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We present a comprehensive theory of spin-dependent optical transitions and their dependence
on strain in Si and Ge. Symmetries of wavefunctions and interactions are used to derive concise
ratios between intensities of the right and left circularly polarized luminescence for each of the
dominant phonon-assisted optical transitions. These ratios are then used to explain the circular
polarization degrees of the luminescence peaks in the spectra of biaxially-strained Si and Ge, and of
relaxed Si1−xGex alloys. The spectra are numerically calculated by a combination of an empirical
pseudopotential method, an adiabatic bond-charge model and a rigid-ion model.
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I. INTRODUCTION

The conservation of angular momentum during the in-
teraction of radiation with matter allows one to study the
angular momentum of charge carriers from the state of
light polarization.1–3 In semiconductors, the circular po-
larization degree is largely set by the effect of spin-orbit
coupling on the angular-momentum quantum numbers in
the valence band.1 One can then use strain as a valuable
experimental knob to regulate and validate the relation
between the measured circular polarization degree and
the spin polarization of carriers.1,4 The applied strain lifts
the energy degeneracy in the edge of the valence band,
and it controls not only the energy spacings but also the
mixing between hole species. Knowing the strain-induced
hole mixing in each of the split valence bands, one can
ascertain the spin polarization from the measured circu-
lar polarization degree. To date, this technique has been
widely used in direct-gap semiconductors where optical
transitions are carried out straightforwardly.1,2

In indirect absorption edge semiconductors, in-
terband optical transitions are more intricate since
they involve both radiation-matter and electron-phonon
interactions.5–8 The photon has negligible momentum in
comparison to charge carriers, and therefore the emis-
sion or absorption of a phonon is needed to conserve the
crystal momentum during electron-hole radiative recom-
bination (between edges of the conduction and valence
bands). Extracting information on the spin polariza-
tion of electrons from the circular polarization degree of
phonon-assisted optical transitions was recently estab-
lished in the case of unstrained silicon.9,10 This inter-
pretation allows one to quantify the spin polarization of
electrons in experiments where strain is not a variable
parameter.11–17

In this paper we study the effect of strain on the spin-
dependent luminescence in Si and Ge. We derive concise
ratios between intensities of the right and left circularly
polarized luminescence for each of the optical transitions
in these materials. These ratios depend on the phonon
type, hole mixing, and valley position within the multi-
valley conduction band. The derived ratios are then used

to interpret numerically calculated spectra in biaxially-
strained Si and Ge as well as in relaxed Si1−xGex alloys.
Given the predictions for long spin lifetimes in strained
Si and Ge,18–21 the findings of this work render optical
transitions a viable tool in studying the spin dynamics
when straining these materials. The dependence of spin
relaxation on strain can be determined from the change
in the circular polarization degree when the spin lifetime
is comparable or longer than the electron recombination
timescale. In this limit, the circular polarization degree is
changed from zero to the maximal attainable theoretical
value (that will be presented in this work).

This paper is organized as follows. In Sec. II we re-
view the theory of interband optical transitions in indi-
rect absorption edge semiconductors. After summarizing
known spin-independent results in Ge and Si, we present
a detailed procedure to derive spin-dependent selection
rules. In Sec. III we derive expressions for the circular
polarization degree as a function of the strain amplitude
and type. This section also includes a brief review of
strain effects on the energy band structure. In Sec. IV we
confirm the analytical findings by independent numerical
calculations that combine an empirical pseudopotential
method, an adiabatic bond-charge model and a rigid-ion
model. This numerical procedure is used to calculate
the polarized spectra in biaxially-strained Si and Ge, as
well as in relaxed Si1−xGex alloys. Section V is a sum-
mary of central results. Appendix A includes technical
details of the strain-dependent Luttinger-Kohn Hamil-
tonian model, Appendix B deals with the moderate ef-
fect of strain on the phonon dispersion, and Appendix C
includes numerical results of optical orientation in un-
strained Si and Ge.

II. BACKGROUND

The intensities of optical transitions in indirect absorp-
tion edge semiconductors are quantified by using second-
order perturbation theory.22 The radiation-matter and
electron-phonon interactions are denoted by Hê and H`,
respectively. ê is the light polarization vector and ` is
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the phonon mode: transverse-acoustic (TA), transverse-
optical (TO), longitudinal-acoustic (LA) or longitudinal-
optical (LO). The intensity of an optical transition is then
found proportional to

Ii→fê,` ∝
∣∣∣∣∣∑
n

〈f |Hê|n〉〈n|H`|i〉
Ei − En − ~ω`

+
〈f |H`|n〉〈n|Hê|i〉
Ei − En ∓ ~ω0

∣∣∣∣∣
2

, (1)

where the angular frequency of the photon is ω0, and
the ∓ sign is associated with luminescence (−) or ab-
sorption (+). ω` is the angular frequency of the phonon
emitted during the process. The initial and final states
are given by |i〉 and |f〉, respectively. In luminescence
and optical orientation experiments these states are typ-
ically taken from the edges of the conduction and va-
lence bands. The overall energy conservation implies
that Ef − Ei = ~(ω0 ± ω`). The sum in Eq. (1) is
over intermediate states (|n〉). The translation sym-
metry renders crystal momentum conservation in each
of the radiation-matter and electron-phonon interactions
(i.e., during virtual transitions to and from intermedi-
ate states). The interference between the first and sec-
ond terms in Eq. (1) plays an important role in setting
the amplitude of phonon-assisted optical transitions in
Si.5,9,23–25

A. Spin-independent properties

To understand the salient features of the luminescence
or absorption spectra, one has to inspect the energy band
structure and the phonon dispersion curves. As an ex-
ample, in Fig. 1 we show this information for the case of
unstrained Ge between the Γ and L points. The band
structure in Fig. 1(a) is from an empirical pseudopoten-
tial method,26 and the phonon dispersion in Fig. 1(b) is
from an adiabatic bond-charge model.27 The procedure
to calculate the luminescence spectrum in Fig. 1(c) will
be explained in Sec. IV. The top edge of the valence band
is two-band degenerate and located in the zone center
[indicated by Γ+

8 in Fig. 1(a)]. The bottom edge of the
nondegenerate conduction band is indicated by L+

6 and
located in four equivalent zone-edge L points ([π, π, π]/a,
[−π, π, π]/a, [π,−π, π]/a and [π, π,−π]/a where a is the
lattice constant). Below we explain the origin for the
three edge-to-edge luminescence features of the black
curve in Fig. 1(c) as well as the origin for the difference
in their amplitudes.

The luminescence process is schematically described by
combination of arrow pairs in Fig. 1(a). The vertical ar-
rows correspond to the radiation-matter interaction and
the arrows between L and Γ correspond to the interaction
of electrons with zone-edge phonons near the L point.
The transition from initial to final states can proceed
via several virtual paths. From inspection, however, the
energy proximity between the L+

6 and Γ−7 states of the
conduction band is evident (∼140 meV). The phonon-
assisted optical transitions in Ge are governed by the
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FIG. 1: (color online) (a) Band structure of Ge along the
Γ − Λ − L symmetry axis. The conduction (valence) edge
state is indicated by L+

6 (Γ+
8 ). Arrows represent virtual paths

for phonon-assisted optical transitions via pertinent interme-
diate states. The path via Γ−7 (L−3 ) is shown in bold solid
(dash) lines to represent its dominant role in setting the in-
tensity of LA (TO) phonon-assisted optical transitions.28 (b)
Phonon dispersion along the Γ − Λ − L symmetry axis. (c)
Calculated polarized luminescence due to radiative recombi-
nation of spin-up electrons in unstrained Ge at 77 K. The
light propagation is parallel to the spin orientation.

Γ−7 intermediate state since it comes with the smallest
‘penalty’ [denominator in Eq. (1)]. Using group theory,
Lax and Hopfield have shown that only LA modes can be
involved in the L+

6 → Γ−7 → Γ+
8 optical transition [solid

arrows in Fig. 1(a)].5

In addition to the relatively strong LA spectral peak,
the spectrum of unstrained Ge involves TO and TA spec-
tral features.29 When considering ‘distant’ intermediate
states in Ge (the Γ−6 , Γ−8 and L−3 ), the TO mode is also
symmetry-allowed in edge-to-edge optical transitions,5

depicted by dashed arrows in Fig. 1(a). However, as
elucidated by Glembocki and Pollak,23,24 the intensity of
transition via L−3 is much stronger than via Γ−6 and Γ−8 .28

Specifically, the matrix element from electron-phonon in-
teraction between L−3 and Γ+

8 is ∼5 times larger than
that between L+

6 and {Γ−6 , Γ−8 }. As shown in Fig. 1(c)
and supported by luminescence experiments,29 one can
also find a weak spectral peak from TA modes. In spite
of the fact that edge-to-edge optical transitions with the
TA mode are forbidden, higher order transitions between
states near L+

6 and Γ−7 do not vanish completely. The
luminescence peak of the TA mode is visible since this
phonon has exponentially larger population compared
with that of other phonons. This property can be inferred
by inspection of the L -point phonon energies [Fig. 1(b)].

In silicon, the absence of a single close-by interme-
diate state renders the intensity of optical transitions
strongly susceptible to quantum-mechanical interference.
The six bottom edges of the multivalley and nondegener-
ate conduction band in unstrained silicon are positioned
∼0.85×2π/a away from the zone center on the Γ−∆−X
symmetry axes. Invoking group theory selection rules,
Lax and Hopfield deduced a dominant involvement of
transverse phonons whereas longitudinal phonons suffer
from destructive interference between valence and con-
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duction intermediate states [first and second terms in
Eq. (1)].5 In experiments, however, only the TO spectral
peak is relatively strong while the TA spectral peak is
closer in amplitude to that of the weak LO transition.6,7

This behavior is explained by a relatively weak interac-
tion of electrons with zone-edge TA phonons [the H`=TA

matrix element in Eq. (1)]. It stems from destructive
interference between contributions of the two atoms in
the unit cell (not to be confused with the interference
between intermediate states).9,23–25

B. Spin-dependent luminescence in Si and Ge

To establish connection with the strain-dependent
analysis in the next sections, we will consider the ap-
plication of infinitesimal strain along n̂ and calculate the
optical selection rules for light propagation along this di-
rection. On the one hand, this procedure provides phys-
ical insight to the expected selection rules of strained
crystals since it correctly classifies the zone-center eigen-
states of the valence band. On the other hand, this
procedure also allows us to extract the selection rules
of unstrained crystals by neglecting the infinitesimally-
induced energy splitting in the edges of the conduction
and valence bands.

For the general case of light propagation along n̂, the
radiation operators of the left and right circular polar-
ization vectors are

σ± =
1√
2

[(px cos θ cosφ+ py cos θ sinφ+ pz sin θ)

±i (py cosφ− px sinφ)] , (2)

where pi are vector components of the momentum oper-
ator and θ (φ) are the polar (azimuthal) angles of n with
respect to the crystallographic axes. The degenerate spin
states of conduction electrons in the edges of the valleys
are replaced by,20

|Kj ,⇑n〉 = cos
θ

2
|Kj ,⇑z〉+ sin

θ

2
eiφ|Kj ,⇓z〉,

|Kj ,⇓n〉 = − sin
θ

2
e−iφ|Kj ,⇑z〉+ cos

θ

2
|Kj ,⇓z〉, (3)

where Kj is the wavevector in the center of the jth valley.
The classification of holes states is subtle and depends

on the form of the strain tensor. Below we discuss two
common cases where an infinitesimal stress is applied
parallel to the [001] and [111] crystallographic axes. The
former (latter) represents a case where the energy de-
generacy between conduction-band valleys in Si (Ge) is
lifted. These strain configurations also capture the im-
portant differences induced by diagonal and off-diagonal
strain-tensor components. For example, the leading-
order effect of [001]-strain is to couple light-hole and split-
off states (both have Jz = ±1/2 components), while the
heavy-hole states are left unaffected (Jz = ±3/2). On the
other hand, of the two topmost valence bands that are

TABLE I: Representing basis functions of initial, final and in-
termediate states in the process of phonon-assisted lumines-
cence of spin-up electrons in germanium.22 The band struc-
ture in Fig. 1(a) shows energy positions of these states.

initial state L+

6, 1
2

1√
3
(yz + zx+ xy) ↑

HH (Γ+

8,+ 3
2

) 1√
2
(yz + izx) ↑

final states

LH (Γ+

8,± 1
2

)

1√
6
[−(yz − izx) ↑ −2xy ↓],

1√
6
[(yz + izx) ↓ −2xy ↑]

Γ−7 xyz ↑
intermediate Γ−6 + Γ−8 x ↑, y ↑, z ↑

states

L−3
1√
2
(x− y) ↑, 1√

6
(2z − x− y) ↑

split by [111]-strain, the one with heavier effective mass is
described by combination of {+3/2,+1/2} eigenstates of

J[111] = J ·(x̂+ ŷ+ ẑ)/
√

3, while the band with lighter ef-
fective mass is described by combination of {−3/2,−1/2}
eigenstates of J[111]. Detailed calculations of these well-
established results are given in Appendix A.

n̂ ‖ [001]: The classification of the zone-center hole
states in the presence of infinitesimal [001]-strain is sim-
ilar to that of unstrained crystals (Appendix A). To ob-
tain the intensity ratios between right and left circularly
polarized luminescence we calculate the relative ampli-
tudes of radiation-matter and electron-phonon matrix el-
ements by the use of basis functions. Using the previous
analysis and the group theory notations in Fig. 1, the
luminescence in Ge is employed as a case study example.
Following Sec. II A, the conduction minima is represented
by L+

6 , and we take the spin-up L+
6, 12

as the initial state.

According to this choice, Table I lists the representation
basis functions of all states that take part in optical tran-
sitions. The basis functions of all possible intermediate
states [|n〉 in Eq. (1)] are listed by the direct product of
spin-up and the basis functions of single-group irreducible
representations. From inspection of Fig. 1(a), they are
associated with Γ-point conduction states and with L-
point valence states. In Table I, we have neglected the
spin mixing of intermediate states caused by the rela-
tively weak spin-orbit interaction [reflected by the small
energy splitting between Γ−8 and Γ−6 , and between the L−3
states, see Fig. 1(a)]. However, since the summation in
Eq. (1) is complete, using the concise intermediate-state
expressions of Table I does not affect the final result of
the analysis, while it simplifies the derivation.

The relative amplitudes of electron-phonon matrix el-
ements can be calculated by considering the symmetries
of zone-edge phonons. Table II lists the representation
basis functions of these phonons. Together with the radi-
ation operators of the two circular polarization vectors,
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TABLE II: Representing basis functions of zone edge phonons.

Mode (symmetry) Basis Function

TO (L−3 ) 1√
2
(x− y), 1√

6
(2z − x− y)

LO (L+
1 ) 1

LA (L−2 ) 1√
3
(x+ y + z)

TA (L+
3 ) 1√

2
(x2 − y2), 1√

6
(2z2 − x2 − y2)

{I+ (HH)+I+ (LH)}:{I‐ (HH)+I‐ (LH)}

Detector

Detector

σ T

σ L

z

x

y

FIG. 2: (color online) Selection rules of phonon-assisted op-
tical transitions in Si (upper panel) and Ge (lower panel).
These rules pertain to transitions with electrons whose spins
are oriented along the propagation direction of the detected
light (+z crystallographic axis). Next to each of the indicated
phonon modes the ratio {A+B:C+D} denotes the intensity
ratio between right and left circularly polarized luminescence.
Contributions from transitions with heavy (light) holes are
denoted by A:C (B:D).

σ± = (px ± ipy)/
√

2, the selection rules are established
straightforwardly. For example,

L+
6, 12

LA−→ Γ−
7, 12

σ+−→ Γ+
8,“ 3

2 ”
∝〈

Γ+
8,“ 3

2 ”
|σ+|Γ−7, 12

〉〈
Γ−

7, 12
|x+ y + z√

3
|L+

6, 12

〉
= P1P2,

where P1 = 〈xyz|x|yz〉 and P2 = 〈yz|px|xyz〉 (and sim-
ilarly for their cyclic permutations). Figure 2 summa-
rizes the resulting selection rules in Si and Ge. For
each of the phonon modes, we list the intensity ratios
of the right and left circularly polarized light due to con-
tributions of heavy-hole (HH) and light-hole (LH) final
states.30 As shown in Fig. 2, light propagation along the
z-crystallographic axis breaks the symmetry between val-
leys in Si but not in Ge. Therefore, the selection rules in
Si are different for transverse or longitudinal valleys with

LO {4+1}:{1+2}

TO or TA {3+5}:{9+3}

Detector

Detector

LA or TA {3+0}:{0+1}

LA or TA {3+0}:{0+1}
TO {0+81}:{162+27}

TO {34+35}:{52+29}

{I+ (HH)+I+ (LH)}:{I‐ (HH)+I‐ (LH)}

z

xy

FIG. 3: (color online) Selection rules for light propagation
along the [111] crystallographic axis. Similar to the case in
Fig. 2, numbers denote relative intensities of right and left
circularly polarized luminescence of a certain phonon mode.
These numbers should not be used to infer the relative inten-
sities of different phonon modes.

respect to the propagation direction. σT and σL denote
the respective emitted circularly polarized light.

n̂ ‖ [111]: We use zone-center hole states in the pres-
ence of infinitesimal [111]-strain (Appendix A), and re-
peat the previous analysis. The resulting selection rules
are shown in Fig. 3, where in Ge these rules can be dif-
ferent for the L111 valley and for the other valleys. For
each of the phonon modes, we list the relative intensity
ratios of the right and left circularly polarized light due to
contributions of HH and LH states. In this strain configu-
ration, the hole states are no longer associated with pure
±3/2 or ±1/2 magnetic quantum numbers. Nonetheless,
the selection rules are invariant to the choice of n when
summing the contributions from both types of holes and
from all valleys. This summation is relevant in unstrained
crystals leading in the case of bulk Si to intensity ratios
of σ+ :σ−= 2 : 3 for either the TO or TA peaks, and 5 : 3
for the LO peak. In unstrained bulk Ge, this summation
leads to a 3 : 1 intensity ratio for either the LA or TA
peaks, and 2 : 3 for the TO peak.

We conclude this section with mentioning two impor-
tant aspects. First, the ‘direct-gap type’ 3 : 1 intensity
ratio for either the LA or TA peaks in Ge is independent
of the valley position. The reason is that their domi-
nant optical transitions involve electron-phonon interac-
tion between relatively pure spin states in the lowermost
conduction band. The second aspect relates to the en-
ergy proximity of TO and LO phonons in Si (both are
∼60 meV with a spacing of ∼4 meV). Having separate
TO and LO spectral peaks in Si is feasible only at very
low temperatures and high-purity silicon.6,7 In all other
cases the two spectral peaks merge,8 and one should re-
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FIG. 4: Energy shift of conduction-band valleys under biax-
ial strain. Upper (lower) panels represent the case of Si (Ge)
where low-energy valleys are centered on the Γ-∆-X sym-
metry axes (L points in the edges of the Λ symmetry-axes).
Contribution to the luminescence is governed by thermal elec-
trons that populate the low-energy valley(s).

call that this single peak has a large (small) contribution
from TO (LO) phonon-assisted optical transitions. One
should also consider the opposite sign of their circular
polarization degrees: −20% for TO and +25% for LO in
unstrained Si. Due to the opposite sign contributions,
the overall circular polarization degree of this peak is ex-
pected to be lower than that of the less intense TA peak
(in spite of the similar selection rules for TA and TO
transitions). This physics elucidates the observed differ-
ence in the measured circular polarization degrees of the
dominant and TA peaks in recent experiments.11,13–15

Quantitative analysis of unstrained Si is found in Ref. [9].

III. STRAIN EFFECTS

We study the effect of strain amplitude on the selection
rules in Si and Ge. The results of this study will be
used in Sec. IV to elucidate features of the spin-polarized
spectra that cannot be explained with infinitesimal-strain
selection rules (Figs. 2 and 3). Below we first describe the
effect of strain on the energy bands, and then we derive
selection rules in the presence of a finite biaxial strain.
Appendix B includes a brief description of the strain-
induced modification to the phonon dispersion curves.

We start with the effect of strain on the multivalley
conduction band. Figure 4 shows diagrams of the energy
shifts of ∆ and L valleys under [001] and [111] biaxial
strain, respectively. Valleys shift up or down in energy
depending on the angle between valley and strain axes
and on whether the strain is compressive or tensile.31–35

Evidently, the energy splitting between valleys suppresses
the intervalley electron scattering. As a result, the charge
mobility is improved.36–38 The spin lifetime is expected to
increase more dramatically due to its strong dependence
on intervalley processes.18–21,39–41

The effect of strain on holes is more subtle due to the
HH and LH band-degeneracy in the Γ point. The trans-
formation properties of the 4 zone-center valence states
(including spin) belong to the irreducible representation

ΔSO

[111] biaxial compressive[001] biaxial compressive

FIG. 5: Energy splitting and state mixing in the top of the
valence band for two configurations of biaxial compressive
strain. In case of tensile strain the top two bands switch
positions. The hole state components are denoted by |J, Jn〉,
where in the left (right) part n ‖ [001] (n ‖ [111]). The mixing
between hole states and energy shifts are shown next to the
levels of the strained valence bands. Details about the energy
parameters (bεz, dε0, and M±001 and M±111) are provided in
Appendix A.

of Γ+
8 . The amplitude of the spin-orbit coupling sets

their separation from the Γ+
7 zone-center states of the

split-off valence band. By applying strain, the Γ+
8 energy

degeneracy is lifted into two sets of spin-degenerate hole
bands. Such modified bands and states can be modeled
by a strain-dependent 6×6 Luttinger-Kohn Hamiltonian
(Appendix A). The left part of Fig. 5 summarizes the
main results for [001]-strain and the right part for [111]-
strain. When interested in the luminescence, the most
relevant band for optical transitions is the topmost band
since thermal holes populate this band. When interested
in absorption (optical orientation), other bands also be-
come relevant if the photon energy is larger than their
energy gap from the conduction band.

A. Strain-dependent selection rules

We derive spin-dependent selection rules for the polar-
ized luminescence from strained Si and Ge. Using time
reversal and crystal space inversion symmetries, each of
the valence bands is two-fold spin degenerate with states
written by

|k, s1〉 =
∑

`=X,Y,Z

[a`(k)|`, ↑〉+ b`(k)|`, ↓〉] eik·r,

|k, s2〉 =
∑

`=X,Y,Z

[−b∗` (k)|`, ↑〉+ a∗` (k)|`, ↓〉] eik·r, (4)

where X = yz, Y = zx and Z =xy. The states are nor-
malized such that

∑
` |a`(k)|2 + |b`(k)|2 = 1. Using [001]

and [111] biaxial strain configurations, we obtain the val-
ues of a` and b` by solving the Luttinger-Kohn Hamilto-
nian. To evaluate the circular polarization degree of dom-
inant phonon-assisted optical transitions, we follow the
straightforward analysis of Sec. II B, but we use Eq. (4) to
represent final states in the valence band. Then we find
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the intensities of the right and left circularly polarized
light (I±) from which the circular polarization degree is
extracted,

P =
I+ − I−
I+ + I+

, (5)

In the biaxial strain configuration, I± depend on the in-
plane strain parameter

ε‖ ≡
astrain − arelax

arelax
, (6)

defined by the lattice constants of the strained and re-
laxed lattices.

B. Silicon

We first consider the transverse phonon-assisted opti-
cal transitions which account for the dominant lumines-
cence peaks in Si. We study the radiative recombina-
tion of spin-up electrons with general hole states in the
top of the valence band [Eq. (4)]. For light propagation
along the [001] direction, the relative intensities of left
and right circularly polarized luminescence from x and y
valleys read

I
x(y)
± ∝1+3(|aX(Y )|2+|bX(Y )|2)± 4=(aXa

∗
Y −bXb∗Y ), (7)

where =(x) denotes the imaginary part of x. The relative
intensities in the ±z valleys read

Iz± ∝ 8(|aZ |2 + |bZ |2). (8)

The case of unstrained Si is naturally incorporated by
assigning the values of a` and b` from the final states
in Table I. Using these values, one can recover the in-
tensity ratios between right and left circularly polarized
luminescence in the upper panel of Fig. 2.

[001]-biaxial compressive strain (ε‖ < 0). The low-
ermost conduction valleys are along the x and y axes,
and the topmost valence states are heavy holes (Figs. 4
and 5). To calculate the circular polarization degree due
to optical transitions of spin-up electrons (sz = +1/2),
we substitute Eq. (7) into Eq. (5) and assign aX(Y ) =

1(i)/
√

2 and bX = bY = 0 (Table I). The result-
ing change in the circular polarization degree from un-
strained (ε‖= 0) to strained (ε‖< 0) values is

P 001
⇑ (ε‖ ≤ 0) : −1

5

TO,TA−→ −4

5
. (9)

The transition to the strained value is smooth where the
optimal value (−4/5) is reached once the energy splitting
between the valence bands (Fig. 5), and between conduc-
tion valleys (Fig. 4) is a few kBT . Note that Eq. (9) is
compatible with the selection rules in the upper panel of
Fig. 2. The unstrained value (−1/5) is understood by
summing contributions from all conduction valleys and

from both hole species. The strained value (−4/5) is
compatible with the intensity ratio of σ+ :σ−= 3 : 27
that comes from the lowermost conduction valleys and
topmost valence band. In this strain configuration, these
are the transverse valleys and ‘pure’ heavy holes, respec-
tively.

[001]-biaxial tensile strain (ε‖ > 0). The lowermost
conduction valleys are along the z axis. Substituting
Eq. (8) into Eq. (5), we get that the change in the circular
polarization degree from unstrained to strained values is

P 001
⇑ (ε‖ ≥ 0) : −1

5

TO,TA−→ 0. (10)

The polarization decays upon application of strain due
to the symmetry of electron states in the ±z conduction
valleys. It is not caused by a valence-band related effect.

[111]-biaxial strain. Our interest switches to light prop-

agation (and spin orientation) along (x̂+ŷ+ẑ)/
√

3 where

we assign cos θ = 1/
√

3 and φ = π/4 in Eqs. (2)-(3). In
this strain configuration, the hole states are no longer
associated with pure ±3/2 or ±1/2 magnetic quantum
numbers (Appendix A). Using analytical values of a` and
b` in the topmost valence bands [Eqs. (A20) and (A21)],
the change in the circular polarization degree is

P 111
⇑ (ε‖≤0) : −1

5

TO,TA−→ −1

2
, (11)

P 111
⇑ (ε‖≥0) : −1

5

TO,TA−→ 1

4

(M+
111 − 4dεo)

2

(M+
111 − dεo)2 + 9d2ε2o

, (12)

where εo relates to the off-diagonal component of the
shear strain tensor,

εo = −
√

3ε‖
c11 + 2c12

c11 + 2c12 + 4c44
. (13)

cij are the elastic stiffness constants which in silicon
have values of c11 = 166 GPa, c12 = 64 GPa and
c44 = 79.6 GPa. Other parameters in Eq. (12) are d
and M+

111. The former is the shear deformation poten-
tial of holes associated with [111] strain. Its value is
d = −5.1 eV in silicon. Finally,

M+
111 = dεo + ∆SO +

√
9d2ε2o + 2dεo∆SO + ∆2

SO, (14)

relates to the strain-induced energy shift of the split-off
band (see Fig. 5 for illustration). ∆SO = 44 meV is the
energy spacing between the topmost and split-off valence
bands in the absence of strain.

By assigning ε0 → 0 in Eqs. (11) and (12), we reach
in agreement with the respective intensity ratios of 3 : 9
and 5 : 3 shown in the upper panel of Fig. 3. With in-
creasing the strain amplitude in the tensile configuration,
the coupling with split-off states becomes stronger and
the circular polarization degree eventually vanishes. The
smallness of ∆SO in silicon is such that the drop in po-
larization is evident already at moderate levels of biaxial
tensile strain. Quantitatively it is seen from Eq. (12) by
noting that M+

111 → 4dεo when dεo > ∆SO.
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To complete the analytical study of silicon, we repeat
the procedure for the weaker LO phonon-assisted opti-
cal transitions. In this case, the relative intensities of
left and right circularly polarized luminescence are gov-
erned by ∆5 intermediate states in the valence band.9

Using hole states from the Luttinger-Kohn Hamiltonian
and considering the contribution from the lowermost con-
duction valley, we get

P 001
⇑ (ε‖≤0) :

1

4

LO−→ 0, (15)

P 001
⇑ (ε‖≥0) :

1

4

LO−→ −1, (16)

P 111
⇑ (ε‖≤0) :

1

4

LO−→ 3

5
, (17)

P 111
⇑ (ε‖≥0) :

1

4

LO−→ − (M+
111−4dεo)

2

3M+ 2
111−8M+

111dεo+32d2ε2o
. (18)

C. Germanium

We first consider the LA phonon-assisted optical tran-
sitions which account for the dominant luminescence
peak in Ge. As discussed in the previous section, these
optical transitions are mediated by relatively pure-spin
intermediate states of Γ−7 symmetry. Therefore, the spin
angular momentum is kept during the phonon-assisted
virtual transition between the L+

6 and Γ−7 conduction-
band states. This feature leads to similarity between
the selection rules of direct band-gap semiconductors and
those of LA phonon-assisted optical transitions in Ge.

[001]-biaxial strain. This configuration does not break
the symmetry between L valleys. We repeat the straight-
forward analysis of Sec. II B for optical transitions of
spin-up electrons (sz = +1/2) but with replacing the fi-
nal states by Eq. (4). For light propagation along the z
crystallographic axis, we get

P⇑
LA
= −2=(aXa

∗
Y − bXb∗Y )

1− |aZ |2 − |bZ |2
. (19)

Summing the HH and LH states in Table I, one gets
P = 50% as expected from a 3 : 1 intensity ratio. Also
similar to direct band-gap semiconductors is that ap-
plication of [001] strain leads to ±100% circular polar-
ization degree. Emission of pure σ+ light (+100%) is
reached in compressive strain where the topmost valence
band consists of heavy holes (i.e., interaction between
sz = +1/2 conduction states and Jz = +3/2 valence
states). Emission of pure σ− light (−100%) is reached in
tensile strain where the topmost valence band consists a
mixture of light and split-off holes (i.e., interaction be-
tween sz = +1/2 conduction states and Jz = −1/2 va-
lence states).

[111]-biaxial strain. This configuration also leads to
±100% circular polarization degree for light propaga-
tion along the [111] crystallographic axis. Since only
J[111] = +3/2 and J[111] = −1/2 components can take

part in optical transitions with spin-up electrons, a com-
plete circular polarization is guaranteed as long as these
two components are not mixed in the topmost valence
band. This situation is indeed valid for [111]-biaxial
strain (Appendix A). The ±100% circular polarization
degrees are compatible with the 3 : 0 and 0 : 1 intensity
ratios shown in the lower panel of Fig. 3.

We discuss the less intense TO phonon-assisted op-
tical transitions in Ge. As mentioned before, they are
governed by the L−3 intermediate states. For [001] strain,
by summing the contributions from all four equivalent
valleys, the relative light intensity reads

I± ∝ 4 + 3(|aZ |2 + |bZ |2)∓ 6=(aXa
∗
Y − bXb∗Y ). (20)

In the compressive case, the topmost valence band in-
cludes only heavy holes [Eq. (A11)] and the resulting cir-
cular polarization degree becomes

P 001
⇑ (ε‖ ≤ 0) : −1

5

TO−→ −3

4
. (21)

This value is expected from the 1:7 intensity ratio of
heavy holes shown in the lower panel of Fig. 2. The case
of tensile strain is more involved because states of the
topmost valence band are a mixture of LH and split-off
states. Using Eq. (A12) and after some algebra we get

P 001
⇑ (ε‖≥0) : −1

5

TO−→ (M+
001 − 4bεz)

2

6M+ 2
001 +8bεzM

+
001+40b2ε2z

, (22)

where εz relates to the diagonal components of the shear
strain tensor,

εz = −ε‖
c11 + 2c12

c11
. (23)

For Ge the elastic stiffness constants are c11 = 133 GPa,
c12 = 49 GPa and c44 = 69 GPa. Other parameters in
Eq. (22) are b and M+

001. The former is the shear defor-
mation potential of holes associated with [001] strain. Its
value is b = −2.3 eV in Ge. Finally,

M+
001 = bεz + ∆SO +

√
9b2ε2z + 2bεz∆SO + ∆2

SO (24)

relates to the strain-induced energy shift of the split-
off band (see Fig. 5). By comparing Ge and Si
[Eqs. (22) and (12)], we can see that the decay to zero po-
larization is much slower in Ge with increasing the strain
amplitude (∆SO=0.044 eV in Si and 0.29 eV in Ge). Also
note that for application of infinitesimal strain (εz → 0),
the 1

6 result by Eq. (22) is compatible to the 7 : 5 inten-
sity ratio of the LH states shown in the lower panel of
Fig. 2.

The effect of [111] strain on the TO phonon-assisted
optical transitions in Ge is slightly more involved. It
depends on hole-state mixing and also on the lowermost
conduction valley due to the symmetry breaking between
L valleys. The circular polarization degrees become

P 111
⇑ (ε‖≤0) : −1

5

TO−→ − 9

43
, (25)

P 111
⇑ (ε‖≥0) : −1

5

TO−→ 1

2

(M+
111 − 4dεo)

2

(M+
111 − dεo)2 + 9d2ε2o

. (26)
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TABLE III: Strain-induced changes in the circular polariza-
tion degrees of optical transitions with spin-up electrons. The
light propagates along the strain symmetry axis.

Phonon Biaxial Strain Polarization

Ge LA & TA [001] compressive 1
2
→ 1

[001] tensile 1
2
→ −1

[111] compressive 1
2
→ 1

[111] tensile 1
2
→ −1

TO [001] compressive − 1
5
→ − 3

4

[001] tensile − 1
5
→ 1

6
⇒ 0

[111] compressive − 1
5
→ − 9

43

[111] tensile − 1
5
→ 1

2
⇒ 0

Si TA & TO [001] compressive − 1
5
→ − 4

5

[001] tensile − 1
5
→ 0

[111] compressive − 1
5
→ − 1

2

[111] tensile − 1
5
→ 1

4
→ 0

LO [001] compressive 1
4
→ 0

[001] tensile 1
4
→ −1

[111] compressive 1
4
→ 3

5

[111] tensile 1
4
→ − 1

3
→ 0

By assigning ε0 → 0 in Eqs. (25) and (26), we reach in
agreement with the respective intensity ratios of 34 : 52
and 81 : 27 shown in the lower panel of Fig. 3.

Table III summarizes the analytical results. The listed
changes in the circular polarization degrees from un-
strained to strained values, α → β, are observable once
the energy splitting between the HH and LH bands is
a few kBT (and when applicable, also once the energy
splitting between conduction valleys is a few kBT ). In
some tensile cases, indicated by α → β ⇒ 0 for Ge and
by α→ β → 0 for Si, the polarization eventually vanishes
when the strain amplitude further increases. Presenting
the selection rules in Si and Ge with ⇒ and →, respec-
tively, is meant to recall that when increasing the strain
amplitude the polarization drops much faster in Si be-
cause of the proximity to its split-off band.

IV. NUMERICAL CALCULATION OF THE
SPECTRA

To verify our symmetry-based analytical discussion in
previous sections, we perform an independent numerical
study of the polarized luminescence spectra. The numer-
ical method is similar to that of unstrained Si in Ref. [9],
and here we extend it to cases of unstrained Ge, biaxially-
strained Ge, biaxially-strained Si, and relaxed Si1−xGex
alloys. The inverse effect of optical orientation following
absorption of a circularly polarized light is discussed in
Appendix C for unstrained Si and Ge.

A. Numerical Method

To obtain electronic states and energies, we employ a
spin-dependent local empirical pseudopotential method
(EPM),26 where the strain is incorporated following the
scheme of Rieger and Vogl.42 The phonon energy and dis-
placement vectors are calculated by the adiabatic bond-
charge model (ABCM),27 where the strain is incorpo-
rated following the scheme of Eryiğit and Herman.43 The
electron-phonon matrix elements are then calculated by
using the rigid-ion approximation,44

〈ϕkf ,mf
|H`

e−i|ϕki,mi
〉 =A

∑
g1,g2

∑
χ1,χ2

VqC
ki,mi
g2,χ2

(
C

kf ,mf
g1,χ1

)∗
×{q · u`+ cos(∆g · τ ) + q · u`− sin(∆g · τ )}. (27)

The wavefunctions are taken from the EPM and given
by ϕk,m =

∑
gj ,χj

Ck,m
gj ,χj

exp(i(gj + k) · r) where k, g,

m and χ denote, respectively, the wavevector, recipro-
cal lattice wavevector, band index and spin state. Vq is
the pseudopotential of wavevector q = ∆k − ∆g where
∆k = kf − ki and ∆g = g1 − g2. A=i

√
~/(2Mω`,∆k)

where M is the atomic mass. The phonon displacement
vectors, u`+ and u`−, are the “in-phase” and “out-of-
phase” motion of the two atoms in the unit cell, respec-
tively. These vectors and the phonon energy (ω`,∆k) are
calculated via the ABCM. The equilibrium atom posi-
tions relative to the origin (midpoint) are given by ±τ
where τ = (a, a, a)/8. The effect of the spin-orbit poten-
tial during a virtual transition is negligible,45 and thus
we consider only the local pseudopotential part whose
interpolation follows,9

Vq = a1exp(−a2q
4)× sin(a3q + a4). (28)

To find the values of ai we make use of the well-known
empirical pseudopotential form factors at q =

√
3,
√

8
and
√

11.22,26,42 To find a unique set of ai parameters, we
also set the value of V (q =

√
3/2) in Ge and of V (q = 1)

in Si. The two values are chosen by fitting the ratio
between intensities of different spectral peaks, ILA/ITO
in Ge and ITO/ITA in Si, with empirical results.29 We
emphasize that the circular polarization degree of the lu-
minescence is indifferent to the fitting procedure, and we
have verified this behavior for other interpolation func-
tions (see, e.g., the supplemental material of Ref. [9]).
The physical origin is that selection rules are governed
by crystal symmetry, where exact functional form of the
crystal potential would only improve the calculation of
the overall emitted-light intensity. Therefore, Ab-initio
numerical calculations bear no advantage over the in-
voked empirical procedure when analyzing the circular
dichroic behavior.

To make a consistent study of several strained and
relaxed configurations, we calculate the spectra due to
radiative recombination between spin-up electrons and
a Fermi-Dirac distribution of holes. The electrons are
taken from the minima of the conduction band, and the
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Fermi level of the holes is positioned in the top-edge
of the valence band. We also assume low temperatures
such that phonon absorption is negligible. The phonon-
assisted emission of photons with energy E = ~ω0 and
polarization ê is then calculated from

Iê,`(E) =
∑
i,j

∫
dk I

i→{j,k}
ê,` [1− nj(k)]

×δ(E + ~ω`,∆k − Ec + Ej,k) (29)

where ` is the phonon mode. I
i→{j,k}
ê,` is given by Eq. (1)

where i and j run, respectively, over the minimum-energy
states in the conduction-band (with energy Ec) and top-
most valence bands [nj(k) is the Fermi-Dirac distribution
in the jth valence band]. Calculations of the electron-

phonon and radiation-matter matrix elements in I
i→{j,k}
ê,`

follow, respectively, Eqs. (27)-(28) and the electric dipole
approximation.22 Ec and Ej,k are calculated from the
EPM and ω`,∆k from the ABCM (∆k = k− ki).

The simulated spectra from Eq. (29) is equivalent
to the luminescence that results from injection of
spin-polarized electrons into moderately doped p-type
samples.46,47 These samples provide optimal results for
the following reasons. Contrary to n-type samples, in-
jected spin-polarized electrons are not masked by a large
background of unpolarized electrons. Contrary to intrin-
sic samples, the recombination time of minority electrons
is greatly enhanced while their spin relaxation time is not
severely compromised as in the case of heavily-doped p-
type samples. Finally, we note that prospective experi-
ments which utilize time-resolved luminescence measure-
ments can confirm the predicted selection rules as well
as provide information on the spin relaxation from the
decay of the circular polarization degree.

B. Spin-Dependent Luminescence of unstrained Ge

The numerically calculated electronic band-structure
and phonon dispersion curves of unstrained Ge were pre-
sented in Fig. 1(a) and (b), respectively. Figure 1(c)
shows the spin-dependent luminescence due to optical
transitions of spin-up electrons in unstrained bulk Ge
at 77 K. The red and blue solid lines denote, respec-
tively, the relative intensities of σ+ and σ− polarizations,
where the light propagates parallel to the spin orienta-
tion. The green dashed line shows the resulting circu-
lar polarization degree [Eq. (5)]. The low-energy spec-
tral peak around 0.75 eV is of TO phonon-assisted opti-
cal transitions. The polarization of this peak is about
−20%, in accord with the predicted unstrained value
of − 1

5 (Table III). The dominant central peak around
0.76 eV is of LA phonon-assisted optical transitions and
its polarization is positive and slightly higher than 30%.
The polarization is lower than the predicted unstrained
value of 50% for the LA peak, mainly because of the
compensation from the tail of TO peak with opposite
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FIG. 6: (color online) Calculated polarized spectra of
biaxially-strained germanium at 20 K. The strain configura-
tions are [001]-compressive in (a), [001]-tensile in (b), [111]-
compressive in (c), and [111]-tensile in (d). The red (blue)
solid lines denote the σ+ (σ−) intensities and the green dashed
lines are the ensuing circular polarization degrees. The anti-
crossing of the two-topmost valence bands shown in the inset
of (d) indicates of the strong hole-state mixing in [111]-tensile
strain.

polarization (−20%). As will be shown below, this ef-
fect is suppressed at low temperatures when the TO and
LA peaks become well resolved. The spectral peak in
Fig. 1(c) around 0.78 eV is of TA phonon-assisted op-
tical transitions. Compared with the thermal energy,
kBT ≈ 6.7 meV at 77 K, this peak is well separated
from the other two spectral peaks. As a result, the ef-
fect from the opposite circular polarization degree of TO
phonon-assisted optical transitions is diminished. This
behavior explains why the simulated circular polariza-
tion increases to 40% at this spectral region (close to the
analytical value of 50%).

C. Spin-Dependent Luminescence of Strained Ge

We simulate four configurations of 1% biaxially-
strained Ge. Figure 6 shows the spectra results at 20 K
where the TO and LA spectral peaks are well resolved.
Each of the spectra contains TO, LA and TA peaks that
are red shifted compared with those in Fig. 1(c) due
to the strain-induced energy reduction of the indirect
bandgap.

We analyze the circular polarization degrees in the
spectra of strained Ge (dashed lines Fig. 6). Consistent
with the analytical picture whose results are summarized
in Table III, the dominant LA peaks show almost ±100%
circular polarization degree. The one unique feature ap-
pears in the [111]-tensile configuration [Fig. 6(d)], where
the amplitude of the circular polarization degree drops
from around −100% in the low-energy edge of the LA
peak to nearly zero in its high-energy edge. This behav-
ior stems from the strong hole-state mixing in this strain
configuration as inferred from the inset of Fig. 6(d). This
mixing increases for states away from the Γ point so that
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high-energy photons can involve optical transitions with
both types of holes, where each contributes oppositely to
the circular polarization degree. This underlying physics
explains the polarization drop in the high-energy edge
tail of the LA peak in Fig. 6(d).

Figure 6 also shows a weak peak in the high-energy
part of each of the four spectra. This peak is governed
by TA phonon-assisted optical transitions and its circular
polarization degree is similar to that of the LA peak. As
mentioned in Sec. II A, both LA and TA spectral features
are governed by conduction-band intermediate states in
the vicinity of Γ−7 .

We conclude the discussion of the strained-Ge spectra
with analysis of the TO peak. The numerically calcu-
lated circular polarization degrees for [111]-biaxial strain
configurations are in agreement with the analytical pic-
ture: The polarization values in Figs. 6(c) and (d) are
PTO ≈ −21% and PTO ≈ 50% in accord with the pre-
dicted respective results of − 9

43 and 1
2 shown in Table III.

We note here that according to the analytical picture,
the circular polarization degree should follow the rule
− 1

5 → 1
2 ⇒ 0 with increasing the amplitude of the ten-

sile strain (Table III). However, since the split-off band
in Ge is relatively well separated from the top of the
valence band, the polarization does not vanishes for 1%
tensile strain (i.e., the − 1

5 → 1
2 side of the selection rule

is relevant).
When applying [001]-biaxial strain in Ge, the agree-

ment between the analytical and numerical pictures is
less successful for TO phonon-assisted optical transi-
tions. The polarization values in Figs. 6(a) and (b) are
PTO ≈ −57% and PTO ≈ 10% whereas the predicted
respective results are − 3

4 and 1
6 (Table III). These differ-

ences are attributed to the involvement of Γ−7 intermedi-
ate states which are no longer symmetry-forbidden. We
can understand this behavior from the transformation
properties of the basis function, (2z − x − y)/

√
6, that

represents the L-point TO phonons (Table II). Without
strain, the matrix element of the electron-phonon inter-
action between L+

6 and Γ−7 states vanishes because of the
opposite contributions of the 2z and x + y components.
When applying [001]-biaxial strain, the z component is
no longer equivalent to the x and y components, and the
transition amplitude via Γ−7 becomes proportional to the
strain amplitude. This transition path has a contribution
similar to that of the LA phonon-assisted optical transi-
tion (50%), leading to a diminished circular polarization
degree compared with the zeroth-order predicted value
of −75% (−16.6%) in the compressive (tensile) case.

D. Spin-Dependent Luminescence of Strained Si

We repeat the analysis for the case of biaxially-strained
Si. In the tensile configuration, we employ a stress level
of 1% which is accessible by growing a Si layer on a SiGe
substrate. In the compressive configuration, on the other
hand, there are limited substrate possibilities. Here we
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FIG. 7: (color online) Calculated polarized spectra of
biaxially-strained silicon at 20 K. The layout is similar to
that of Fig. 6. The red and blue curves overlap in (b).

employ a strain level of −0.37% which is accessible by
growing Si on a ZnS substrate.48

Figure 7 shows the simulated spectra using the same
layout of Fig. 6. There are two spectral peaks in each
of the four strain configurations: a weak TA peak and a
dominant ‘TO’ peak that also involves a small contribu-
tion from LO phonon-assisted optical transitions. In the
compressive configurations shown in Figs. 7(a) and (c),
the circular polarization degrees in the low-energy edge
of the peaks are around −80% and −50%, respectively.
These results are in agreement with the predicted values
of − 4

5 and − 1
2 shown in Table III. In both configura-

tions, the slightly larger polarization of the TA peak com-
pared with that of the ‘TO’ peak stems from the opposite
sign contributions of the nearly degenerate TO and LO
phonon-assisted optical transitions.9 Figures 7(a) and (c)
also show that the circular polarization degree drops sig-
nificantly in the high-energy edges of the spectral peaks.
In silicon, optical transitions that correspond to these
spectral regions involve holes that are strongly suscepti-
ble to state mixing induced by the nearby split-off band.

In the biaxial tensile strain configurations shown in
Figs. 7(b) and (d), the circular polarization degree is
nearly zero across the entire spectral range. The zero-
polarization is robust in the [001]-tensile configuration
[Fig. 7(b)] since the electrons populate the longitudinal
valleys with respect to the strain symmetry axis. Con-
sistent with the analytical picture whose results are sum-
marized in Table III, TA and TO phonon-assisted optical
transitions from longitudinal valleys lead to zero polar-
ization. When applying a [111]-biaxial tensile strain, on
the other hand, the energy degeneracy in the conduction
band is not lifted and all six valleys are equally popu-
lated. In this configuration [Fig. 7(d)], the circular po-
larization degree fluctuates around a zero value because
of the hole-state mixing in the valence band. According
to the analytical picture, the circular polarization degree
follows the rule − 1

5 → 1
4 → 0 with increasing the strain

amplitude (Table III). The proximity of the split-off band
in Si is such that the polarization nearly vanishes for 1%



11

tensile strain (i.e., the 1
4 → 0 side of the selection rule

is relevant). This behavior explains the 5% circular po-
larization degree in the low-energy edges of the spectral
peaks in Fig. 7(d).

E. Spin-Polarized Luminescence from relaxed
Si1−xGex alloys

Depending on the mole fractions of Si and Ge, the
conduction-band edge in Si1−xGex can be at the L point
or around 85% along the ∆ axis. The critical value of x
is around 0.83,49,50 at which the L valleys and ∆ valleys
are energy degenerate. For smaller (larger) x values, the
polarized luminescence of the alloy is expected to exhibit
Si (Ge)-like behavior.

Numerical simulations of the spin-dependent lumines-
cence from relaxed Si1−xGex is based on the previous
procedures for Si and Ge. To obtain the band structure
and electronic states, the pseudopotential Hamiltonian
matrices of Si and Ge are linearly combined and solved.
Our calculation shows a critical value at xc ∼ 0.8325. To
obtain the phonon dispersion curve and atom displace-
ment vectors of the alloy, the dynamical matrices of Si
and Ge are also linearly combined.

Figure 8 shows the simulated circularly-polarized lu-
minescence due to optical transitions of spin-up electrons
from four compositions of Si1−xGex including the criti-
cal composition. As before, the simulated temperature
is 20 K and the Fermi level is positioned in the top edge
of the valence band. The four spectra are plotted on a
single axis to demonstrate the red shift with increasing
the Ge content in the alloy. A breaking at the energy
axis between 0.89 and 0.99 eV indicates that such shift-
ing is much slower when x < xc than it is when x > xc.
This behavior agrees with the knowledge that when x
decreases from 1 to 0, the L valleys are raised faster than
the ∆ valleys.49,50

We first discuss the Ge-like spectrum of Si.07Ge.93

(lower left part of Fig. 8). Compared with Fig. 1(c),
the most distinctive difference is the small amplitude of
the LA peak. On the other hand, the circular polariza-
tion degrees of the peaks in the spectrum of Si.07Ge.93

follow the selection rules of bulk Ge (Fig. 2). The reason
is that spin-dependent selection rules depend mostly on
symmetries of the wavefunctions, whereas the amplitude
of optical transitions is susceptible to the changes in the
band structure. The relatively small amplitude of the
LA peak is due to the increased energy gap between the
L+

6 and Γ−7 valleys [larger denominator value in Eq. (1)].
With reducing the Ge fraction in the alloy, this energy
gap increases due to a faster shift toward higher energies
of the Γ7 conduction-band valley compared with the L
and X valleys.

The crossing from Ge-type luminescence to Si-type lu-
minescence in Si1−xGex alloys takes place at relatively
high mole fraction of Ge. The upper right part of Fig. 8
shows that the luminescence from Si0.42Ge0.58 is already
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FIG. 8: Numerical calculation of the polarized luminescence
spectra of four Si1−xGex alloys at T=20 K. Relevant phonons
are indicated next to the spectra peaks, with their origin of Si
(∆ phonons) or Ge (L phonons). Inset: Magnification of the
TA peak for Si0.22Ge0.78. The crossing of σ+ and σ− is due to
higher order effects of optical transitions via Γ−7 intermediate
states (see text).

Si-like in nature (other than an obvious red shift in en-
ergy). The circular polarization degrees of the TO and
TA peaks in this simulated spectrum are around −20%
as expected from the intensity ratio of σ+ :σ−= 2 : 3 for
these type of optical transitions in silicon.9 However, the
Si-like behavior is gradually modified if we keep on in-
creasing the mole fraction of Ge toward xc (in spite of the
fact that electrons are still populated in ∆ valleys). As
an example, Fig. 8 also shows the polarized luminescence
spectrum from Si0.22Ge0.78. The inset shows the unique
behavior of the TA peak where the σ+ and σ− intensities
are crossed around 1.023 eV. Here, the polarization is
governed by the intensity ratio σ+ :σ−= 2 : 3 in the low-
energy edge, while it decreases to zero and eventually flips
sign in the high-energy edge. This behavior is explained
by the effect of intermediate states in the vicinity of Γ−7 .
Using a k · p expansion to describe these states, we can
incorporate small valence-band components with ampli-
tudes proportional to the ratio between k and the direct
energy band-gap.51 These components enable transitions
with TA and TO phonons via intermediate states around
Γ−7 . The resulting intensity ratio of σ+ :σ−= 3 : 1 com-
petes with the previous 2 : 3 ratio and even overcomes
it when the energy of the Γ−7 valley is low enough (by
increasing x).

Lastly we study the luminescence of the critical al-
loy (xc ∼ 0.8325 in our simulation), where electrons
are distributed in the degenerate L and ∆ valleys. Fig-
ure 8 shows that this luminescence is dominated by TO
phonon-assisted optical transitions whose circular polar-
ization degree is -20% in agreement with the derived in-
tensity ratio of σ+ : σ− = 2 : 3 for both Si and Ge. The
luminescence also shows weak LA and TA peaks with
positive circular polarization degrees of PLA ≈ 30% and
PTA ≈ 17%. PLA is lower than the theoretical value of
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50% due to the overlap of the LA peak with the tail of the
dominant but oppositely-polarized TO peak. The small
amplitude of the LA peak, compared with pure Ge, is
attributed to a significant larger energy gap between the
L+

6 and Γ−7 valleys. PTA is a trade-off of the two com-
peting effects we previously mentioned for the TA peak
in Si0.22Ge0.78.

V. SUMMARY

We have presented a comprehensive spin-dependent
theory of phonon-assisted optical transitions in Si, Ge
and SiGe semiconductors. The effects of [001] and
[111] biaxial strains on the optical properties are stud-
ied for both compressive and tensile configurations. The
changes of the circular polarization degrees from un-
strained to strained-crystal values are summarized in Ta-
ble III. The concise information presented in this ta-
ble together with the numerically calculated spectra pre-
sented in Figs. 6-8 will be effective in interpretation of
experiments that study the spin polarization of electrons
from optical transitions in these indirect band-gap semi-
conductors.

The results of our analysis also elucidate two impor-
tant aspects that complement the analytical picture pre-
sented in Table III. First, the proximity between the
split-off band and the top-edge of the valence band in sil-
icon leads to significant mixing between hole states away

from the zone center. Consequently, the circular polar-
ization degree drops rapidly from the maximal attainable
value in the low-energy tail of the spectral peak to nearly
zero in its high-energy tail. In addition, the significant
hole-state mixing leads to quenching of the circular polar-
ization degree when applying a large [111] biaxial tensile
strain in silicon. Second, we have identified and quanti-
fied the important effect of virtual transitions with the
Γ−7 intermediate states. To a large extent, changes in the
circular polarization degrees of different Si1−xGex alloys
are caused by the fast energy shift of the Γ7 conduction-
band valley when varying the alloy composition. Symme-
try breaking by strain also leads to changes in the circular
polarization degrees by enabling virtual transitions with
the Γ−7 intermediate states that are otherwise forbidden.

This work is supported by NSF Contract No. ECCS-
1231570 and by DTRA Contract No. HDTRA1-13-1-
0013.

Appendix A: Strain-dependent Luttinger-Kohn
Hamiltonian

To model the hole-state mixing as well as the energy
shifts and splitting in the valence band, we render a
6×6 Luttinger-Kohn Hamiltonian.52 When incorporat-
ing strain, this model is also known as the Bir-Pikus
Hamiltonian.53 The zone-center basis functions of the va-
lence band are chosen in the order of

{
X+iY√

2
↑, X+iY√

6
↓− 2Z√

6
↑, −X−iY√

6
↑− 2Z√

6
↓, −X−iY√

2
↓, −X+iY√

3
↓− Z√

3
↑, −X−iY√

3
↑+

Z√
3
↓
}
. (A1)

Using this basis, the Hamiltonian matrix reads

HLK = −



P +Q −S R 0 − S√
2

√
2R

−S∗ P −Q 0 R −
√

2Q
√

3
2S

R∗ 0 P −Q S
√

3
2S
∗ √

2Q

0 R∗ S∗ P +Q −
√

2R∗ − S∗
√

2

− S∗
√

2
−
√

2Q
√

3
2S −

√
2R P + ∆SO 0

√
2R∗

√
3
2S
∗ √

2Q − S√
2

0 P + ∆SO


, (A2)

where ∆SO is the split-off energy and the other param-
eters include wavevector components (ki) and strain-

tensor components (εij),

P =
~2

2m0
γ1(k2

x + k2
y + k2

z)− av(εxx + εyy + εzz),

Q =
~2

2m0
γ2(k2

x + k2
y − 2k2

z)− b

2
(εxx + εyy − 2εzz),

R =
~2

2m0

√
3[−γ2(k2

x − k2
y) + 2iγ3kxky],

+

√
3

2
b(εxx − εyy)− idεxy,

S =
~2

2m0
2
√

3γ3(kx − iky)kz − d(εxz − iεyz). (A3)
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{γ1, γ2, γ3} are the Luttinger parameters, and av is the
volume deformation potential giving rise to a uniform
strain-induced energy shift of the valence bands. b and
d are the shear deformation potentials giving rise to the
energy splitting in the top of the valence band when ap-
plying [001] and [111] strain, respectively. The analysis
of the circular polarization degree, discussed in the main
text, is almost independent of the values of these well-
known empirical parameters. In the infinitesimal strain
picture (εij → 0), the only useful information for de-
riving the selection rules is that the shear deformation
potentials (b and d) are negative in Si and Ge. In the
finite strain picture, we also consider the proximity of
the split-off valence band in Si (∆SO = 44 meV). This
proximity leads to a measurable variation in the circu-
lar polarization degree with a moderate increase of the
photon energy.

Following the discussion in the main text, the solution
of the Hamiltonian in the zone-center (k=0) is sufficient
in order to derive the strain-dependent optical selection
rules. Below, we present the results for the biaxial strain
configurations studied in this paper.

[001] biaxial strain

This configuration is found when thin layers are grown
on lattice-mismatched [001] substrates. The strain tensor
is diagonal with components,

εxx = εyy = ε‖, εzz = −2c12

c11
ε‖,

εxy = εyz = εzx = 0, (A4)

where ε‖ was defined in Eq. (6), and cij are the elastic
stiffness constants with values provided after Eq. (13) for
Si and after Eq. (23) for Ge. The solution of Eq. (A2)
for zone-center states is simple and can be compactly
expressed by defining the constants,

M001
± ≡ bεz+∆SO±

√
9b2ε2z+2bεz∆SO+∆2

SO, (A5)

where εz = εzz− 1
2 (εxx+ εyy). Using these constants, the

zone-center energies are

E1 = av(εxx + εyy + εzz)− bεz, (A6)

E2 = av(εxx + εyy + εzz) + bεz −
1

2
M−001, (A7)

E3 = av(εxx + εyy + εzz) + bεz −
1

2
M+

001. (A8)

Recalling that b is negative in both Si and Ge, the energy
of the topmost band is E1 in biaxial compressive strain
(ε‖ < 0) and E2 in biaxial tensile strain (ε‖ > 0). Apart
from the mutual energy shift, the left-hand side of Fig. 5
shows the relative arrangement of E1, E2 and E3 in the
compressive configuration.

The circular polarization degree of the luminescence is
governed by optical transitions with holes of the topmost

band (ground state). In the compressive configuration,
the topmost zone-center eigenvectors are from heavy-hole
states,

V 001
g,⇑ (ε‖ < 0) = [1, 0, 0, 0, 0, 0]

T
,

V 001
g,⇓ (ε‖ < 0) = [0, 0, 0, 1, 0, 0]

T
. (A9)

In the tensile configuration, the topmost zone-center
eigenvectors are a mixture of light holes and split-off
holes,

V 001
g,⇑ (ε‖ > 0) =

1

N

[
0, 0,

M+
001

2
√

2
, 0, 0,−bεz

]T
,

V 001
g,⇓ (ε‖ > 0) =

1

N

[
0,
M+

001

2
√

2
, 0, 0,−bεz, 0

]T
. (A10)

N=

√
1
8M

+
001

2
+ b2ε2z is a normalization factor. The com-

ponent of the split-off holes is proportional to the strain
amplitude. In the case of infinitesimal strain, we assign
M+

001/N =
√

8 and εz = 0, and get that the eigenvec-
tors are from pure light-hole states. Using the expansion
in Eq. (4), we find the coefficients from which we derive
the selection rules. For example, the coefficients of the
spin-up state are

aX = − 1√
2
, aY = − i√

2
,

aZ = bX = bY = bZ = 0, (A11)

in the [001]-compressive configuration, and

aX =
1

4
√

3

M+
001

N
− 1√

3

bεz
N
,

aY = − i

4
√

3

M+
001

N
+

i√
3

bεz
N
,

bZ =
1

2
√

3

M+
001

N
+

1√
3

bεz
N
,

aZ = bX = bY = 0, (A12)

in the [001]-tensile configuration.

[111] biaxial strain

This configuration is found when thin layers are grown
on lattice-mismatched [111] substrates. The components
of the strain tensor are

εxx = εyy = εzz =
4c44

c11 + 2c12 + 4c44
ε‖,

εxy = εyz = εzx = − c11 + 2c12

c11 + 2c12 + 4c44
ε‖. (A13)

The solution of Eq. (A2) for zone-center states can be
compactly expressed by defining the constants

M±111 = dεo+∆SO±
√

9d2ε2o+2dεo∆SO+∆2
SO, (A14)
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where εo = (εxy + εyz + εzx)/
√

3. Using these constants,
the zone-center energies are

E1 = av(εxx + εyy + εzz)− dεo, (A15)

E2 = av(εxx + εyy + εzz) + dεo −
1

2
M−111, (A16)

E3 = av(εxx + εyy + εzz) + dεo −
1

2
M+

111. (A17)

Recalling that d is negative in both Si and Ge, the energy
of the topmost band is E1 in biaxial compressive strain
(εo < 0) and E2 in biaxial tensile strain (εo > 0). Apart
from the mutual energy shift, the right-hand side of Fig. 5
shows the relative arrangement of E1, E2 and E3 in the
compressive configuration.

The order of the two-topmost bands is set by the sign
of ε‖ where we recall that d is negative in both Si and
Ge. Apart from the mutual energy shift, 3avεd, this in-
formation is shown in the right-hand side of Fig. 5 for
the compressive configuration (ε‖ < 0).

The circular polarization degree of the luminescence is
governed by optical transitions with holes of the topmost
band (ground state). In the compressive configuration,
the topmost zone-center eigenvectors are a mixture of
heavy and light holes,

V 111
g,⇑ (ε‖ < 0) =

[
−1 + i√

6
,− i√

2
, 0,

1√
6
, 0, 0

]T
,

V 111
g,⇓ (ε‖ < 0) =

[
1√
6
, 0,

i√
2
,−1− i√

6
, 0, 0

]T
. (A18)

In the tensile configuration, the mixture is between all
species of holes,

V 111
g,⇑ (ε‖ > 0) =

1

N

[
i

2
√

6
M+

111,
1− i
4
√

2
M+

111, 0,

−1 + i

4
√

6
M+

111, 0, dεo

]T
,

V 111
g,⇓ (ε‖ > 0) =

1

N

[
−1− i

4
√

6
M+

111, 0,
1 + i

4
√

2
M+

111,

− i

2
√

6
M+

111, dεo, 0

]T
, (A19)

where the normalization factor is N =

√
1
8M

+
111

2
+ d2ε2o.

Due to the off-diagonal nature of the strain-tensor one
cannot associate the ground states with pure ±3/2 or
±1/2 magnetic quantum numbers. It is true even when a

vanishingly small strain is applied [assign M+
111/N =

√
8

and εo = 0].
In the infinitesimal strain picture we can still classify

the topmost band by its effective mass: HH in the [111]-
compressive configuration and LH in the [111]-tensile
configuration. To better understand the spin-dependent
selection rules of these bands, it is convenient to make
use of the angular-momentum eigenstates of J[111] = J·n,
where J is the vector of spin-3/2 angular momentum ma-

trices and n = (x̂+ ŷ+ ẑ)
√

3. From the four eigenstates,

{|± 3
2 〉111, |± 1

2 〉111}, we get the following information when
a vanishingly small strain is applied. The composition of
the spin-degenerate ground states is from J[111] = + 3

2

and J[111] = + 1
2 components in the [111]-compressive

configuration (heavy holes), and from J[111] = − 3
2 and

J[111] = − 1
2 components in the [111]-tensile configura-

tion (light holes). We make use of this information when
deriving the selection rules for optical transitions with
spin-up electrons (S[111] = 1

2 in this configuration).
Finally, using the expansion in Eq. (4), we find the

coefficients from which we derive the selection rules. For
example, the coefficients of the spin-up state are

aX =
1 + i

2
√

3
, aY =

−1 + i

2
√

3
, aZ = − i√

3
,

bX =
1 + i

2
√

3
, bY =

−1− i
2
√

3
, bZ = 0, (A20)

for [111]-compressive strain, and

aX = − i

4
√

3

M+
111

N
+

1√
3

dεo
N
, bX = − 1

4
√

3

M+
111

N
,

aY =
1

4
√

3

M+
111

N
− i√

3

dεo
N
, bY = − 1

4
√

3

M+
111

N
,

aZ =
1− i
4
√

3

M+
111

N
, bZ = − 1√

3

dεo
N
, (A21)

for [111]-tensile strain.

Appendix B: The effect of strain on the phonon
dispersion

As explained in the main text, changes to the mag-
nitude, position and polarizations of the spectral peaks
are mainly caused by the strain-induced degeneracy lift-
ing and hole-state mixing.31–35 Changes in the phonon
dispersion have a lesser effect. In the strained crys-
tal, the bond length and bond angle between atoms
change.54,55 However, as long as the strain levels are not
very large, one can still assume an harmonic oscillation
of atoms about their new equilibrium position. We have
generalized the adiabatic bond-charge model to account
for strain.43 Figure 9 shows the phonon dispersion of
biaxially-strained Ge in the [111] compressive configura-
tion. From inspection of the lifted energy degeneracies,
one can infer that the resulting broadening of the TA
and TO spectral peaks in the luminescence of strained
crystals will be negligible. Similarly, the expected energy
shift of all spectral peaks is minute.

Appendix C: Optical Orientation of Si and Ge

Optical orientation is the inverse process of circularly-
polarized luminescence. It involves the transfer of angu-
lar momentum from a circularly polarized light an elec-
tronic spin system. Here we focus on the phonon-assisted
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FIG. 9: Phonon dispersion along inequivalent Λ symmetry
axes in Ge when applying [111] biaxial compressive strain of
1%. The two-fold degeneracy of transverse modes is lifted if
the phonon wavevector and strain directions are nonparallel.

optical transitions across the indirect band-gap of un-
strained Si and Ge. We will not cover the absorption
in the direct-gap spectral range which for the case of
Ge is very effective in generating spin polarized electrons
(due to the energy proximity between the Γ7 and L con-
duction valleys).56–61 This energy proximity was recently
rendered to achieve lasing in heavily doped Ge diodes62.

The spin polarization of photoexcited electrons is stud-
ied following absorption of a circularly-polarized light
that propagates along the +z axis. To interpret the sim-
ulated spin-polarization, we make use of Eq. (1) and the
spin-dependent selection rules in Fig. 2. Using similar
numerical procedure to that of Sec. IV, we calculate the
spin-resolved absorption coefficient α following light ex-
citation with σ+ polarization. α depends on the density
of states in the conduction and valence bands. In bulk
materials it shows quadratic dependence on the photon
energy. In Fig. 10 we show the calculated value of α1/2

versus the photon energy for Si and Ge.
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FIG. 10: Numerical calculation of α1/2 for spin-up and spin-
down electrons by absorbing σ+ light in Ge (a) and Si (b).

Note that in Si we resolve the contributions for α1/2 from
transverse and longitudinal valleys where the curves are ver-
tically shifted for better illustration. The dashed green lines
denote the spin polarization of electrons from all valleys.

At low temperatures, the interband absorption edge of
Ge amounts to the sum of the indirect band-gap energy
and the energy of the L -point TA phonon [Fig. 10(a)].
Using the selection rule of this transition, the ratio be-
tween the excited spin-up and spin-down electrons should
be 1 : 3, leading to spin polarization around −50%. The
onset of LA phonon-assisted optical transitions leads to
enhanced absorption shown by the larger-slope region in
Fig. 10(a). Since the LA and TA selection rules are iden-
tical, the injected spin polarization of electrons does not
change appreciably. The onset of TO phonon-assisted
optical transitions at even higher photon energies leads
to smaller spin polarization because of the opposite se-
lection rule (3 : 2 versus 1 : 3). Finally, when the photon
energy approaches the direct-gap energy (but below its
absorption edge), the LA phonon-assisted optical tran-
sitions intensify and the spin polarization of electrons
increases.

Figure 10(b) shows the spin-resolved and valley-
resolved value of α1/2 for Si. The absorption edge
amounts to the sum of the indirect band-gap energy and
the energy of TA phonons along the ∆-axis near the zone-
edge X point. The spin polarization of electrons from
all valleys is around 20% at the absorption edge. The
onset of the dominant TO phonon-assisted optical tran-
sitions leads to enhanced absorption. Most importantly,
the spectral window for efficient optical spin injection in
Si is of few tens of meV because of the proximity of the
split-off band.

According to the selection rule in Fig. 2, the ratio
between spin-up and spin-down electrons excited to x
or y valleys in Si should be 2 : 1 for transverse phonon-
assisted optical transitions. This information is shown
in the low part of Fig. 10(b) where the blue solid line
(spin-up) is always higher than the red solid line (spin-
down). For electrons excited to the z valleys, the spin
polarization can only come from the relatively weak LO
phonon-assisted optical transitions for which the ratio is
1 : 3. In calculating the total spin-polarization value we
have assumed that all valleys are equally populated. The
spin-momentum correlations and momentum alignment
during excitation were neglected.3,63 These effects may
introduce quantitative but not qualitative changes (due
to valley repopulation).

∗ Electronic address: pengke.li@rochester.edu 1 Optical Orientation, edited by F. Meier and B. P. Za-
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25 S. Bednarek and U. Rössler, Phys. Rev. Lett. 48, 1296

(1982).
26 J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556

(1976).
27 W. Weber, Phys. Rev. B 15, 4789 (1977).
28 The symmetry notations in Fig. 1(a) are of double-group

irreducible representations with the exception of L−3 in the
zone-edge of the valence band. The reason for using single-
group irreducible representation in this case becomes clear
in Sec. II B when we derive the selection rules of Ge.

29 J. R. Haynes, M. Lax, and W. F. Flood, J. Phys. Chem.
Solids 8, 392 (1959).

30 Selection rules relevant for experiments of unstrained Si
and Ge are given by the summed contributions from all
conduction valleys and from both types of holes. For exam-

ple, in unstrained Si the sum of components in the upper
panel of Fig. 2 leads to the selection rules in Fig. 1(c) of
Ref. [9].

31 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
32 J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev.

138, A225 (1965).
33 L. D. Laude, F. H. Pollak, and M. Cardona, Phys. Rev. B

3, 2623 (1971).
34 M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234

(1996).
35 Y. Sun, S. E. Thompson, and T. Nishida, J. Appl. Phys.

101, 104503 (2007).
36 J. Welser, J. L. Hoyt, and J. F. Gibbons, IEEE Electron

Device Lett. 15, 100 (1994).
37 K. Rim, J. L. Hoyt, and J. F. Gibbson, IEEE Trans. Elec-

tron Devices 47, 1406 (2000).
38 M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie,

and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).
39 J. L. Cheng, M. W. Wu, and J. Fabian, Phys. Rev. Lett.

104, 016601 (2010).
40 P. Li and H. Dery, Phys. Rev. Lett. 107, 107203 (2011).
41 J. Li, L. Qing, H. Dery, and I. Appelbaum, Phys. Rev.

Lett. 108, 157201 (2012).
42 M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).
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48 J. Pfeifer, É. Sz. Haraszthy, and M. Farkas-Jahnke, Thin
Solid Films 11, 71 (1972).

49 R. Braunstein, A. R. Moore, and F. Herman, Phys. Rev.
109, 695 (1958).

50 J. Weber and M. I. Alonso, Phys. Rev. B 40, 5683 (1989).
51 M. Cardona and F. H. Pollak, Phys. Rev. 142, 530 (1966).
52 S. L. Chuang, Physics of Optoelectronic Devices (Wiley,

New York, 1995).
53 G. L. Bir and G. E. Pikus, Symmetry and strain-induced ef-

fects in semiconductors, (Halsted Press, Jerusalem, 1974),
Ch. 5.

54 J. Zi, K. Zhang, and X. Xie, Phys. Rev. B 45, 9447 (1992).
55 Z. Sui and I. P. Herman, Phys. Rev. B 48, 17938 (1993).
56 M. Virgilio and G. Grosso, Phys. Rev. B 80, 205309 (2009).
57 J. Rioux and J. E. Sipe, Phys. Rev. B 81, 155215 (2010).
58 C. Guite and V. Venkataraman, Phys. Rev. Lett. 107,

166603 (2011).
59 C. Hautmann, B. Surrer, and M. Betz, Phys. Rev. B 83,

161203(R) (2011).
60 E. J. Loren, J. Rioux, C. Lange, J. E. Sipe, H. M. van

Driel, and A. L. Smirl, Phys. Rev. B 84, 214307 (2011).
61 C. Hautmann and M. Betz, Phys. Rev. B 85, 121203

(2012).
62 R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette,

M. Romagnoli, L. C. Kimerling, and J. Michel, Opt. Ex-
press 20, 11316 (2012)

63 A. V. Efanov and M. V. Entin, Phys. Stat. Sol. (B) 118,
63 (1983).


