }∈ x y ze ek e is the unit vector of 3D space. Then 

the current modes in the SiC plate become , , , , , , , ,, ,{ ( , () , () )}
x y x yl m n c c l m n c cj V f rTr ω ω=k k . 

 Due to the periodicity and symmetry of the structure, the current modes in different cuboid 

cells have the same contribution to thermal radiation. Therefore, we only need to evaluate the current 

modes in one cell, which can be chosen as 0x yc c= = . Since the current modes in sinusoidal forms 

can be viewed as a multipole expansion, they can be divided into different groups with ranking 

numbers, which are similar to the orders in the multipole expansion. The top 14 groups of current 

modes are listed in Table I. For example, Mode 1 denotes the group of current modes 

, , , , ,{ }
x yl m n c cj k with 0l m n= = = . It can be viewed as the term of dipole approximation, which is 

similar to the concept mentioned in Ref. [36]. 

 



Mode ranking l  m  n  

1 0 0 0 

2 0 0 1 

3 0 0 2 

4 0 0 3 

5 0 0 4 

6 0 0 5 

7 0 1 0 

8 1 0 0 

9 0 1 1 

10 1 0 1 

11 0 1 2 

12 1 0 2 

13 1 1 0 

14 1 1 1 

TABLE I: The ranking of the groups of the current modes mentioned in Sec. IV. 
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