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We study the second quantized -or guiding center- description of the torus Laughlin state. Our
main focus is the change of the guiding center degrees of freedom with the torus geometry, which
we show to be generated by a two-body operator. We demonstrate that this operator can be
used to evolve the full torus Laughlin state at given modular parameter τ from its simple (Slater-
determinant) thin torus limit, thus giving rise to a new presentation of the torus Laughlin state in
terms of its “root partition” and an exponential of a two-body operator. This operator therefore
generates in particular the adiabatic evolution between Laughlin states on regular tori and the
quasi-one-dimensional thin torus limit. We make contact with the recently introduced notion of
a “Hall viscosity” for fractional quantum Hall states, to which our two-body operator is naturally
related, and which serves as a demonstration of our method to generate the Laughlin state on the
torus.

PACS numbers: PACS

I. INTRODUCTION

The discovery of the fractional quantum Hall effect1

has led to a series of remarkable theoretical devel-
opments. Much insight has flowed from principles
that govern the construction of certain “special wave
functions”2–7 and their relation with conformal field the-
ory (CFT)3, and/or their interpretation in a compos-
ite fermion picture8. The credibility of this approach is
greatly enhanced by the construction of parent Hamilto-
nians for such wave functions, which has been possible in
many interesting cases.4,5,9–11 This very particular class
of quasi-solvable12 Hamiltonians consists of Landau level
projected ultra-local interactions, which enforce the an-
alytic properties that uniquely characterize the respec-
tive ground state. The prime example for such a parent
Hamiltonian is given by the V1-pseudopotential,9 which is
a pairwise (two-particle) projection operator onto states
of relative angular momentum 1 within the lowest Lan-
dau level (LLL). Its unique ground state at filling factor
ν = 1/3 is the Laughlin state corresponding to this filling.

Due to the Landau level projection, the pseudo-
potential Hamiltonian acts only on the “guiding center”
degrees of freedom, which exhaust the large degeneracy
within a given Landau level, and commute with the gen-
erators of inter-level transitions. (The latter are related
to the kinetic momenta of the particles, see below. For a
review of physics in a magnetic field, the reader is referred
to Ref. 13.) It is therefore beneficial to make the ac-
tion of the Hamiltonian on guiding center variables man-
ifest. This is in particular the case when the Hamiltonian
is expressed using creation/annihilation operators for a
set of eigenstates, say, of one of the two non-commuting
guiding center components, which form a basis for the
LLL. In numerics, such a second quantized “guiding cen-
ter” description of the Hamiltonian is essential to make
use of the reduced Hilbert space dimensionality owing
to the LLL projection. We illustrate this procedure for

the cylinder geometry, for reasons that will soon become
apparent. To this end, we introduce a set of LLL basis
states as described above, given by:

φn(z) = ξne−
1
2x

2

e−
1
2n

2/r2 (1)

where ξ = ez/r is an analytic function of z = x+ iy that
satisfies periodic boundary conditions in y, appropriate
for a cylinder of perimeter 2πr (using Landau gauge, A =
(0, x)). These orbitals are eigenstates of the x-component
of the guiding center with eigenvalues n/r, where, for the
time being, we set the magnetic length lB equal to 1. The
1/3-Laughlin state on the cylinder is then expressed as14

ψ1/3(z1 . . . zN ) =
∏
i<j

(ξi − ξj)3 × e− 1
2

∑
k x

2
k . (2)

With respect to the basis Eq. (1), the V1 pseudo-
potential takes on the following second quantized form
(cf, e.g., Ref. 15):

V̂1 =
∑
R

Q†RQR

QR =
∑
x

x exp(−x2/r2) cR−xcR+x

(3)

In the first line, the sum goes over both integer and half-
odd integer values of R, whereas in the second it goes
over integer (half-odd integer) if R is integer (half-odd
integer), such that labels R± x are then always integer.

The one parameter family of models (3) share many
features with one-dimensional (1D) lattice models that
arise elsewhere in solid state physics, such as transla-
tional invariance and short ranged (exponentially decay-
ing) interactions. It is thus not surprising that it has
recently been proposed to be of use in the absence of
(proper) Landau level physics, e.g., in flat band solids
both with16 and without17 non-zero Chern numbers, and
in quite general terms in Ref. 18.
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Despite the usefulness of the second quantized descrip-
tion (3) of the pseudo-potential, it would be very difficult
to solve for the zero energy eigenstates of the model in
this form, or to even know analytically that such zero
energy eigenstates exist. For this we rely on the original
first-quantized definition of the pseudo-potential V̂1, and
on the explicitly known analytic form of the Laughlin
state, Eq. (2), in terms of ordinary position variables. It
would be highly non-trivial, however, to come up with
such a first quantized language for the problem Eq. (3) if
its connection to LLL orbitals were not a priori known.
This is so because this language becomes available only
after proper embedding of the degrees of freedom associ-
ated with the operators cn, c†n in Eq. (3) into a larger
Hilbert space. In Eq. (3), no information is retained
about the kinetic momenta that determine the structure
of the Landau levels. Indeed, as Haldane has recently
shown,19 by making these kinetic momenta subject to a
different metric from that entering the interactions, one
obtains a different way to naturally embed the problem
(3) into the larger Hilbert space of square integrable func-
tions. In this setup, Eq. (3) remains unaltered, but the
resulting wave function loses the analytic properties of
Eq. (2) that make the problem tractable.19,20 Moreover,
the solid state applications mentioned initially represent
yet another way to embed the problem (3) into a larger
Hilbert space.

These considerations show that “interaction only”
models such as (3), especially ones that share the “center-
of-mass conserving” property,18 may enjoy a consider-
able range of applications, but at the same time, may
be quite hard to solve in general.21 This is chiefly due
to the fact that the Laughlin state, in its second quan-
tized/guiding center presentation, is quite a bit more
complicated than in its analytic first quantized form
Eq. (2). While no closed form seems to be known for
the amplitudes 〈0|cn1 . . . cnN |ψ1/3〉, much progress has re-
cently been made in understanding their structure for the
cylinder geometry, and for any other geometry in which
the analytic part of Laughlin’s wave function is given
by a polynomial. Indeed, for Laughlin states and many
other quantum Hall trial wave functions, these polyno-
mials have been identified as Jack polynomials, multi-
plied by Jastrow factors.22,23 This allows the amplitudes
〈0|cn1

. . . cnN |ψ1/3〉 to be determined recursively. For the
cylinder Laughlin state, this can be sketched as follows.
We consider the expansion of Eq. (2) into monomials,

ψ1/3(z1 . . . zN ) =
∑
{nk}

C{nk}
∏
k

ξnkk e−
1
2x

2
k

(4)

The product in the above equation can be interpreted as a
state with definite single particle occupation numbers, up
to a normalization. (The C{nk} have the proper (anti)-
symmetry to allow (anti)-symmetrization of the prod-
uct.) This normalization is readily read from Eq. (1).
We thus have14

|ψ1/3〉r =
∑
{nk}

e
1

2r2

∑
k n

2
kC{nk} c

†
nN . . . c

†
n1
|0〉 . (5)

The monomial coefficients do not depend on r, and are
known recursively, starting from the coefficient of the
“root configuration” c†nN . . . c

†
n1
|0〉 = |10010010010 . . . 〉

through a process known as “inward squeezing”.22,23

A remarkable aspect of Eq. (5) is that the dependence
on geometry, in this case the cylinder radius r, comes
in only through the trivial normalization factor. This
is matched by a similarly trivial r-dependence of the in-
teraction V̂1. It is quite easy to see that the condition
that the Hamiltonian Eq. (3) has a zero energy eigenstate
(which, by positive semi-definiteness, must be a ground
state), which reduces to QR|ψ1/3〉r = 0 ∀R, yields an r-
independent condition on the coefficients C{nk}. In this
way it becomes manifest that regardless of the value or
r, one is always solving the same problem, which is intu-
itively clear from the simple analytic form of the Laugh-
lin wave function (2) and its trivial r-dependence. It
should also be emphasized that the simple r-dependence
of Eq. (5) is not particular to the Laughlin state. It is
a direct consequence of the polynomial form of the wave
function, and carries over without change to any quan-
tum Hall trial state on the cylinder.

The situation is rather different for the torus geometry.
The main purpose of this work will be to get a handle
on the guiding center presentation of the torus Laughlin
states. In the remainder of this introduction, we review
some well known facts that make life more complicated
on the torus.

In first quantized language, we pass to the torus by
introducing periodic boundary conditions in the complex
plane along two fundamental periods L1 and L2, where
L1 is taken to be real, and ImL2 > 0 (Fig. 1). The ge-
ometry of the torus can be parameterized by τ = L2/L1,
the modular parameter. The Laughlin state at general
filling factor 1/q then becomes24

ψ`1/q(z1 . . . zN ) = exp(−1

2

∑
k

y2
k)F `(Z, τ)

∏
i<j

θ1(
zi − zj
L1

, τ)q

(6)
Here, θ1(z, τ) is the odd Jacobi theta-function, and for
the factor depending on the “center of mass” Z = z1 +
. . . zN , which also depends on an additional label ` =
0 . . . q− 1 corresponding to a choice of basis in the q-fold
degenerate25 ground state space, we adopt the convention
of Ref. 26:

F `(Z, τ) = θ

[
`
q + L−q

2q

−L−q2

]
(qZ/L1, qτ) . (7)

Here, θ
[
a
b

]
(z, τ) is the Jacobi theta function of character-

istics a and b, and L = L1ImL2/(2π) is the number of
flux quanta penetrating the surface of the torus.

Thus, while the Laughlin state is still of the general
form of a Gaussian factor multiplying an analytic func-
tion in the complex particle coordinates zi, the latter is
not of polynomial form. As a result, to the best of our
knowledge, there is currently no detailed understanding
of the structure of the guiding center description of this
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FIG. 1. Fundamental domian for torus wave functions.

state. By this we mean a general understanding of the
coefficients of the analog of Eq. (5):

|ψ`1/3〉τ =
∑
{nk}

C`{nk}(τ) c†nN . . . c
†
n1
|0〉 . (8)

In particular, the τ -dependence of the coefficients
C`{nk}(τ) is not of a simple form reminiscent of the r-

dependence explicit in Eq. (5). Moreover, intuitively, one
would still expect that these coefficients can be gener-
ated from the dominance pattern, i.e., 100100100 . . . at
ν = 1/3. Indeed, this configuration is still dominant on
the torus, in the sense that it is the configuration that
dominates in the thin torus limit18,27–29. The success of
the thin torus approach in determining physical proper-
ties, such as Abelian and non-Abelian statistics30–33 and
the presence of gapless excitations34, suggests that even
on the torus these patterns allow for a reconstruction of
the full many-body wave function. On the other hand,
there is no notion of “inward” squeezing on the torus,
due to periodic boundary conditions. The main result of
this paper will be the development of a machinery for the
above mentioned reconstruction of the full torus Laugh-
lin state in the guiding center description, from the thin
torus state. Since as an additional complication, such
machinery can be expected to depend non-trivially on
τ , we first focus our attention on the dependence of the
coefficients C`{nk}(τ) on the geometric parameter.

As a final remark, we point out24 that the torus Laugh-
lin states at ν = 1/3 are still the unique ground state
of the V1 pseudo-potential. Its second quantized form
agrees with a straightforward periodization of the model
(3), with

QR =
∑

0<x<L/2
x+R∈Z

∑
m∈Z

(x+mL) exp[
2πiτ

L
(x+mL)2] cR−xcR+x .

(9)
One sees that for τ = i|L2|/2πr, L2 = iL/r, this reduces
to the cylinder form Eq. (3) for L → ∞, and respects
the periodic boundary condition cn = cn+L otherwise.
(Eq. (9) is valid for general complex τ , though). One
therefore passes from Eq. (3) to Eq. (9) (with imagi-
nary τ) through straightforward introduction of periodic
boundary conditions (PBCs). Yet the solution of Eq. (9)
is arguably much less under control. The introduction of
PBCs is a standard and very useful tool throughout solid
state physics. We thus expect that a better understand-

ing of the guiding center description of the torus Laugh-
lin state will also benefit the solid state applications16,17

mentioned initially.
The remainder of the paper is organized as follows. In

section II we construct a two-body operators that gen-
erated the changes in the guiding center variables of the
torus Laughlin state with modular parameter τ . Sec-
tions II A and II B highlight further formal similarities
and differences between the cylinder and the torus. Sec.
II C presents the heat equation for the τ -derivative of
the analytic Laughlin state. Sec. II D introduces a 2D
to 1D mapping, which is our device for embedding low-
est Landau levels at different modular parameter τ into
the same larger Hilbert space. In Sec. II E we derive the
generator mentioned above. In Sec. II F we symmetrize
this operator and present a byproduct of this study, a
hitherto unknown class of two-body operators that anni-
hilate the torus Laughlin state. In Sec. II G we postu-
late a presentation of the torus Laughlin state in terms
of its thin torus, or “dominance” pattern, and the class
of two-body operators generating changes in geometry.
In Sec. III we demonstrate the postulate of Sec. II G
numerically, and work out the relation of our generator
with the Hall viscosity35, which we calculate numerically
as a demonstration of analytical results, comparing the
resulting data to earlier numerical studies. We discuss
our results in Sec. IV, and conclude in Sec. V. A small
Appendix discusses a minor technical detail.

II. CONSTRUCTION OF THE 2-BODY
OPERATOR

A. A final look at the cylinder case

As motivated above, to establish a machinery that gen-
erates the full guiding center description of the Laughlin
state from the root configuration, a natural starting point
is to get under control how this description changes with
the geometric parameter τ . To this end, we will seek to
construct an operator that generates changes of the guid-
ing center degrees of freedom to first order in dτ . The
similar problem for the cylinder, where r is the geomet-
ric parameter, is comparatively trivial and was already
addressed in the introduction. For later reference, it is
instructive to first cast these results in terms of a genera-
tor of infinitesimal changes in the parameter r−2. Eq. (5)
can be written as

|ψ1/3〉r′ = e(r′−2−r−2)Gr−2 |ψ1/3〉r (10)

where

Gr−2 =
1

2

∑
n

n2c†ncn (11)

is the generator of changes in the geometric parameter
r−2. Note that it is independent of r. We emphasize
again that (10), (11) are very general, and apply to other
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quantum Hall trial states on the cylinder as well. In writ-
ing (10), we leave it understood that the exponentiated
operator generates the change of the guiding center de-
grees of freedom only; it does not generate in any way the
change of the LLL orbitals themselves as a function of r,
Eq. (1). We are only concerned here with the change
in guiding center degrees of freedom, since the object
of study is the second quantized Hamiltonian Eq. (3),
in which degrees of freedom associated with kinetic mo-
menta are not retained. We will thus carefully distin-
guish from now on between the Laughlin wave function
ψ1/3 ≡ ψ1/3(z1 . . . zN ; r), which lives in the full Hilbert
space of square integrable functions over some domain,
and the ket |ψ1/3〉r, which lives in an abstract Hilbert
space denoted L that is isomorphic to the LLL for any
given value of cylinder radius r. Similar conventions will
be used below for the torus. In L, therefore, all those or-
bitals with the same guiding center quantum number n
become identified, which originally belonged to different
LLLs corresponding to different values of the parameter
r.36

We note that a similarly universal operator that gen-
erates changes of the guiding center degrees of freedom
in response to a change in geometry can be obtained on
the plane.20,37 Here, since a geometric deformation by
means of uniform strain does not affect boundary condi-
tions, such a deformation is implemented by a change in
the metric, and unlike in Eq. (10), the operation imple-
menting this deformation is unitary.

On the other hand, it is worth pointing out that in
(10), the lack of unitarity leads to a breakdown of the
equation in the “thin cylinder” limit r → 0, in which
|ψ1/3〉r approaches |100100100 . . . 〉. The equation re-
mains valid for arbitrarily small but finite r, where the
limiting state |100100100 . . . 〉 receives arbitrarily small
corrections, which are, however, important and may not
be dropped, since they become large under the non-
unitary evolution facilitated by the exponential opera-
tor. This is immediately clear from the fact that the
thin cylinder state is an eigenstate of the one-body oper-
ator in the exponent. This operator is thus not capable
of generating the off-diagonal matrix element needed to
“squeeze” the full many-body wave function out of the
thin cylinder state, i.e., the root configuration. Eq. (10)
is thus not a tool to generate the full cylinder Laughlin
state out of the root configuration. For the cylinder, how-
ever, other such tools are already available, as mentioned
in the Introduction.22,23

B. General considerations for the generator on the
torus

We desire to construct an operator analogous to Gr−2

for the torus Laughlin state, which generates changes in
the guiding center variables of the state in τ . This oper-
ator is thus defined by the following equation:

∇τ |ψ`1/q(τ)〉 = Gτ |ψ`1/q(τ)〉 . (12)

Here, Gτ denotes the operator valued two-component
object (Gτx , Gτy ), and ∇τ ≡ (∂τx , ∂τy ). Note that we
require that Gτ is independent of the label ` distinguish-
ing the q degenerate Laughlin states |ψ`1/q(τ)〉, at given

filling factor 1/q and given τ .
To highlight considerable differences with the similar

problem on the cylinder, we now show that it follows
easily from these assumptions that, unlike for the cylin-
der, the components of Gτ cannot be one-body opera-
tors. For, if Gτx,y were one-body operators, we could
symmetrize each with respect to the magnetic translation
group. After symmetrization, Gτx,y would still satisfy
Eq. (12). This follows from the observation that Gτ was
assumed to be independent of `, and that the Laughlin
states |ψ`1/q(τ)〉 are closed under magnetic translations.

However, the only one-body operator that is invariant
under magnetic translations is, up to constants, the par-
ticle number operator N̂ . Since the |ψ`1/q(τ)〉 are eigen-

states of N̂ , it is clear that no such operators could satisfy
Eq. (12).

In the following, we will, however, show that Gτx,y can
be a two-body operator.

C. Heat equation for the torus Laughlin state

We begin by deriving a differential equation for the τ
evolution of the analytic Laughlin wave function Eq. (6).
We have

∂τψ
`
1/q = e−

1
2

∑
k y

2
k((∂τF

`)frel + F `∂τfrel)

where frel denotes the theta-function Jastrow factor in
Eq. (6) and ∂τ = 1

2 (∂τx−i∂τy ). The center-of-mass factor
in the form Eq. (7) is also given by a theta function.
Independent of `, it satisfies the “heat equation”

∂τF
`(Z, τ) =

1

4πiq
∂2
Z F

`(Z, τ) =
1

4πiq
∂2
X F

`(Z, τ) (13)

with X = ReZ. Since ∂X leaves the relative part invari-
ant, the operator (4πiq)−1∂2

X acting on the torus Laugh-
lin state produces just the first term above in ∂τψ1/q.
The latter can thus be expressed as

∂τψ
`
1/q =

 1

4πiq
∂2
X + q

∑
i<j

∂τθ1(zi − zj , τ)

θ1(zi − zj , τ)

ψ`1/q .
(14)

It is pleasing that the differential operator on the right
hand side of the above equation has the form of a two-
body operator. The are, however, two remaining obsta-
cles before we can express the change of guiding center
variables in terms of a two-body operator derived from
the above equation. First, as defined thus far, the Laugh-
lin states Eq. (6) for different parameter τ do not live in
the same Hilbert space. In particular, for fixed τ the state
(6) is usually viewed as a member of the Hilbert space
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of square integrable functions over the fundamental do-
main in Fig. 1. In order to view the differential operator
in Eq. (14) as an operator in some Hilbert space, we must
therefore first embed all Laughlin states for different τ , in
fact all the corresponding lowest Landau levels, into the
same Hilbert space, since our differential operator can be
viewed as connecting states with infinitesimally different
τ . The second obstacle is that even with such embed-
ding, the lowest Landau level will depend on τ , i.e., will
correspond to a different subspace of the larger Hilbert
space H (to be defined below) for different τ . The differ-
ential operator in Eq. (14) therefore not only describes
the change of guiding center degrees of freedom with τ ,
it also describes the change of the Landau level itself,
which we are not interested in. We will therefore find it
necessary to extract the piece of Eq. (14) that acts on
guiding centers only.

D. Mapping the problem to 1D

We will first address the more technical problem, which
is the embedding of the torus Landau levels for differ-
ent τ , denoted by Lτ in the following, into the same
larger Hilbert space H. One natural approach that has
been emphasized in the recent literature35 is to choose
an equivalent way to formulate the problem, where the
fundamental domain remains unchanged and instead the
metric is deformed. We will return to this point of view
in Sec. III, where we make connection with the Hall vis-
cosity.

Here we will choose a different approach, which
is rooted in the intuition that Landau-level-projected
physics is effectively one-dimensional. One manifesta-
tion of this is the form of the “1D lattice” Hamiltonian
Eq. (3) that governs the guiding center degrees of free-
dom. Another is the fact that wave functions in the LLL
are entirely determined by holomorphic functions satis-
fying certain boundary conditions. As is well known,
the values of such functions in the entire complex plane
are already determined by those on (any interval on) the
real axis. For this reason we may restrict our study of the
Laughlin states (6) to the real axis without any loss of in-
formation. Also, we find it convenient to choose L1 = 1,
L2 = τ as the fundamental domain for the original two-
dimensional (2D) wave functions. With this, after re-
striction to the real axis, all states (6) become elements
of H = L2[0, 1] of square integrable functions within
the interval [0, 1]. We note that with these conventions,
the area of the fundamental domain is not preserved as
we change τ . Therefore, we must accommodate for this
by changing the magnetic length accordingly, such that
Imτ = 2πLl2b . This, however, results only in the following
trivial modification of the wave functions (6),

exp(−1

2

∑
k

y2
k) −→ exp(−1

2

∑
k

y2
k/l

2
B) ,

which is inconsequential since we work at y = 0 in the

following. Clearly, when Eq. (14) is now restricted to
y = 0, the operator on the right hand side is a well defined
differential operator within the Hilbert space H (in the
usual sense that its domain is dense in H.)

A preferred basis for the LLL at given τ , both within
the original 2D as well as the 1D Hilbert space, is given
by the following wave functions,

χn(z) =

(
2L

τy

)1/4

e
− y2

2l2
B θ

[
n/L

0

]
(Lz, Lτ) . (15)

These are eigenstates of the operator exp( 2πi
τy
πy), where

πy is the guiding center y-components. For any τ , the
restriction of these orbitals to the real axis spans a dif-
ferent subspace Lτ of the 1D Hilbert space H, which is in
one-to-one correspondence with the lowest Landau level
at τ .

To see why the orbitals χn are a natural choice of basis
in the present context, we observe that the mapping to
the 1D Hilbert space H introduces a new scalar product
between wave functions, defined as usual by integration
over [0, 1] (instead of integration over the fundamental
domain in 2D). Eq. (15) as written is normalized inde-
pendent of n with respect to the 2D scalar product, but
not with respect to the scalar product of H. However,
these orbitals are orthogonal in both cases thanks to triv-
ial considerations of properties under translation in x,
which are unaffected by the 1D mapping. The fact that
the basis Eq. (15) remains orthogonal, and in particu-
lar linearly independent, after restriction to the real axis
makes it manifest that the mapping between the original
lowest Landau level and its image Lτ in the 1D Hilbert
space is one-to-one.

We note that working with y-guiding-center eigen-
states instead of x (as in our initial discussion for the
cylinder) leaves the second quantized Hamiltonian invari-
ant, except for the trivial replacement τ → −1/τ associ-
ated with the “modular S transformation” . This is due
to the “S-duality” of the physics on the torus (see, e.g.,
Ref. 38). The torus Hamiltonian (9) was already written
with reference to the orbitals (15).

E. Definition of a 2-body operator generating the
deformation of guiding center variables

We first explain how to relate a result obtained within
the 1D framework introduced above to the desired one,
which uses ordinary conventions based on a Hilbert space
equipped with the standard 2D scalar product.

Suppose we have an operator G̃τx (G̃τy ) that generates

the change with τx (τy) in the coefficients C̃{nk}(τ) in the
expansion of the Laughlin state,

ψ1/q(τ) =
∑
{nk}

C̃{nk}(τ)A χ̃n1
(z1, τ) · . . . · χ̃nN (zN , τ),

(16)
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where χ̃n(z, τ) = Nn(τ)χn(z, τ), Nn(τ) being the fac-
tor that normalizes the state χn with respect to the

1D scalar product, 1〈φ|ψ〉1 =
∫ 1

0
dxφ∗(x)ψ(x), i.e.,

Nn = 1〈χn|χn〉−1/2
1 , and we will often leave the τ -

dependence understood. Likewise, we have dropped the
label ` for now, which is just a spectator in the “heat
equation” (14). A denotes anti-symmetrization in the
indices nk. The Laughlin state in Eq. (16) is a member
of the subspace Lτ of H as defined in the preceding sec-
tion. We may now map the state (16) to the abstract
Landau level Hilbert space L as discussed in Sec. II A,
by applying a projector which “forgets” the degrees of
freedom associated with kinetic momenta. This situation
is represented by the diagram in Fig. 2. If we perform

H

L⌧ L⌧ 0

L

L

H
,!

 
!

I⌧ I⌧ 0

 
�

 �

G⌧

G̃⌧

,!

L

L
 
!
 �

 
�

P e
R ⌧0
⌧

G⌧d⌧

flow of Eq. (14)

G⌧ 0

G̃⌧ 0

⇠=⇠=

c†
n ! Nn(⌧)c†

n c†
n ! Nn(⌧ 0)c†

n

FIG. 2. Commuting diagram displaying the various Hilbert
spaces and sub-spaces defined in the main text, and operators
acting between them. The top segment shows lowest Landau
levels Lτ , Lτ ′ at different modular parameter that, using the
2D to 1D mapping defined in the text, have been embedded
into the same larger 1D Hilbert space H. At the same time,
each Landau level is isomorphic (through embeddings Iτ , Iτ ′)
to the same finite dimensional “abstract” Landau level space
L, in which only the guiding center degrees of freedom are rep-
resented. The generator G̃τ of changes in the guiding center
degrees of freedom with τ is first constructed using the nor-
malization conventions of the 1D Hilbert space. It is related
by a similarity transformation to the operator Gτ , which gen-
erates the analogous changes for the normalization convention
of the usual 2D Hilbert space. In the horizontal direction, we
have mappings between states defined for values of the mod-
ular parameter. The upper line is defined through the flow of
Eq. (14), which describes precisely the change of the Laugh-
lin state, restricted to the real axis. The lower line represents
the corresponding change in guiding center degrees of free-
dom, given by Eq. (41). The operator Gτ is constructed such
that the diagram commutes.

this projection orthogonally with respect to the 1D scalar
product, we obtain a ket

|ψ̃1/q(τ)〉 =
∑
{nk}

C̃{nk}(τ)c†n1
. . . c†nN |0〉 . (17)

By definition, we then have

∇τ |ψ̃1/q(τ)〉 = G̃τ |ψ̃1/q(τ)〉 , (18)

where we assume G̃τ = (G̃τx , G̃τy ) to be of the form

G̃τ =
∑

mm′nn′

Gmm′nn′c
†
mc
†
m′cncn′ . (19)

In the end, one wants to do the projection of Eq. (16) or-
thogonally with respect to the original 2D scalar product.
This gives

|ψ1/q(τ)〉 =
∑
{nk}

C{nk}(τ)c†n1
. . . c†nN |0〉 (20)

where C{nk} = Nn1 . . .NnN C̃{nk} from the change of nor-

malization, c†n → Nnc†n. This implies the relation

|ψ1/q(τ)〉 = e
∑L−1
n=0 ln[Nn(τ)]c†ncn |ψ̃1/q(τ)〉 . (21)

From this last line, we obtain that the desired operator
Gτ defined by Eq. (12) is related to Eq. (19) via39

Gτ =
∑
n

∇τNn(τ)

Nn(τ)
c†ncn

+
∑

mm′nn′

Nm(τ)Nm′(τ)

Nn(τ)Nn′(τ)
Gmm′nn′ c

†
mc
†
m′cncn′ . (22)

With this we have completely relegated the solution of
the problem to the 1D Hilbert space. We point out that
the 1D mapping described above may generally provide
an efficient way to calculate the matrix elements of opera-
tors acting within the lowest Landau level on the torus.40

In this case, Eq. (22) will apply without the τ -derivative
part. The explicit form of Nn(τ) will be given below.

We now define the operator Iτ which injects the ket
|ψ̃1/q(τ)〉 into Lτ ∈ H, by sending c†n|0〉 to χ̃n(τ). Thus

ψ1/q = Iτ |ψ̃1/q〉 . (23)

For the time being, we work at fixed τx. Using the
heat equation (14) with ∂τ = −i∂τy and differentiating
Eq. (23), one obtains

∂τyψ1/q = i∆ψ1/q = (∂τyIτ )|ψ̃1/q〉+ Iτ G̃τy |ψ̃1/q〉 , (24)

where ∆ denotes the differential operator on the right
hand side of Eq. (14), and we also used Eq. (18).

For Re τ = Re τ ′, it is easy to see the Pτ∂τyIτ ≡ 0,
where Pτ is the orthogonal projection operator onto Lτ
(we work in the 1D Hilbert space now, and will al-
ways refer to its scalar product when not stated oth-
erwise). To see this, it is sufficient to observe that
〈χm|∂τyχn〉 = 0 for all m, n. This follows from the fact
that 〈χm(τ)|χn(τ ′)〉 = δm,n〈χm(τ)|χm(τ ′)〉 is always real
for Re τ = Re τ ′. Thus, acting on the last equation with
Pτ , we get

Pτ∆Pτψ1/q = Pτ∆PτIτ |ψ1/q〉 = Iτ G̃τy |ψ̃1/q〉 .
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where we have also inserted Pτ before ψ1/q ∈ Lτ . Since

we only care about how the operator G̃τy acts on these q
states, for which we have the last equation, we may thus
define this operator though the identity

G̃τy = I−1
τ Pτ∆PτIτ . (25)

The last equation expresses that the matrix elements of
G̃τy are just those of the differential operator ∆ restricted
to the LLL subspace Lτ . These can thus be calculated
straightforwardly by evaluating the standard expression
for two-body operators:

Gymm′nn′ =
1

2

∫ 1

0

dx

∫ 1

0

dx′ χ̃∗m(x)χ̃∗m′(x
′) ∆ χ̃∗n′(x

′)χ̃∗n(x) .

(26)
As a last step, we calculate Gτy by fixing the normal-

ization convention for single particle orbitals in accor-
dance with the usual 2D scalar product, as displayed in
Eq. (22). We may then obtain the generator for changes
in τx simply by studying the analytic properties of the
coefficients C{nk}(τ) in Eq. (20). As shown in Appendix
A, one has

∂τxC{nk} = −i∂τyC{nk} + i
N

4τy
. (27)

We can thus let Gτx = −iGτy + i N̂4τy . Moreover, Eq. (27)

follows from the fact that C{nk}/τ
N/4
y is holomorphic in

τ . We may use this insight to conveniently redefine the
normalization of the Laughlin states via

ψ′`1/q(z1, . . . , zN , τ) = τ−N/4y ψ`1/q(z1, . . . , zN , τ) . (28)

The corresponding generator for changes in τy is then

given by G′τy = Gτy− N̂
4τy

. In the following, we will always

refer to the normalization convention (28). Dropping all
primes, we then have

Gτx = −iGτy ≡ Gτ . (29)

With the ket |ψ1/q(τ)〉 now referring to Eq. (28),
|ψ1/q(τ)〉 is then holomorphic in τ , and we have

∂τ |ψ1/q(τ)〉 = Gτ |ψ1/q(τ)〉 . (30)

We present our final result as

Gτ = G0 +
1

4πiq
G1 + qG2 . (31)

Here, the first term corresponds to −i times the one-body
operator in the y-component of Eq. (22), plus the shift
of iN/4τy shown in Eq. (27). Defining the functions

San =
∑
l

(2πi[lL+ n])ae−2πLτy(l+n/L)2 , (32)

the normalization factors defined above correspond to
(Nn)−2 =

√
2L/τyS0

n. We thus get

G0 =
i

2

∑
n

∂τyS0
n

S0
n

c†ncn = − 1

4πiL

∑
n

S2
n

S0
n

c†ncn . (33)

Next, G1 is the contribution coming from the differential
operator ∂2

X in Eq. (14). Note that after normal ordering,
the square of a single body operator still contains a single
body operator. We thus get the following result:

G1 = (
q

L
)2[
∑
n

S2
n

S0
n

c†ncn +
∑
n1 6=n2

S1
n1
S1
n2

S0
n1
S0
n2

c†n1
cn1

c†n2
cn2

] .

(34)
Note that S2

n 6= (S1
n)2, owing to the fact that Pτ∂

2
XPτ 6=

(Pτ∂XPτ )2. Finally, G2 relates to the θ-function part of
Eq. (14). Eq. (26) can be evaluated by expanding the fac-
tors in the integrand, which are all periodic in x, x′, into
Fourier series. For the ∂θ/θ-terms, this can be done by
contour integration and using known properties of θ func-
tions. Straightforward but tedious calculation allows one
to express G2 through rapidly converging, albeit multiple
sums,

G2 =
1

2

∑
n1n2n3n4

∆n1n2n3n4

S0
n1
S0
n2

c†n1
c†n2

cn4
cn3

+
1

2
CN̂(N̂ − 1) ,

(35)
and we have defined the function

∆n1n2n3n4
= δn1+n2,n3+n4

2π

i

∑
n 6=0

n=n3−n1 mod L

(
eiπτn

1− e2iπτn
)2

∑
l1

eiπτL[(n1+n)/L+l1]2(eiπτL(n1/L+l1)2)∗

∑
l4

(eiπτL[(n4+n)/L+l4]2)∗eiπτL(n4/L+l4)2 ,

(36)

and the (τ -dependent) constant

C =
1

4πi
[

∫ 1/2

−1/2

(
∂τθ4

θ4
)2dz − π2] . (37)

In the above, the Kronecker δ is understood to be peri-
odic, enforcing identity n1 + n2 = n3 + n4 mod L.

F. Symmetry considerations

The operator Gτ defined in the preceding section is
manifestly invariant under magnetic translations in the
x-direction. In the basis we chose here, this is tanta-
mount to the conservation, modulo L, of the “center-
of-mass” operator

∑
n nc

†
ncn. On the other hand, the

operator is not invariant under magnetic translations in
the τ -direction, which amounts to an ordinary shift of
the orbital indices. As already pointed out in Sec. II B,
the symmetrized operator

Gτ,sym =
1

L

L−1∑
n=0

Tnτ Gτ (T †τ )n (38)

also satisfies Eq. (12), where Tτ generates magnetic trans-
lations in τ . This is a trivial consequence of the fact that
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the |ψ`1/q(τ)〉 transform among themselves under Tτ , and

all satisfy Eq. (12). Likewise, each term on the right hand
side of Eq. (38) satisfies Eq. (12). We may thus define
the L− 1 linearly independent 2-body operators

Dn = Gτ,sym − Tnτ Gτ (T †τ )n, n = 0 . . . L− 2, (39)

that all annihilate each of the q-fold degenerate Laughlin
states,

Dn|ψ`1/q〉 = 0 . (40)

We note that the Dn are not in any obvious way related

to the operators Q†RQR of the pseudo-potential Hamil-
tonian, with QR given by (9). Indeed, the Dn have a

non-vanishing single-body term, whereas the Q†RQR do
not. The Dn thus represent a new class of two-body op-
erators that annihilate the torus Laughlin states (in the
absence of quasi-holes). For q = 3 and various values of
particle number N , we have verified that the property
(39) characterizes the q = 3 Laughlin states uniquely.

Note that the single-body contribution to Gτ,sym is pro-
portional to the particle number, as explained in Sec.
II B. This term can thus be replaced by a constant when
acting on the Laughlin state, and hence can be ignored
altogether in practical calculations, where the real part
of this constant is usually adjusted to fix the normaliza-
tion of the state (see below), and the imaginary part only
affects the phase convention. For the same reason, we do
not need the value of the τ -dependent constant C defined
in Eq. (37) for the purpose of practical calculations.

G. Presentation of the Laughlin state through its
thin torus limit

In the following, we will generally identify Gτ with the
symmetrized operator Gτ,sym discussed in the preceding
section, without carrying along the ”sym” label. Putting
the results of Sec. II E in integral form, we have, via
Eq. (30),

|ψ`1/q(τ ′)〉 = P e
∫ τ′
τ
Gτdτ |ψ`1/q(τ)〉 , (41)

where P means path ordering. The integral in Eq. (41)
should be interpreted as a complex contour integral,
where the result is independent of the path connecting
τ and τ ′. This is so since by construction, Gτ generates
exactly the change with τ of the guiding center coordi-
nates of the states in Eq. (28), which are single valued
functions of τ . (This requires that we carry along all the
τ -dependent c-number terms mentioned in the preceding
section.)

We may also want to add, possibly different, real con-
stants to Gτx and Gτy , such that the normalization of
the Laughlin state is preserved under the evolution with
these operators. When evaluating Eq. (41) iteratively,
this simply corresponds to normalizing the state at each
step. We denote the accordingly modified operators by

GNτx and GNτy , and introduce the operator valued 1-form

dGNτ = GNτxdτx +GNτydτy. We may then write

|ψ`1/q(τ ′)〉N = P e
∫ τ′
τ
dGNτ |ψ`1/q(τ)〉N , (42)

where the subscript N denotes normalized Laughlin
states. We are now interested in the thin torus limit
τ → i∞, in which |ψ`1/3(τ)〉N approaches the ket

|100100100 . . . 〉,18 or one related to the latter through
repeated action of Tτ . Here, the labels 100100100. . . are
occupation numbers in the basis (15). Given our earlier
discussion for the cylinder, it cannot be taken for granted
that Eq. (42) remains well-defined in this limit. On the
other hand, it may seem plausible that this is the case,
since the operators GNτx , GNτy do generate off-diagonal ma-
trix elements when acting on the thin torus state, unlike
the case of the cylinder. It thus seems feasible that the
full Laughlin states at arbitrary τ admit the following
presentation in terms of their respective thin torus limit,

|ψ`1/q(τ)〉N = P e
∫ τ
∞ dGNτ |...100...100...100... . . . 〉 , (43)

where the pattern on the right hand side denotes one of
the q thin torus patterns at filling factor 1/q. The cor-
rectness of the above assertion remains non-trivial, how-
ever, as the τ ′ →∞ limit in Eq. (42) must be taken with
care. In the next Section we provide numerical evidence
for q = 3, demonstrating the above relation for various
particle numbers N . We thus find that the full torus
Laughlin state may be generated from its given thin torus
limit via application of the above path-ordered exponen-
tial involving the two-body operator constructed here.
We conjecture that this is true for general q. An appli-
cation demonstrating this technique will be discussed in
the following.

III. APPLICATION: HALL VISCOSITY

As an application of our findings in Sec. II, we use
Eq. (43) (or the differential form Eq. (30)) to calculate
the ν = 1/3 torus Laughlin state along a contour in
the complex τ -plane, starting from the thin torus limit
at τ = i∞. As a physical motivation for calculating
the Laughlin state along such contours, we will be ask-
ing how the Hall viscosity35 evolves along such contours.
This quantity is naturally related to the main theme of
of our paper, i.e., changes of the Laughlin state with
changes in geometry. The notion of a Hall viscosity of
fractional quantum Hall liquids has generated much in-
terest recently,35,37,41 expanding earlier work42 on inte-
ger quantum Hall states. In particular, in an insight-
ful paper,35 Read has derived a general relation between
the viscosity of a quantum Hall fluid and a characteristic
quantum number s̄, which can be interpreted as “orbital
spin per particle” and is related to the conformal field
theory description of the state in question. Here we only
give a brief summary of the relevant definitions, following
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closely Ref. 37, to which we refer the interested reader
for details.

We denote the fourth-rank viscosity tensor of the fluid
by ηabcd, where we are interested in the case of two
spatial dimensions. In a situation with no dissipation,
only its anti-symmetric or “Hall viscosity” component

η
(A)
abcd = −η(A)

cdab may be non-zero, and this is possible only
when time reversal symmetry and the symmetry under
reflection of space are both broken. This is the situation
in a magnetic field (where in a constant field, only the
product of these two symmetries is unbroken).

We now consider a system with periodic boundary
conditions defined by two periods L1 = (L1, 0) and
L2 = (L1τx, L1τy), and Hamiltonian

H =
1

2

N∑
i=1

gabπiaπib +

PLLL

∑
m,n

∑
i<j

V (||xij +mL1 + nL2||g)PLLL

(44)

Here, πa is a component of the kinetic momentum, PLLL

denotes LLL-projection, and we have introduced a met-
ric gab. We have also introduced the “periodized” ver-
sion of a potential V that depends on xi, xj only via
||xij ||g ≡ gabxaijxbij with xij = xi−xj . We follow Ref. 37

and parametrize the metric via g(λ) = ΛTΛ, Λ = exp(λ),
where Λ can be viewed as a coordinate transformation
that transforms the identity metric into the metric g.
Clearly, g is invariant under Λ→ RΛ, where R is a rota-
tion matrix. Since λ can be interpreted as being propor-
tional to an “infinitesimal version” of Λ, whose rotational
component is just its anti-symmetric part, we may fix this
rotational degree of freedom by requiring λ to be sym-
metric. Then, the Hall viscosity of the ground state of
Eq. (44) can be related37,42,43 to the adiabatic curvature
on the space of background metrics, here parameterized
by the symmetric matrix λ. Specializing to g = id, we
have:

η
(A)
abcd = − 1

V
Fab;cd (45)

where Fab;cd is the Berry curvature

Fab;cd = −2Im〈∂λabψ|∂λcdψ〉|g=id , (46)

and ψ denotes the ground state of Eq. (44). Fab;cd clearly

has the anti-symmetry of η
(A)
abcd, and it is also symmetric

in the index pairs ab and cd. Furthermore, at least in
the thermodynamic limit of large L1, one would expect

η
(A)
abcd to acquire full rotational symmetry. In two dimen-

sions, this requires the trace η
(A)
abcc to vanish, where we

use the sum convention, and similarly for the first in-
dex pair. (In higher dimensions, rotational symmetry
requires η(A) to vanish identically). Moreover, in an in-
compressible fluid, the strain tensor uab must be trace-
less. Therefore, since the viscosity couples to the rate

of strain u̇ab via η
(A)
abcdu̇cd to give a viscous contribution

to the stress tensor, only the traceless part of η
(A)
abcd is of

interest. It therefore makes sense to restrict our atten-
tion to traceless λab, corresponding to volume preserving
coordinate transformations. Requiring Fab;cd thus to be
anti-symmetric, symmetric in the first and second pair,
as well as traceless, in D = 2 the associated curvature 2-
form F = 1

2Fab;cd dλab∧dλcd can only depend on the fol-
lowing two independent linear combinations of 1-forms,
dλ11 − dλ22 and dλ12 + dλ21. Hence it must be propor-
tional to their product:37

F = −1

2
s (dλ11 − dλ22) ∧ (dλ12 + dλ21) , (47)

and we introduced a proportionality factor −s/2 whose
physical meaning will be given below. The above expres-
sion in Eq. (45) gives

η
(A)
abcd = η(A)(δadεbc + δbcεad) (48)

with

η(A) =
1

2
s̄n̄~ , (49)

where n̄ = N/V is the particle density, s̄ = s/N , and
we have restored a factor of ~. As shown in Ref. 35, in
the thermodynamic limit the parameter s̄ is quantized
and can be identified with the average orbital spin per
particle, which is related to the conformal dimension of
the field describing particles in the conformal field the-
ory description of the state. It is further related to the
topological shift on the sphere, S, of the underlying state
via s̄ = S/2. For the Laughlin 1/3 state, s̄ = 3/2.

We now consider fixed boundary conditions described
by τ , and introduce a metric that corresponds to the
infinitesimal transformation

dλ =
1

2τy

(
−dτy dτx
dτx dτy

)
. (50)

It is not difficult to see that the corresponding metric
change is equivalent to changing the modular parameter
τ to τ ′ = τ + dτx + idτy. We may thus rewrite Eq. (47)
as

F = −Ns̄
2τ2
y

dτx ∧ dτy . (51)

To each λ can be associated a τ ′, where Λ = exp(λ) is the
coordinate transformation that changes the τ -boundary
condition into a τ ′-boundary condition, where

τ ′ =
ΛL1 · ΛL2 + iΛL1 × ΛL2

||ΛL1||2
. (52)

For fixed τ , we now parameterize λ, and thus the metric,
by τ ′. (Note that the right hand side of Eq. (52) can be
viewed as a function of Λ and τ .) Eq. (51) then implies
that

s̄ =
4τ2
y

N
Im 〈∂τ ′xψ|∂τ ′yψ〉 . (53)
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We emphasize that in the above, ψ ≡ ψ(τ, gτ (τ ′)) always
satisfies the same boundary condition defined by τ , and
depends on τ ′ only through the metric. At the same time,
ψ(τ, gτ (τ ′)) is related to ψ(τ ′, id) by the unitary transfor-
mation χn(τ, gτ (τ ′)) → χn(τ ′, id), with χn(τ, g(τ ′)) the
deformed version of the state (15) in the presence of the
metric g(τ ′). However, for fixed τ , the ψ(τ, gτ (τ ′)) live
in the same Hilbert space,37 independent of τ ′. The ad-
vantage of introducing both τ and τ ′, where the former
describes boundary conditions, and the latter describes
the “true geometry” of the system, is that we may restrict
ourselves to metrics gτ (τ ′) in the vicinity of the identity
(corresponding to τ ′ close to τ), such that Eq. (45) is
directly applicable.

We now consider ψ = ψN1/3, the normalized Laughlin

1/3 state (where we suppress labels τ , τ ′, and `). We
have the expansion

ψN1/3 =
∑
{nk}

CN{nk}(τ
′)|{nk}〉g , (54)

and |{nk}〉g〉 is short for the Slater determinant
A [χn1(z1, τ, g(τ ′)) · . . . · χnN (zN , τ, g(τ ′))]. We write
−2Im 〈∂τ ′xψ|∂τ ′yψ〉 = ∇τ ′ ×A where

A = i
∑
{nk}

(
|CN{nk}|

2
g〈{nk}|∇τ ′ |{nk}〉g + CN

∗
{nk}∇τ ′CN{nk}

)
(55)

is the Berry connection. It turns out that in the first
term, which describes the change of the LLL basis with
τ ′, g〈{nk}|∇τ ′ |{nk}〉g is independent of {nk}, and con-
tributes a constant 1/2 to Eq. (53).44 The second term
depends on the changes of the C{nk} with τ ′, which we de-
scribed in the preceding section. We first assume the gen-
eral situation where this change is described by Eq. (12)
with two generators Gτx and Gτy that are not necessarily
related and that do not necessarily preserve the normal-
ization of the state. It is straightforward to show that
the contribution from the second term then leads to the
following connected expectation value,

− 2 Im
∑
{nk}

∂τ ′xC
N ∗
{nk}∂τ ′yC

N
{nk}

= i
[
〈G†τxGτy −G†τyGτx〉 − 〈G†τx〉〈Gτy 〉+ 〈G†τy 〉〈Gτx〉

]
,

(56)

where expectation values on the right hand side are taken
in the state Eq. (54). The last two terms take care of
the normalization, and will cancel if both operators are
anti-Hermitian (describing unitary evolution), in which
case the expression reduces to the expectation value of a
commutator. Note also that the expression is invariant
under constant shifts of any of the two operators. We now
specialize to the case where these operators are related
by Eq. (29). Plugging Eq. (55), Eq. (56) into Eq. (53),
this gives

s̄ =
1

2
+

4τ2
y

N
|∆Gτ |2 , (57)
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FIG. 3. Average “orbital spin per particle” s̄ as calculated
from Eq. (53), for the ν = 1/3 torus Laughlin state at τ
generated via Eq. (58), using the procedure described in the
main text and below. We start with the thin torus state at
relatively large but finite τ ′, and iteratively solve Eq. (30)
using the 4th order Runge-Kutta method. Final state errors
compared with exact diagonalization at τ = i are shown for
5 particles for τ ′ = 30i and step size dτ = 0.01i, 7 and 8
particles for τ ′ = 30i and dτ = 0.05i, 9 particles for τ ′ =
40i, dτ = 0.025i. 10 particles data is shown for τ ′ = 80i,
dτ = 0.02i. Crosses denote the value of s̄ − 1/2 obtained
from the exactly diagonalized Laughlin state in Eq. (53), for
comparison. The errors of s̄ are at or smaller than 10−6 in
these cases. All the errors decrease further with larger initial
τ ′ and smaller step size.

where |∆Gτ | = (〈G†τGτ 〉−〈G†τ 〉〈Gτ 〉)1/2 is the variance of
the operator Gτ in the state ψN1/3, and is manifestly posi-

tive (the Laughlin state at τ certainly being no eigenstate
ofGτ for any τ). As stated above, for the Laughlin state s̄
is expected to approach 3/2 in the thermodynamic limit.
This has been checked in Ref. 37, by calculating torus
Laughlin (and other) states by exact diagonalization of
parent Hamiltonians, and computing the Berry curva-
ture by taking overlaps between such states for different
τ (or λ). Here we will consider the same problem both
as a demonstration and a consistency check of the results
presented in the preceding section. To this end, we cal-
culate the Laughlin state from the presentation (43), or
by numerically integrating the differential equation (30)
with thin torus initial conditions, and then computing s̄
from Eq. (57). Note that both steps of the calculation
make use of the two-body operator Gτ . In particular,
our results will confirm the accuracy of Eq. (43), which
may be written more carefully as

|ψ`1/q(τ)〉N = lim
τ ′→i∞

P e
∫ τ
τ′ dG

N
τ |...100...100...100... . . . 〉 .

(58)
Evaluating the expression on the right for some large but
finite τ ′ is equivalent to integrating Eq. (30) (and nor-
malizing the result), where the thin torus limiting state
defines the initial condition at τ ′. This obviously intro-
duces some error compared to the full Laughlin state at
the initial value τ ′, hence also at the final value τ . Since
it is not clear a priori how this error behaves in the limit
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of large imaginary τ ′, possible pitfalls are that the limit
in Eq. (58) is ill-defined, or that it is well-defined but
does not agree with the Laughlin state.45 Our results,
however, give strong support of Eq. (58).

Fig. 3 shows the results for the value of s̄ − 1/2 from
this method for q = 3. Beginning with the thin torus
state |100100100 . . . 〉 at large imaginary τ ′, we evolve
the state down to τ = i, i.e., a torus of aspect ratio 1,
integrating Eq. (30) using the classical 4th order Runge-
Kutta method. We normalize the state at each step.
For particle numbers N = 5 to N = 9, we have observed
that the error of the state obtained at τ = i, compared to
the Laughlin state generated from exact diagonalization
of the V1 Haldane pseudopotential, |ψ − ψed|, becomes
systematically smaller with increasing initial τ ′ and de-
creasing step size dτ . The observed state error at τ = i
has been on the order of 10−6 for N = 5, dτ = 0.01i, and
τ ′ = 30, and on the order of 10−4 for N = 9, dτ = 0.025i,
and τ ′ = 40. For N = 10, we show data based on our
method only. Generally, larger N requires larger τ ′ for
the same accuracy. Fig. 3 shows s̄ − 1/2 for various N
using our method, whereas crosses denote isolated points
for which values have been obtained from exact diagonal-
ization for comparison. One sees that the expected value
of s̄ − 1/2 = 1 is always approached rather closely for
τ = i, though it deviates from this value for |τ | notice-
ably larger than 1. The crossover where notable devia-
tions from 1 set in is pushed to larger |τ | with increased
particle number, as expected. However, the value of s̄
is found to be much more constant, and close to its ex-
pected thermodynamic limit, when instead of varying the
modulus of τ we vary its phase at |τ | = 1, even for five
particles, as shown in Fig. 4. Data were obtained by con-
tinued integration of Eq. (30) away from τ = i along a
contour where τ = exp(iθ). s̄−1/2 remains close to 1 ex-
cept for angles θ approaching π. These observations are
consistent with the exact diagonalization data published
in Ref. 37 for N = 10 and (at τ = exp(iπ/3)) larger
particle number.

IV. DISCUSSION

In the preceding sections, we considered the change
in the guiding center variables, with modular parameter
τ for the torus Laughlin states. Within a given Lan-
dau level, the guiding center coordinates fully specify
the state. We have shown that this change is gener-
ated by a two-body operator Gτ , which we have explicitly
constructed. We have demonstrated numerically that by
means of this two-body operator, the Laughlin state for
any modular parameter τ can be generated from its sim-
ple thin torus (τ = i∞) limit. The ability to generate
the full torus Laughlin state in this way may be com-
pared to squeezing rules that follow from the Jack poly-
nomial structure of this state in other geometries.22,23

From a practical point of view, however, our method still
requires integration of a first order differential equation.
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FIG. 4. Average orbital spin per particle s̄, calculated from
Eq. (53), for the ν = 1/3 torus Laughlin state. The state has
been evolved out of the thin torus limit first down to τ = i as
described in the caption of Fig. 3, and then to τ = eiθ using
the same method. The step sizes used are dθ = 0.01rad for
5 particles and dθ = 0.001rad for 8 and 10 particles. The
state difference with the exactly diagonalized Laughlin state
at the last step is listed in the figure. Data stay close to the
value s̄− 1/2 = 1 expected in the thermodynamic limit35 for
a wide range of angles θ, as first observed in Ref. 37 from
exact diagonalization.

While this requires some compromise between accuracy
and computational effort, the added benefit is that in the
process of the calculation, the Laughlin state is generated
along an entire contour in the complex τ plane, rather
than just for a single value of τ . It is thus likely that
whenever a moderate error can be tolerated, but many τ
values are of interest, our method may become competi-
tive compared to numerical diagonalization. As a demon-
stration of these features, we have produced results relat-
ing to the Hall viscosity that are similar to those of Ref.
37 (and are expected to be identical within numerical ac-
curacy for identical particle number, which we have not
yet studied). The Hall viscosity is itself deeply related
to our main theme of study, i.e., geometric changes in
the Laughlin state,35,37,42 and we have discussed its pre-
cise relation to the generator constructed here (Eq. (57)),
following Ref. 37.

We note that one key ingredient of our procedure is to
embed different torus Laughlin states, which are related
to one another by the application of strain, into the same
Hilbert space. For this we make use of a dimensional re-
duction that is made possible by the analytic properties
of lowest Landau level wave functions on the torus. We
argued that this mapping may be useful in other con-
texts. However, recent work on Hall viscosity37 achieves
the same embedding by a different method, which is to
introduce a metric describing the effect of strain, rather
than a change in boundary conditions. We conjecture
that if we had used this method in Sec. II, we would
have directly obtained the symmetrized version of our
operator Gτ . In this way, however, we would not have
obtained the family of two-body operators given in Sec.
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II F, whose members annihilate the torus Laughlin states.

While primarily, we have been working in a finite di-
mensional Hilbert space that represents guiding center-
coordinates only, the operator defined in Sec. II also
naturally acts within the full Hilbert space, which can be
viewed as the tensor product of the degrees of freedom
for the guiding centers and the dynamical momenta, re-
spectively. Within this larger, physical, Hilbert space,
the operator Gτ generates the change in guiding center
degrees of freedom associated to a change in the torus
geometry, but not the corresponding change of the Lan-
dau level. As pointed out recently by Haldane,19 the
Laughlin state may be generalized by the introduction of
a geometric parameter that describes the deformation of
guiding center variables in response to a change in the
“interaction metric”. The so deformed Laughlin state is
still the exact ground state of an appropriately deformed
Hamiltonian. The operator that we have constructed can
thus also be viewed as generating the change of the torus
Laughlin state in response to a change of the interac-
tion metric, i.e., the change in ground state for the cor-
responding family of deformed pseudo-potential Hamil-
tonians. For the disc geometry, this problem has been
addressed from different angles previously.20,37

We conjecture that the observations made here are
not limited to Laughlin states, but can be generalized
to other quantum Hall states as well. Indeed, a great
wealth of model wave functions is obtained from con-
formal blocks in rational conformal field theories.3 For
conformal blocks on the torus, the dependence on the
modular parameter τ can be described by Knizhnik-
Zamolodchikov-Bernard (KZB) type equations.46 We ex-
pect therefore that our approach can be generalized to
other trial wave functions related to conformal field theo-
ries. The details of such generalizations are left for future
work.

V. CONCLUSION

In this work, we have shown that geometric changes
in the guiding center coordinates of the torus Laughlin
state are generated by a two-body operator. We have
demonstrated that the equation that governs the evolu-
tion of the torus Laughlin state as a function of the mod-
ular parameter τ can be continued into the thin torus
limit. This gives rise to a new presentation of the torus
Laughlin state in its second quantized, or guiding center,
form. This presentation allows one to calculate the torus
Laughlin states in terms of a simple thin torus or “domi-

nance” pattern by means of integration of the flow gener-
ated by the two-body operator defined in this work. This
operator hence realizes the adiabatic evolution of the sim-
ple thin torus product state into the full Laughlin state
on regular tori. To demonstrate this, we have numeri-
cally compared both the Laughlin state generated from
this method, as well as the Hall viscosity derived from it,
to exact diagonalization results. While the demonstra-
tion of our new presentation of the torus Laughlin state
rests in part on numerics, we defer more detailed analytic
studies to future investigation.
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Appendix A: Analytic properties of coefficients

For definiteness, we will refer to the Laughlin state
ψ`1/q using the normalization conventions (6), (7). The

coefficients C{nk}(τ) defined in Eq. (20) then imply the
following expansion of the analytic Laughlin state,

ψ`1/q(τ) =
∑
{nk}

C{nk}(τ)Aχn1
(z1, τ) · . . . · χnN (zN , τ) .

(A1)
Here, as before, the symbol A denotes anti-
symmetrization, and single particle orbitals χn
are defined in Eq. (15). We define new orbitals

χ′n(τ) = τ
1/4
y χn(τ) that are holomorphic in τ , as is

the Laughlin state ψ`1/q(τ). Hence, by acting with

∂τ̄ = 1
2 (∂τx + i∂τy ) on Eq. (A1), we obtain

0 =
∑
{nk}

[
∂τ̄

(
C{nk}(τ)/τN/4y

)]
Aχ′n1

(z1, τ)·. . .·χ′nN (zN , τ) .

(A2)
The linear independence of the orbitals χ′n(τ) and of the
associated many-particle Slater determinants then im-
plies

∂τ̄

(
C{nk}(τ)/τN/4y

)
= 0 , (A3)

i.e., the quantities C{nk}(τ)/τ
N/4
y are holomorphic in τ .

Eq. (27) follows immediately from Eq. (A3).
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