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Using the non-commutative Kubo formula for aperiodic solids and a recently developed numerical
implementation, we study the conductivity σ and resistivity ρ tensors as functions of Fermi level EF
and temperature T, for models of strongly disordered Chern insulators. The formalism enabled us to
converge the transport coefficients at temperatures low enough to enter the quantum critical regime at
the Chern-to-trivial insulator transition. We find that the ρxx-curves at different temperatures intersect
each other at one single critical point, and that they obey a single-parameter scaling law with an
exponent close to the universally accepted value for the unitary symmetry class. However, when
compared with the established experimental facts on the plateau-insulator transition in the Integer
Quantum Hall Effect, we find a universal critical conductance σc

xx twice as large, an ellipse rather than
a semi-circle law, and absence of the Quantized Hall Insulator phase.

PACS numbers: 72.25.-b, 72.10.Fk, 73.20.Jc, 73.43.-f

I. INTRODUCTION

The criticality at the localization-delocalization transi-
tion (LDT) is believed to be universal and entirely deter-
mined by the generic symmetries of the systems (with
certain special exceptions).1 One manifestation of this
universality is a common scaling exponent ν per generic
symmetry class, describing the diverging behavior of the
localization length ξ at the mobility edge: ξ ∼ (EF−Ec

F)−ν.
This in turn leads to a temperature-scaling of the trans-
port coefficients at LDT:2

ρ(EF,T) = F
(
(EF − Ec

F)(T/T0)−κ
)
, κ = p/2ν, (1)

when combined with the concept of temperature-
induced effective size introduced by Thouless,3 and with
the single-parameter scaling hypothesis.4,5 In Eq.1, F is
a system dependent function, T0 is a reference temper-
ature, and p is the dynamical exponent for dissipation.
Besides these universal scaling laws, there are other in-
teresting universal aspects of the LDT, such as the exis-
tence of a single critical point (as opposed to a line of
critical points) for the unitary symmetry class, universal
values of the critical transport coefficients and universal
renormalization flow-diagrams of the transport coeffi-
cients with the temperature or with the system-size.

Such universal characteristics at the plateau-plateau
(PPT) and plateau-insulator (PIT) transitions in the Inte-
ger Quantum Hall Effect (IQHE) have preoccupied the
experimental6–25 and theoretical22,26–35 condensed matter
communities for decades, resulting in some of the best
experimental data and computer simulations available
for a quantum transition. With the discovery of Topo-
logical Insulators (TI),36–43 the principles of universality
will receive renewed scrutiny. The TIs have bulk ex-
tended states even in the presence of strong disorder,44

hence they are expected to display sharp LDTs. As such,
the transport measurements at the transitions could be
as clean and revealing as the ones in IQHE. The TIs can
fall in different symmetry classes45,46 and, even within

the same symmetry class, the topological materials can
be very different from one another,47,48 thus providing
the perfect laboratory to test the principles of universal-
ity. The computer simulations have already began this
process (note that these are all zero-temperature finite-
size scaling simulations).49–60 One question that received
great attention from these works is if the scaling expo-
nents of the symplectic models at the metal-to-normal
insulator and at the metal-to-topological insulator are
the same. So far, the answer seems to be affirmative.

Although there is a substantial experimental transport
data for TIs, only recently the focused was fully tuned on
the topological-to-non topological phase transition.61–63

And even these experiments need to be further refined
for the quantum criticality to be revealed. Traditionally,
the experiment was always ahead of the theoretical sim-
ulations in this domain (see Ref. 35 for a discussion), but
we strongly believe that this state of affairs will be soon
reversed by the adoption of the non-commutative geom-
etry program for aperiodic solids, initiated by Bellissard
et al in the 90’s.64–66 For example, this natural formal-
ism for treating disordered solids under magnetic fields
enabled us to develop extremely accurate, stable and ef-
ficient simulations of the zero- and finite-temperature
transport coefficients,44,67–69 to a point where qualita-
tive and quantitative agreement between experiment
and simulation was possible for PIT in IQHE.35 In this
article, we announce several predictions based on the
non-commutative Kubo formula on the quantum criti-
cality at the Chern-to-normal insulator transition. On
a broader note, we want to announce that this type of
simulations reached a level where they provide qualita-
tive and quantitative guidance for the experiments on
quantum criticality at the topological-to-non topological
phase transitions.

The search for possible Chern Insulator (CI) materials
have intensified and several theoretical studies have al-
ready singled out possible CI candidates.70–81 This and
the fact that the CIs and the IQHE liquids belong to the
same unitary symmetry class motivated us to focus ex-
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clusively on CIs in this study. For the spin-up sector of
the Kane-Mele (KM) model37 with strong disorder, we
were able to converge (i.e. eliminate any finite-size ef-
fects) the finite-temperature conductivity σ and resistiv-
ity ρ = σ−1 tensors, at temperatures low enough to enter
the quantum critical regime at the transition between a
CI and a normal insulator. We compare these results
with the known facts for the PIT in IQHE.17,19–22,24,82–85

We find that, like at PIT in IQHE, the graphs of ρxx as
function of electron density, recorded at different tem-
peratures, intersect at one single critical point, and they
collapse into a single curve after a single-parameter
rescaling. The scaling exponent κ is in good agree-
ment with what one would predict by using the univer-
sally accepted value of the finite-size scaling exponent
ν = 2.58 ± 0.03,54,86–91 and with p fixed like in our sim-
ulations (p = 1). We clearly see the expected renormal-
ization flow of σwith the temperature, but the separatix
is not a semicircle like at PIT in IQHE, but rather an el-
lipse. At the critical point, we find σxy ≈

1
2

e2

h and, quite
interestingly, σxx ≈

e2

h rather than 1
2

e2

h (to be precise, the
numerics place σxy between 0.5−0.6 e2

h at PIT50,92–96). The
main surprise was, however, the absence of the Quan-
tized Hall Insulator phase, characterized by σ = 0 but
ρxy = h

e2 .
To probe the broader applicability of our conclusions,

we have repeated the computations for the spin-up sec-
tor of the Bernevig-Hughes-Zhang (BHZ) model.39 Al-
though in this case the calculations are not converged
well enough for accurate quantitative predictions, they
already support the qualitative conclusions we reached
for the KM model: existence of a single critical point
and absence of the Quantized Hall Insulator pahse. The
critical values of the transport coefficients remain the
same. Unfortunately, the data for BHZ model display
a poorer scaling, indicating that lower temperatures are
needed. As such, the scaling exponent for this second
set of calculations is inconclusive. We plan to re-examine
the issue in future simulations with larger system-sizes,
which will enable us to further reduce the temperature
without introducing size effects.

II. THE NON-COMMUTATIVE KUBO FORMULA

The key for our simulations is the non-commutative
Kubo formula:64–66

σi j(EF,T) = −T
(
[xi,H](1/τ +LH)−1[x j,ΦFD(H)]

)
, (2)

where T represents the trace over volume, H is the dis-
ordered Hamiltonian, x is the position operator, τ is the
relaxation time for dissipation, ΦFD is the Fermi-Dirac
distribution for a given T and EF, and LH is the Liouvil-
lian acting on the observables (i.e. operators):

LHA = i[H,A]. (3)

In real condensed matter systems: τ ∼ T−p, where p is
the dynamical exponent appearing in Eq. 1.

As usual, the conductivity tensor σ jk of Eq. 2 provides
the link between the charge current density and the ho-
mogeneous static electric field E that drives the system:

J j =

d∑
k=1

σ jkEk. (4)

Here, J is the time average of the expected value of the
current density operator. The state of the system evolves
according to the dynamics induced by H − eEx, and
by random (in time), instantaneous electron scattering
events. Realistic electron-electron and electron-phonon
scattering matrices can be consider, however, Eq. 2 as-
sumes the relaxation time approximation.

Extended discussions of the physical assumptions, of
the derivation and of the non-commutative formalism,
together with convergence tests and applications to the
disordered Hofstadter model can be found in Ref. 68.
Another complete discussion of the Kubo formalism was
given in this very journal (see Ref. 69), together with ap-
plications to a disordered model of a quantum spin-Hall
insulator. For these reasons, here we only discuss the
significance of Eq. 2 and its relation with other works.
Eq. 2 represents the thermodynamic limit of the formal
Kubo formulas written in terms of the eigenfunctions
and eigenvalues of the equilibrium Hamiltonian, found
in the classical solid state textbooks (see for example
Eq. 3.385 and its finite-temperature version in Ref 97).
Finite-volume versions of the Kubo formula for aperi-
odic systems can be also derived using the traditional
quantum master equation.98 In this type of analyses,
the Kubo formula is formulated as the infinite-volume
limit of the finite-volume expressions. The existence of
this limit for aperiodic systems is virtually impossible to
prove without the non-commutative formalism. What
is special about the latter is that it enables one to work
directly in the thermodynamic limit. For example, the
trace per volume is rewritten using the Birkhoff ergodic
theorem, and the Liouvillian can be defined as a nor-
mal operator on a well defined Hilbert space (hence a
spectral decomposition exists for it).

At the practical level, an explicit Kubo formula for
infinite volume is important because it enables one to
analyze how fast are the various finite-volume approx-
imations converging in the thermodynamic limit. In
particular, it enabled us to develop a canonical finite-
volume approximation that converges exponentially fast
in the thermodynamic limit, a fact that was established
with mathematical rigor.68 This canonical finite-volume
approximation and its numerical implementation have
been extensively discussed in Refs. 68 and 69. Here we
closely follow these two references.



3

D
en

si
ty

 o
f S

ta
te

s

(a)

C �= 0C = 0

1-0.5

σxy

σxx (b)

0

C = 0

Localized

D
elocalized

D
elocalized

Localized

Localized

Energy
Se

pa
ra

tri
x

FIG. 1. (Color online) (a) The spectrum of the disordered Chern
insulator is localized everywhere except for two thin energy re-
gions. (b) The expected flow of the transport coefficients when
the temperature is lowered to zero. Different flow lines corre-
spond to different Fermi levels. The dashed line represents the
separatrix, which is expected to satisfy a semi-circle law.

III. QUANTUM CRITICALITY IN THE SPIN-UP
SECTOR OF THE KANE-MELE MODEL

In the absence of Rashba interaction, the spin sectors
decouples and the KM model reduces to a disconnected
sum of two Chern insulators. The Hamiltonian in the
spin-up sector (tuned in the middle of the CI topological
phase) takes the form:

H0 =
∑
〈nm〉

|n〉〈m| + 0.6i
∑
〈〈nm〉〉

τn

(
|n〉〈m| − |m〉〈n|

)
. (5)

Here, τn represents the isospin of the site n of the hon-
eycomb lattice, and 〈〉/〈〈〉〉 symbolize first/second near-
est neighbors. We add the random potential Vω =
W

∑
n ωn|n〉〈n| to H0, where the ω’s are independent ran-

dom variables uniformly distributed in [− 1
2 ,

1
2 ]. We fix

W = 4 (= 2× the clean insulating gap), in order to achieve
the strong disorder regime where the insulating (spec-
tral) gap is closed and only a mobility gap remains. The
simulations are performed on a finite-size lattice con-
taining 80 × 80 unit cells. By repeating the simulations
with different lattice sizes, we concluded that the effects
due the finite-size of the simulation box are practically
negligible for the temperatures considered in the present
study (the effective Thouless length3 is smaller than the
simulation box).

In the above conditions, all the quantum states of
the model are localized, except for the states in two
narrow energy regions separating the CI from the nor-
mal insulator (see Fig. 1a). The existence of such de-
localized quantum states can be demonstrated44 with
mathematical rigor using the theory of non-commutative
Chern number,64 while numerically, it has been demon-
strated using recursive Green’s function and transfer ma-
trix calculations,51,74,99,100 level statistics analysis,44,67,101

simulations of the edge currents and computations of
the edge conductance.102–104 Near the transitions, the
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FIG. 2. (Color online) σ as function of EF at kT = 1/τ = 0.01,
0.02, 0.03, 0.04, 0.06, 0.08, simulated on an 80 × 80 lattice. An
average over many disorder configurations was considered (as
many as 67 for T = 0.01 and 24 for T = 0.08). The marks posted
on the graph give σ at the critical point. The inset shows the
flow of our data in the (σxy, σxx) plane as T → 0. The dotted
line suggests the separatrix for the flow.

field-theoretic arguments developed by Pruisken and
collaborators105–108 for IQHE predict the T-driven flow-
diagram shown in Fig. 1(b), which was observed and
confirmed in IQHE by experiment.7,109

The simulated σ is reported in Fig. 2 as function of
Fermi level, for kT = 1/τ = 0.01, 0.02, 0.03, 0.04, 0.06
and 0.08 (hence we fix p = 1 in our simulations). In this
figure we can see an energy region where, especially for
the lower temperatures, σyx takes the quantized value of
−1, indicating that the system is in the CI phase. When
moving away from this energy region, σyx starts to con-
verge towards 0, indicating that the system enters the
normal insulator phase. The σyx-curves computed at
different temperatures intersect each other at practically
one point. Examining the data for the direct conduc-
tivity, we see σxx decreasing as T → 0 for most part of
the energy spectrum, a hallmark of the insulating phase,
with the exception of two distinct energy regions where
σxx increases with the temperature. These energy regions
appear exactly where σyx switches between its quantized
values and, as such, they must harbor extended quantum
states.64 The energy regions where σxx increases with T
appear to become smaller and smaller as T is lowered,
and that the maximum value of σxx stabilizes at a finite
value (as opposed to diverging to infinity). An important
question is if these regions reduce to a point as T → 0.
A more refined analysis based on Fig. 3 shows that this
is indeed the case, and gives the critical Fermi levels
Ec

F ≈ ±1.02. The values of σ at Ec
F are marked in Fig. 2

and are σc
xx ≈

e2

h and σc
xy ≈

1
2

e2

h . These critical values for
the conductance are reproduced when the simulations
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FIG. 3. (Color online) (a) ρxx (and ρxy in the inset) as function of
EF at kT = 0.01, 0.02, 0.03, 0.04, 0.06 and 0.08. (b) ρxx as function
of temperature for various EF values. The arrow indicates the
transition from CI to the normal insulator.

are repeated for the spin-up sector of the BHZ model.
Furthermore, the PIT is known to exhibit a universal
critical conductance,18 though with a different value, so
we are led to conjecture that the Chern-to-normal insula-
tor transition also exhibits a universal conductance, with
the universal values stated above.

When the data points from the main plot in Fig. 2
are placed in the (σxy, σxx) plane, we obtain the flow-
diagram shown in the inset of Fig. 2. The separatrix for
this flow, marked with the dotted line, has the shape
of a semi-ellipse with the semi-axes 1

2
e2

h and e2

h . At PIT
in the IQHE, the separatrix strictly obeys the semicircle
law: σ2

xx + (σxy − 0.5e2/h)2 = (0.5e2/h)219. Let us point out
that the values σxy > 0.5 occur when EF is located inside
the old clean insulating gap, while the values σxy < 0.5
occur when EF is located in the high-density spectrum
resulted from the localization of the clean energy bands.
As such, the flow (as T → 0) starts from the inside (out-
side) of the ellipse and moves towards the separatrix for
σxy > 0.5 (σxy < 0.5), a markedly different behavior when
compared with PIT.

The existence of a unique critical point (as opposed to
a line of critical points) at the Chern-to-normal transition
can be established with great confidence by examining
the resistivity tensor, plotted in Fig. 3. From the expres-
sion ρxx = σxx/(σ2

xx + σ2
xy), it follows that ρxx → 0 inside

the CI phase, whileρxx →∞ inside the normal insulating
phase, when T → 0. As a consequence, the ρxx-curves
at different T must cross each other, very much like the
σyx-curves do in Fig. 2. Since the plots are symmetric rel-
ative to the zero energy, we can focus only on the positive
energies. Fig. 3(a) strongly suggests that all ρxx-curves
cross each other at a single point, exactly how it was
observed at PIT. To accurately pin-point this crossing
point, we replotted ρxx in Fig. 3(b), this time as function

! x
x (

h/
e2 )

EF EF

before rescaling after rescaling

FIG. 4. (Color online) ρxx at different temperatures collapses
onto a single curve after the single-parameter rescaling: EF →

Ec
F + (EF − Ec

F)(T/T0)−κ, with Ec
F = 1.017, T0 = 0.04 and κ = 0.21.

of temperature, for each positive EF-value appearing in
Fig. 3(a). The flow of ρxx with T curves down at lower
EF’s and it curves up at higher EF’s. There is a clear
separatrix between these two distinct tendencies, very
much like in the experimental data on the PI transition in
Ref. 110, or on the metal-insulator transition in Ref. 111.
This enables us to accurately identify the critical point:
Ec

F = ±1.017, and then to determine the value of the con-
ductivity tensor at the critical point: σc

xy = −0.53× e2

h and
σc

xx = 1.09 × e2

h .
The inset in Fig. 3(a) reports ρyx = σxy/(σ2

xx + σ2
xy) as

function of EF, which decreases from 1 to 0 almost with
the same rate as σyx. As one can see, there is absolutely
no tendency for ρxy to stay quantized at h

e2 through the
transition or further into the normal insulating phase.
Such quantization of ρxy would have been incompatible
with the critical values of σ determined above. It is
also known that a quantized ρxy is equivalent with the
semi-circle law,20 but the separatrix shown in the inset of
Fig. 2 has an elliptical shape quite different from a semi-
circle. We want to point out that these facts are also true
for the simulations with the BHZ model. As such, we
can conclude with great confidence that the Quantized
Hall Insulator phase is absent for this system. This is in
striking contrast with the PIT in IQHE, for which we did
observed the Quantized Hall Insulating phase,35 using
same type of calculations.

We now zoom into the region around Ec
F and start the

scaling analysis. Since the scaling occur in the asymp-
totic limit T→ 0, we keep for this analysis only the low-
est four temperatures. As shown in Fig. 4, the ρxx-curves
collapse almost perfectly on top of each other after the
energy axis is rescaled as: EF → Ec

F + (EF − Ec
F)(kT/kT0)−κ

(kT0 = 0.04). The best overlap of the rescaled curves
is obtained for κ = 0.21 ± 0.01, a value that is in good
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FIG. 5. (Color online) The simulated σ for BHZ model as func-
tion of EF at kT = 1/τ = 0.01, 0.02, 0.04, 0.06, 0.08, simulated on
an 80×80 lattice. The inset shows the T-driven renormalization
flow of σ in the (σxy, σxx) plane.

agreement with k = 0.194 ± 0.2 obtained from the ex-
pression κ = p/(2ν) with the universally accepted value
ν = 2.58 ± 3, and p = 1 like in our simulations.

IV. CRITICAL REGIME IN THE SPIN-UP SECTOR OF
THE BERNEVIG-HUGHES-ZHANG MODEL

This section reports the simulations based on the non-
commutative Kubo formula, for the Chern Insulator (CI)
corresponding to the spin-up sector of the Bernevig-
Hughes-Zhang (BHZ) model (tuned in the middle of
the topological phase):39

h(k) = σx sin kx + σy sin ky + 2(1 + cos kx + cos ky)σz, (6)

where the σ′s represent the Pauli’s matrices. This model
can be represented on a 2-dimensional square-lattice
with two orbitals per site. The lattice sites are indexed by
n and the orbitals by α. In this real-space representation,
we add the random potential Vω = W

∑
n,α ωn,αc†n,αcn,α,

where c†n,α creates an electron in state α at site n, and
ω’s are independent random variables uniformly dis-
tributed in [−1/2, 1/2]. We fixed W = 5 (= 2.5 × the clean
insulating gap), to achieve the strong disorder regime
where the insulating gap is closed and only a mobility
gap remains. As in the previous section, the lattice-size
was taken to be 80 × 80 unit cells. An average over
many disorder configurations was considered for dif-
ferent temperatures, specifically: 68 configurations for
kT = 0.01, 67 for kT = 0.02 and23 for kT = 0.04, 0.06 and
0.08.

Fig. 5 reports the simulated conductivity tensor σ as
function of Fermi level EF, at various temperatures T.
The data display the same general features as seen in
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FIG. 6. (Color online) (a) ρxx for BHZ model as function of EF
at kT = 0.01, 0.02, 0.04, 0.06 and 0.08. The inset reports ρxy.
(b) ρxx as function of temperature for various EF values. The
arrow indicates the transition from CI to the normal insulator.

Fig. 2. In particular, σxy takes quantized values in cer-
tain energy regions and, in the energy region where σxy
shifts between the quantized values, σxx becomes inde-
pendent of temperature, signaling the presence of ex-
tended states. A more refined analysis based on Fig. 6
reveals again a single critical point, located at the critical
Fermi level Ec

F ≈ 0.94. The critical σ values at Ec
F were

found again to be σc
xx ≈

e2

h and σc
xy ≈

1
2

e2

h (the exact val-
ues are marked on the graph). The inset of Fig. 5 shows
the T-driven flow of σ in the (σxy, σxy) plane. While it
generally resembles the flow in Fig. 2, a closer analysis
reveals that the calculations are not well converged on
the the normal insulator side (near σxy = 0). Lower tem-
peratures will be definitely needed to obtain the correct
separatrix (which we believe it will look very similar to
that for KM model).

Fig. 6 reports the simulated resistivity tensor ρ (a) as
function of EF, at various temperatures, and (b) as func-
tion of kT, at various Fermi levels. The flow with T
in Fig. 6(b) is used to accurately determined the critical
point, whose coordinates were given above. Apart from
some structure in the curves, there are no major differ-
ences when Fig. 6 is compared with Fig. 3. The inset
reports ρxy as function of EF and, here too, there is no
trace of the Quantized Hall Insulator phase.

Fig. 7 reports the scaling analysis for the BHZ model.
Only the lowest three temperatures have been consid-
ered. The best overlap of the rescaled curves is obtained
for κ = 0.14±0.01, but as already anticipated, the overlap
is quite poor. As such, we conclude that this numerical
value is inconclusive.

When searching for a reason for the poorer conver-
gence of the results in the BHZ model, we found that,
in all our previous simulations,44,67,74,112 the band energy
states in the BHZ model localize much slower than in
the KM model. The only major qualitative difference
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FIG. 7. (Color online) Single-parameter rescaling for BHZ
model: EF → Ec

F + (EF − Ec
F)(T/T0)−κ, with Ec

F = 0.94, T0 = 0.01
and κ = 0.14.

between KM and BHZ models is that the latter has one
Dirac point, located at k = 0, while the former has two
Dirac points located at k , 0. This may indeed alter the
physics of impurity scattering processes, resulting in the
distinct behaviors that we observed in our present study.
What is certain is that lower temperatures are needed to
fully enter the critical regime in the BHZ mode, some-
thing that we defer to future investigations.

V. CONCLUSIONS

In conclusion, the simulations based on the non-
commutative Kubo formula and a recently developed
numerical implementation enabled us to converge the
transport coefficients at temperatures low enough to en-
ter the quantum critical regime at the Chern-to-normal
insulator transition, at least for the Kane-Mele model.
When compared with the available experimental facts
and our previous simulations for PIT in IQHE, the re-
sults on the two strongly disordered Chern insulator
models show similarities but also important differences.
The similarities include: the existence of a single criti-
cal point and the single-parameter scaling behavior; The
KM model, for which the full critical regime seemed to
be reached by our calculations, displays a scaling expo-
nent consistent with the universally accepted value for
the unitary class. Among the dissimilarities were the ab-
sence of the Quantized Hall Insulator phase, a universal
critical value of σc

xx ≈
e2

h instead of σc
xx ≈

1
2

e2

h , and the
violation of the semi-circle law.
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