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We numerically study the thermoelectric transport properties based on the Haldane model of
three-dimensional topological insulator (3DTI) thin film in the presence of an exchange field g and a
hybridization gap ∆. The thermoelectric coefficients exhibit rich behaviors as a consequence of the
interplay between g and ∆ in the 3DTI thin film. For ∆ = 0 but g 6= 0, the transverse thermoelectric
conductivity αxy saturates to a universal value 1.38kBe/h at the center of each Landau level (LL)
in the high temperature regime, and displays a linear temperature dependence at low temperatures.
The semiclassical Mott relation is found to remain valid at low temperatures. If g = 0 but ∆ 6= 0,
the thermoelectric coefficients are consistent with those of a band insulator. For both g 6= 0 and
∆ 6= 0, αxy saturates to a universal value 0.69kBe/h at the center of each LL in the high temperature
regime. We attribute this behavior to the split of all the LLs, caused by the simultaneous presence
of nonzero g and ∆, which lifts the degeneracies between Dirac surface states.

PACS numbers: 73.50.-h; 72.10.-d; 73.50.Lw, 73.43.Cd

I. INTRODUCTION

The field of topological insulators (TI) has attracted
much attention due to its fundamental importance and
potential application 1–4. Unlike normal insulators, the
TI has energy gap in the bulk and accommodates gap-
less edge/surface states which are protected by time-
reversal symmetry. The existence of surface states in
three-dimensional (3D) topological insulators, such as
Bi2Se3 and Bi2Te3, have been theoretically predicted and
experimentally observed5–8. The surface states of the TI
resemble the low-energy Dirac fermions of graphene but
here with only one Dirac valley on each surface with no
spin degeneracy, in contrast to a four-fold degeneracy
from valley and spin in graphene. This implies the ex-
pected topological robustness in 3DTI9–11. The metallic
nature of the surface states is ensured by the nontrivial
Berry phase at the Dirac point, which cannot be elimi-
nated by scattering of weak nonmagnetic disorder. These
unique properties of TIs can also be employed to make
very efficient thermoelectrics12–15. Experimentally, the
enhancement of the thermopower in Bi2Se3 has been ob-
served by Qu et al.15, which may be related to the dom-
inate contributions from surface states at low tempera-
tures12,13.
When a perpendicular magnetic field B0 is applied to

the film, the surface states of a 3DTI are quantized into
Landau levels (LLs). These LLs have the same quantiza-
tion form as the Haldane model16,

Eτz,n = sgn(n)

√

w2
1 |n|+

(

∆

2
+ gτz

)2

, (1)

for nonzero integer n, and

Eτz,0 = [g + (∆/2)τz]sgn(eB0) , (2)

for n = 0. Here, g and ∆ are the Zeeman energy and the
hybridization gap, respectively17. τz = ±1 representing
two Dirac valleys, and w1 =

√

2|eB0|vF is the width of
the ν = 1 Hall plateau at g = ∆ = 0. When both g and
∆ vanish, Eqs. (1) and (2) reduce to the standard LLs for
massless Dirac fermions, which are additionally degener-
ate for τz = ±1, that is, E+,n = E−,n. Here, Zeeman
energy g plays the role of the staggered fluxes in the Hal-
dane model, and the hybridization gap ∆ is equivalent to
the alternating on-site energies on A and B sublattices.
In the previous work17, the quantum Hall effect (QHE)
of 3DTI thin film has been investigated in the presence
of g and ∆. A peculiar phase diagram for the QHE is
obtained driven by the competition between g and ∆,
which is quite different from these either in traditional
QHE or in graphene electron systems. The quantization
rule of the Hall conductivity varies with nonzero g or/and
∆, which can shift the relative positions of the LLs and
cause the LLs to split. Owing to these rich phase di-
agram for the QHE, the 3DTI thin film is expected to
exhibit novel thermoelectric transport properties. How-
ever, theoretical studies of the thermoelectric transport
properties of 3DTI thin film are limited, compared with
those of graphene systems18,19. In particular, a careful
examination of the thermoelectric transport properties
has not been done so far in the presence of g and ∆.
Such theoretical studies will provide theoretical under-
standing and guidance to the experimental research of
the thermoelectric transport in such systems.

In this paper, we carry out a numerical study of the
thermoelectric transport properties in 3DTI film in the
presence of the finite Zeeman energy g and hybridization
gap ∆. The effects of disorder and thermal activation
on the broadening of LLs are considered. For ∆ = 0
but g 6= 0, the thermoelectric coefficients exhibit unique
characteristics different from those of graphene. The po-
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sitions of all the peaks for the transverse thermoelectric
conductivity αxy shift with nonzero g due to the shift
of the positions of all the LLs. In the high tempera-
ture regime, the transverse thermoelectric conductivity
αxy saturates to a universal value 1.38kBe/h at the cen-
ter of each LL, and displays a linear temperature depen-
dence at low temperatures. For g = 0 but ∆ 6= 0, the
thermoelectric coefficients are consistent with those of a
band insulator. Around zero energy, αxy exhibits a pro-
nounced valley with αxy = 0 at low temperatures. Both
thermopower and Nernst signal display very large peaks
at high temperatures. We show that these features are
associated with a band insulator, due to the opening of a
sizable gap between the valence and conductance bands.
For both g 6= 0 and ∆ 6= 0, αxy saturates to a univer-
sal value 0.69kBe/h at the center of each LL in the high
temperature regime. We attribute this behavior to the
split of all the LLs, caused by the simultaneous presence
of nonzero g and ∆.
This paper is organized as follows. In Sec. II, we in-

troduce the Haldane model Hamiltonian for the 3DTI
thin film in the presence of both Zeeman energy and
hybridization gap and the numerical method for trans-
port calculations. In Sec. III, we present numerical exact
diagonalization results for the thermoelectric transport
properties for 3DTI thin film. The final section contains
a summary.

II. MODEL AND METHODS

We assume that the surface state of a thin film of
3DTI can be effectively described as a lattice model17

with totally Ly zigzag chains and Lx atomic sites on each
zigzag chain. The size of the sample will be denoted as
N = Lx × Ly. In the presence of an applied magnetic
field perpendicular to the film of 3DTI, the Hamiltonian
for the surface states can be described as the Haldane
model16:

H = −
∑

〈ij〉

teiaij c†icj −
∑

〈〈ij〉〉

t2e
iφij c†icj −

∑

〈〈ij〉〉

t2e
iaij c†icj

+
∑

i

Vic
†
ici + h.c.+

∑

i

wic
†
ici , (3)

Here, c†i (ci) is the fermion creation (annihilation) op-
erator at site i, t (t2) is the hopping integral between the
nearest-neighbor (next-nearest-neighbor) sites i and j,
and Vi = ±M is the on-site energy for sublattices A and
B, respectively. φij = ±φ is the hopping phase from site i
to its second neighbor j, due to a staggered magnetic-flux
density, where the positive sign is taken for an electron
hopping along the arrows indicated in Fig.1 of Ref. 16. It
has been shown16 that the Haldane model (3) exhibits a

quantized Hall conductivity ±e2/h for 3
√
3|t2 sinφ|>|M |

and behaves as a normal insulator otherwise. Under the

applied magnetic field B0, the vector potential is intro-
duced into Eq. (3) via an additional phase factor aij ,
which is determined by the magnetic flux per hexagon
ϕ =

∑

7
aij = 2π

M0

. M0 is an integer proportional to the
strength of the applied magnetic field B0 and the lattice
constant is taken to be unity. The total flux through the
sample is Nϕ

4π , where N = LxLy/M is taken to be an in-
teger to satisfy the generalized boundary conditions for
the single-particle magnetic translations along the x and
y directions. We choose M0 to be commensurate with
Lx or Ly so that the boundary conditions are reduced to
the periodic ones for wavefunctions. We model charged
impurities in substrate, randomly located in a plane at
a distance d, either above or below the the 3DTI thin
film sheet with a long-range Coulomb scattering poten-
tial, similar to that of graphene20–23. For charged impu-

rities, wi = −Ze2

ǫ

∑

α 1/
√

(ri −Rα)2 + d2, where Ze is
the charge carried by an impurity, ǫ is the effective back-
ground lattice dielectric constant, and ri and Rα are the
planar positions of site i and impurity α, respectively.
All the properties of the substrate can be absorbed into
a dimensionless parameter rs = Ze2/(ǫh̄vF ), where vF is
the Fermi velocity of the electrons. h̄vF = 3

2 ta, where a is

lattice constant21. For simplicity, in the following calcu-
lation, we fix the distance d = 1nm and impurity density
as 1% of the total sites, and tune rs to control the im-
purity scattering strength. The characteristic features
of the calculated transport coefficients are insensitive to
the details of the impurity scattering and choices of these
parameters.
In the linear response regime, the charge current in

response to an electric field or a temperature gradient
can be written as J = σ̂E + α̂(−∇T ), where σ̂ and α̂
are the electrical and thermoelectric conductivity ten-
sors, respectively. The Hall conductivity σxy can be cal-
culated by Kubo formula and the longitudinal conductiv-
ity σxx can be obtained based on the calculation of the
Thouless number24. We exactly diagonalize the Haldane
model Hamiltonian in the presence of disorder25. Then
the transport coefficients can be calculated using the ob-
tained energy spectra and wave functions. In practice,
we can first calculate the electrical conductivity σji(EF )
at zero temperature, and then use the relation26

σji(EF , T ) =

∫

dǫ σji(ǫ)

(

−∂f(ǫ)

∂ǫ

)

,

αji(EF , T ) =
−1

eT

∫

dǫ σji(ǫ)(ǫ − EF )

(

−∂f(ǫ)

∂ǫ

)

,(4)

to obtain the electrical and thermoelectric conductivity
at finite temperature. Here, f(x) = 1/[e(x−EF )/kBT + 1]
is the Fermi distribution function. At low temperatures,
the second equation can be approximated as

αji(EF , T ) = −π2k2BT

3e

dσji(ǫ, T )

dǫ

∣

∣

∣

∣

ǫ=EF

, (5)

which is the semiclassical Mott relation26,27. The ther-
mopower and Nernst signal can be calculated subse-
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FIG. 1: (color online). Calculated Hall conductivity σxy in units of e2/h as a function of the Fermi energy at zero temperature
for (a)g = 0.5ω1 and ∆ = 0, (b)g = 0 and ∆ = ω1, (c)g = 0.5ω1 and ∆ = 0.6ω1. The system size is taken to be N = 96 × 48,
magnetic flux ϕ = 2π/48, and disorder strength rs = 0.3 (we consider uniformly distributed positive and negative charged
impurities within this strength).

quently from28,29

Sxx =
Ex

∇xT
= ρxxαxx − ρyxαyx,

Sxy =
Ey

∇xT
= ρxxαyx + ρyxαxx. (6)

III. THERMOELECTRIC TRANSPORT OF

3DTI THIN FILM

We start from numerically diagonalizing the Hamilto-
nian based on the Haldane model in the presence of dis-
order scattering. We first show the Hall conductivities

for some different values of g and ∆ at zero tempera-
ture. The three parameters we used are (1)g = 0.5ω1

and ∆ = 0; (2)g = 0 and ∆ = ω1; (3)g = 0.5ω1 and
∆ = 0.6ω1, and their corresponding Hall conductivities
are shown in Fig.1, corresponding to three different quan-
tization rules. As shown from Fig.1(a), we can see that
for g = 0.5ω1 and ∆ = 0, there is no LL near EF = 0
and the positions of all the LLs shift to both sides due to
a nonzero g. All the LLs are still degenerate for τz = ±1,
so that the Hall conductivity remains to be odd-integer

quantized σxy = (2ℓ + 1) e
2

h with ℓ being an integer. For
g = 0 and ∆ = ω1, there is a splitting of the n = 0
LL, yielding a new plateau with σxy = 0, in addition to
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FIG. 2: (color online). Thermoelectric conductivities at finite temperatures for g = 0.5ω1 and ∆ = 0. (a)-(b) αxy(EF , T ) and
αxx(EF , T ) as functions of the Fermi energy at different temperatures. (c) The temperature dependence of αxy(EF , T ) for
certain fixed Fermi energies. (d) The comparison of results from numerical calculations and from the generalized Mott relation
at two characteristic temperatures, kBT/WL = 0.05 and kBT/WL = 1.0. Here WL/ω1 = 0.0612. The system size is taken to
be N = 96× 48, magnetic flux ϕ = 2π/48, and disorder strength rs = 0.3.

the original odd-integer plateaus, as shown in Fig.1(b).
For g = 0.5ω1 and ∆ = 0.6ω1, the simultaneous presence
of nonzero g and ∆ causes splitting of the degenerating
LLs due to the lifting of the degeneracy between differ-
ent Dirac surface states, so that all integer Hall plateaus

σxy = ℓ e
2

h appear, as shown in Fig.1(c).

We now study the thermoelectric conductivities at fi-
nite temperatures for some different values of g and ∆. In
Fig.2, we first plot the calculated thermoelectric conduc-
tivities for g = 0.5ω1 and ∆ = 0. As seen from Fig.2(a)
and (b), the transverse thermoelectric conductivity αxy

displays a series of peaks, while the longitudinal thermo-
electric conductivity αxx oscillates and changes sign at
the center of each LL. These results exhibit quite differ-
ent behavior compared to those of graphene18. Firstly,
there is no LL near EF = 0 and the positions of all the
peaks in αxy shift to both sides due to a finite g. The peak
of αxy for the central (n = 0) LL appears at EF = 0.5ω1.
Secondly, the peak values of αxy for n = 0 LL is smaller
than that of graphene. As shown in Fig.2(b), around
EF = 0.5ω1, the peak value of αxx shows different trend
with increasing temperature (it first increases with T at
low-temperature region, and then it decreases with T at
high temperatures). This is due to the competition be-

tween
π2k2

BT
3e and

dσji(ǫ,T )
dǫ of Eq.(5). The peak value of

αxx could either increase or decrease depending on the
relative magnitudes of these two terms. At high temper-

atures, σji(ǫ, T ) becomes smooth, and consequently αxx

begins to decrease. In Fig.2(c), we find that αxy mono-
tonically increases with the relative strength of temper-
ature kBT and the width of the central LL WL (WL is
determined by the full-width at the half-maximum of the
σxx peak). When kBT ≪ WL, αxy shows linear temper-
ature dependence, indicating that there is a small energy
range where extended states dominate, and the transport
falls into the semi-classical Drude-Zener regime. When
kBT becomes comparable to or greater than WL, the αxy

for all the LLs saturates to a constant value 1.38kBe/h.
This matches exactly the universal value (ln 2)kBe/h pre-
dicted for the conventional IQHE systems in the case
where thermal activation dominates26,27, with an addi-
tional degeneracy factor 2. The saturated value of αxy is
exactly half of that of graphene due to the lack of spin
degeneracy in such a system with strong spin-orbit cou-
pling.

To examine the validity of the semiclassical Mott rela-
tion, we compare the above results with those calculated
from Eq.(5), as shown in Fig.2(d). The Mott relation is
a low-temperature approximation and predicts that the
thermoelectric conductivities have linear temperature de-
pendence. This is in agreement with our low-temperature
results, which proves that the semiclassical Mott relation
is asymptotically valid in Landau-quantized systems, as
suggested in Ref. 26.
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FIG. 3: (color online). Thermoelectric conductivities for g = 0.5ω1 and ∆ = 0 with a larger system size N = 192× 96. (a)-(b)
αxy(EF , T ) and αxx(EF , T ) as functions of the Fermi energy at different temperatures. (c) The temperature dependence of
αxy(EF , T ) for certain fixed Fermi energies. (d) The comparison of results from numerical calculations and from the generalized
Mott relation at two characteristic temperatures, kBT/WL = 0.05 and kBT/WL = 2.0. Here WL/ω1 = 0.0296. The other
parameters are chosen to be the same as in Fig.2.

We also study the thermoelectric conductivities for dif-
ferent system size and magnetic field in the presence of
disorder. In Fig.3, we show the thermoelectric conduc-
tivities at a larger system size N = 192 × 96, and the
other parameters are chosen to be the same as in Fig.2.
As we can see that, all the results for αxy and αxx remain
unchanged.
In Fig.4, we show the thermoelectric conductivities at a

relatively strong magnetic flux ϕ = 2π/24 for system size
N = 96 × 48 and disorder strengths rs = 0.3. These re-
sults are qualitatively similar to those found in the weaker
magnetic field case in Fig.2, while the gap between the
peaks of αxy is increased due to the increase of the LL
gap. So, we can conclude that the characteristic features
of thermoelectric conductivities are insensitive to either
the magnetic field strength or the system size.
We finally focus on the disorder effect on the ther-

moelectric conductivities. In Fig.5, the transverse ther-
moelectric conductivity αxy with three different disorder
strengths rs = 0.3, 0.9 and 1.1 are shown for system size
N = 96 × 48 and magnetic flux ϕ = 2π/48. In Fig.5(a),
the calculated αxy at a weaker disorder strength rs = 0.3
are plotted. αxy displays a series of peaks at the center of
each LL. As seen from Fig.5(b) and (c), the width of the
peak in αxy increases with the increase of the disorder
strength. At rs = 1.1, the peaks of αxy for the n = 0 LL
remain well defined, however, other peaks for high LLs
have already disappeared. The most robust peak at the

n = 0 LL eventually disappears around rs ∼ 1.5, which
is driven by the merging of states with opposite Chern
numbers at strong disorder32.
In Fig.6, we show the results of αxx and αxy for g = 0

and ∆ = ω1. The particle-hole symmetry is recovered in
this case, however, we see that αxy displays a pronounced
valley, in striking contrast to that of graphene with a
peak at the particle-hole symmetric point EF = 0. This
behavior can be understood as due to the split of the
degeneracy between Dirac surface states in the n = 0
LL, caused by nonzero ∆. αxx oscillates and changes
sign around the center of each split LL. In Fig.6(c), we
also compare the above results with those calculated from
the semiclassical Mott relation using Eq.(5). The Mott
relation is found to remain valid at low temperatures.
In Fig.7, we show the results of αxx and αxy for

g = 0.5ω1 and ∆ = 0.6ω1. As we can see, αxy dis-
plays a series of peaks, while αxx oscillates and changes
sign at the center of each LL. These results are qualita-
tively similar to those found in 3DTI case in Fig.2, but
some obvious differences exist. Firstly, the position of the
peak in αxy for the n = 0 LL shift, and the peak value is
smaller than that of Fig.2. Secondly, at low temperature,
αxy splits in the higher LLs, which can be understood
as due to the presence of all integer Hall plateaus. In
Fig.7(c), we find that, when kBT becomes comparable
to or greater than WL, the αxy for all the LLs saturates
to a constant value 0.69kBe/h. The saturated value of
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FIG. 4: (color online). Thermoelectric conductivities for g = 0.5ω1 and ∆ = 0 with a stronger magnetic field ϕ = 2π/24. (a)-(b)
αxy(EF , T ) and αxx(EF , T ) as functions of the Fermi energy at different temperatures. (c) The temperature dependence of
αxy(EF , T ) for certain fixed Fermi energies. (d) The comparison of results from numerical calculations and from the generalized
Mott relation at two characteristic temperatures, kBT/WL = 0.05 and kBT/WL = 1.0. Here WL/ω1 = 0.0822. The other
parameters are chosen to be the same as in Fig.2.

αxy can be understood as the lifting the degeneracy of
all the LLs due to the simultaneous presence of nonzero
g and ∆. In Fig.7(d), we also compare the above re-
sults with those calculated from the semiclassical Mott
relation using Eq.(5). The Mott relation is also found to
remain valid only at low temperatures.
We further calculate the thermopower Sxx and the

Nernst signal Sxy using Eq. (6), which can be directly
determined in experiments by measuring the responsive
electric fields. In Fig.8(a)-(b), we show the results of
Sxx and Sxy for g = 0.5ω1 and ∆ = 0. As we can see,
Sxy (Sxx) has a peak at the n = 0 LL (the other LLs),
and changes sign near the other LLs (the n = 0 LL).
At EF = 0.5ω1 energy point, both ρxy and αxx vanish,
leading to a vanishing Sxx. Around EF = 0.5ω1, be-
cause ρxxαxx and ρxyαxy have opposite signs, depend-
ing on their relative magnitudes, Sxx could either in-
creases or decreases when EF is increased passing the
EF = 0.5ω1. In our calculation, Sxx is always dominated
by ρxyαxy, and consequently Sxx increases to positive
value as EF passing the EF = 0.5ω1. At low tempera-
ture, the peak value of Sxx near zero energy is ±0.33kB/e
(±28.44µV/K) at kBT = 0.2WL. With the increase
of temperature, the peak height increases to ±2.67kB/e
(±230.07µV/K) at kBT = 1.0WL. On the other hand,
Sxy has a peak structure around EF = 0.5ω1, which is
dominated by ρxxαxy. We find that the peak height is
5.69kB/e (490.31µV/K) at kBT = 1.0WL.

In Fig.8(c)-(d), we show the calculated Sxx and Sxy

for g = 0 and ∆ = ω1. As we can see, at low tempera-
tures, both Sxx and Sxy vanish around zero energy. This
behavior can be understood as due to the opening of a
sizable gap between the valence and conduction bands
in a band insulator. At high temperatures, Sxx changes
sign around zero energy. In our calculation, Sxx is domi-
nated by ρxyαxy. The peak value of Sxx near zero energy
is around ±9.03kB/e (±778.12µV/K) at kBT = 2.0WL.
Theoretical study30 indicates that, the large magnitude
of Sxx is mainly a result of the energy gap. On the other
hand, Sxy has a peak structure around zero energy, which
is dominated by αxyρxx. We find that the peak height
is 14.97kB/e (1289.96µV/K) at kBT = 2.0WL, which is
much larger than that of shown in Fig.8(b).
In Fig.8(e)-(f), we show the calculated Sxx and Sxy for

g = 0.5ω1 and ∆ = 0.6ω1. As we can see, at low tem-
peratures, both Sxx and Sxy vanish around EF = 0.5ω1.
This behavior can be understood as due to the presence
of the energy gap. At high temperatures, Sxx changes
sign around EF = 0.5ω1. In our calculation, Sxx is domi-
nated by ρxyαxy. The peak value of Sxx near EF = 0.5ω1

is around ±4.51kB/e (±388.63µV/K) at kBT = 1.0WL,
which is much larger than that of graphene. We attribute
that the large magnitude of Sxx is mainly a result of the
energy gap near the EF = 0.5ω1. On the other hand,
at high temperatures, Sxy has a peak structure around
EF = 0.5ω1, which is dominated by αxyρxx.
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FIG. 5: (color online). The transverse thermoelectric conductivities αxy for g = 0.5ω1 and ∆ = 0 at three different disorder
strength. (a)rs = 0.3, (b)rs = 0.9 and (c)rs = 1.1. Here the width of the central LL WL are equal to WL/ω1 = 0.0612, 0.215,
and 0.3106, respectively. The other parameters are chosen to be the same as in Fig.2.

IV. SUMMARY

In summary, we have numerically investigated the ther-
moelectric transport properties based on the Haldane
model of 3DTI thin film in the presence of Zeeman en-
ergy g and hybridization gap ∆. By tuning g and ∆, the
thermoelectric coefficients exhibit rich features different
from those of graphene system. For ∆ = 0 but g 6= 0, all
the LLs are shifted away from EF = 0 due to a finite g.
In the high temperature regime, the transverse thermo-
electric conductivity αxy saturates to a universal value
1.38kBe/h at the center of each LL, and displays a lin-
ear temperature dependence at low temperatures. The
saturated value of αxy is exactly half of that of graphene
due to the lack of spin degeneracy in such a system with
strong spin-orbit coupling. The Nernst signal displays a
peak at the central LL with a height of the order of kB/e,
and changes sign near other LLs, while the thermopower
behaves in an opposite manner. The semiclassical Mott
relation is found to remain valid at low temperatures.
If g = 0 but ∆ 6= 0, the thermoelectric coefficients are
consistent with those of a band insulator. Around zero
energy, αxy exhibits a pronounced valley with αxy = 0,
in striking contrast to that of graphene with a peak at
the particle-hole symmetric point EF = 0. This behavior
can be understood as due to the split of the degeneracy in
the n = 0 LL, caused by nonzero ∆. Both thermopower
and Nernst signal display very large peaks at high tem-

peratures. We show that these features are associated
with a band insulator, due to the opening of a sizable
gap between the valence and conductance bands. For
both g 6= 0 and ∆ 6= 0, αxy saturates to a universal value
0.69kBe/h at the center of each LL in the high tempera-
ture regime. We attribute this behavior to the split of all
the LLs, caused by the simultaneous presence of nonzero
g and ∆, which lifts the degeneracies between Dirac sur-
face states.
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APPENDIX

The Hall conductivity σxy at zero temperature can be
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FIG. 6: (color online). Thermoelectric conductivities at finite temperatures for g = 0 and ∆ = ω1. (a)-(b) αxy(EF , T ) and
αxx(EF , T ) as functions of the Fermi energy at different temperatures. (c) Compares the results from numerical calculations
and from the generalized Mott relation at two characteristic temperatures, kBT/WL = 0.05 and kBT/WL = 1.0. Here
WL/ω1 = 0.034. The system size is taken to be N = 96× 48, magnetic flux ϕ = 2π/48, and disorder strength rs = 0.3.

calculated by using the Kubo formula

σxy =
ie2h̄

S

∑

εβ<EF<εα

〈α | Vx | β〉〈β | Vy | α〉 − h.c.

(ǫα − ǫβ)2
,

Here, ǫα, ǫβ are the eigenenergies corresponding to the
eigenstates |α〉, |β〉 of the system, which can be ob-
tained through exact diagonalization of the Haldane
model Hamiltonian. S is the area of the sample, Vx and
Vy are the velocity operators. With tuning chemical po-
tential EF , a series of integer-quantized plateaus of σxy

appear, each one corresponding to EF moving in the gaps
between two neighboring Landau Levels (LLs).
The longitudinal conductivity σxx at zero temperature

can be obtained based on the calculation of the Thouless

number. The Thouless number g is calculated by using
the following formula31

g =
∆E

dE/dN

Here, ∆E is the geometric mean of the shift in the energy
levels of the system caused by replacing periodic by an-
tiperiodic boundary conditions, and dE/dN is the mean
spacing of the energy levels. The Thouless number g is
proportional to the longitudinal conductivity σxx.
Once we obtain the electrical conductivity σxy and σxx

at zero temperature, and then we can use Eq.(4) to obtain
the electrical and thermoelectric conductivity at finite
temperature.
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FIG. 8: (color online). The thermopower Sxx and the Nernst signal Sxy as functions of the Fermi energy for some different
values of g and ∆. (a)-(b)g = 0.5w1 and ∆ = 0, (c)-(d) g = 0 and ∆ = w1, and (e)-(f) g = 0.5w1 and ∆ = 0.6w1. All
parameters in this three systems are chosen to be the same as in Fig.2, Fig.6 and Fig.7, respectively.


