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The Pippard coherence length ξ0 (the size of a Cooper pair) in two extreme type-I superconductors
(In and Sn) was determined directly through high-resolution measurement of the nonlocal elec-
trodynamic effect combining low-energy muon spin rotation spectroscopy and polarized neutron
reflectometry. The renormalization factor Z ≡ m∗

cp/2m (m∗

cp and m are the mass of the Cooper
pair and the electron, respectively) resulting from the electron-phonon interaction, and the temper-
ature dependent London penetration depth λL(T ) were determined as well. An expression linking
ξ0, Z and λL(0) is introduced and experimentally verified. This expression allows one to determine
experimentally the Pippard coherence length in any superconductor, independent of whether the
superconductor is local or nonlocal, conventional or unconventional.

PACS numbers:

I. INTRODUCTION.

A core concept of superconductivity is Cooper pair-
ing of electrons. Cooper pairs have a characteristic size
ξ0, the Pippard coherence length, and an effective mass
m∗

cp ≡ 2Zm, where m, being close to the free electron
mass me, is the Coulomb and band-structure effective
mass of the electrons and Z is the renormalization fac-
tor, a measure of the electron-boson coupling strength1.
Only weakly dependent on temperature T 2,3, ξ0 provides
a reference length for the fundamental length scales, in-
cluding the London penetration depth λL(T ), character-
izing the decay of a penetrating magnetic field. In units of
ξ0, λL(T ) determines whether the superconductor is de-
scribed by local or nonlocal electrodynamics, and λL(0)
determines whether it is type-I or type-II2. To ensure
consistency ξ0 and Z should be measured simultaneously.
As of today ξ0 and Z have not been simultaneously and
directly measured in any superconductor.

A phenomenon stemming immediately from the finite
size of the Cooper pairs and therefore providing a prin-
cipal possibility for the direct determination of ξ0 is an
effect of nonlocal electrodynamics in the profile of the
magnetic field B(z) (z is the distance from the sam-
ple surface) penetrating into the superconductor in the
Meissner state. This “nonlocal effect”, first predicted
by Pippard4 and following from the Bardeen-Cooper-
Schrieffer (BCS) theory, manifests itself in the deviation
of B(z) from the exponential decay applicable in the local
or London limit2. Moreover, B(z) in nonlocal supercon-

ductors is predicted to change sign at a certain depth.
Most superconductors are local and for those ξ0 cannot
be measured, although Kosztin and Leggett have shown
that under certain conditions the nonlocal effect may also
take place in unconventional superconductors with nodes
in the energy gap5.

When a superconductor is in the Meissner state, an
external magnetic field B0 is completely screened within
the sample interior due to a persistent current running
in a thin surface layer over which the field decays to
zero. The layer thickness is of the order of the “magnetic
penetration depth” λ ≡ B−1

0

∫

∞

0
B(z)dz. If the size of

the Cooper pairs is small (ξ0 ≪ λ), the relationship be-
tween the current density and the vector potential can be
treated as local. Then the field decays as exp(−z/λL),

where λL =
√

Λc2/4π is the London penetration depth
(c is the speed of light). In the London theory the phe-
nomenological parameter Λ is a function of the mass msc

and the number density nsc of superconducting electrons,
none of the two being well defined2. We want to remind
that msc is not mcp/2 and nsc is not 2ncp, where ncp is
number density of Cooper pairs. nsc is an ”effective num-
ber of electrons”, which can be determined from the value
of λ2

L (= mscc
2/4πnsce

2, e being the electron charge) as-
suming that msc = me

6. However, due to dimensional
correctness, the London’s formula correctly describes the
dependence of the penetration depth on the mass and
density of the Cooper pairs (λ2

L ∼ mcp/ncp).

The local approximation is applicable to superconduc-
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FIG. 1: Magnetic field profiles for aluminium at T = 0 calcu-
lated from London (local) and BCS (nonlocal) theories with
λL and ξ0 taken from Ref. 8.

tors with Ginzburg-Landau parameter κ & 17. For su-
perconductors with smaller κ the Cooper pair size is no
longer negligible and the current density is determined
by the vector potential averaged over a region of dimen-
sion ξ0. The nonlocality leads to deeper field penetration
and to distortion of the B(z) shape as was mentioned
above. The nonlocal effect is approximately proportional
to κ−1/3 and for majority superconductors is very small2;
it is most pronounced in extreme type-I or Pippard su-
perconductors, such as Al (κ ≈ 0.01), In (0.07) and Sn
(0.11). The field profiles for Al following from local and
nonlocal theories are shown in Fig. 1 (see also Ref. 3). In
the pure limit (elastic mean free path ℓ ≫ ξ0) nonlocal su-
perconductors B(z) is a function of λL(T ) and ξ0

2, each
of which depends on mass of Cooper pairs. Therefore,
knowledge of B(z) in such materials at different temper-
atures allows one to determine λL(T ) and ξ0 and to find
Z as it is shown in the next section. Determination of
the key microscopic parameters λL(T ), ξ0 and Z through
measurement of B(z) in two Pippard superconductors In
and Sn is the goal of this work. Two superconductors are
needed for mutual verification of experimental results. In
and Sn are chosen due to their convenience for experi-
ments performed in this work and because they are the
strongest nonlocal superconductors after Al.

An observation of the sign reversal in B(z) via mea-
surements of an AC magnetic field leaking though a 1.8
µm thick tin film was reported in Ref. 9. However, the
validity of this observation is questionable10. In a sub-
sequent paper11 the authors, as a matter of fact, discard
this result mentioning that they failed to reproduce it
with other 24 identically fabricated samples and by not
providing new data points for the ”good” sample.

A first determination of the penetration-layer charac-
teristics in a nonlocal superconductor has been achieved
by Doezema et al.12,13. B(z) in a single crystal Al sam-
ple was studied utilizing a resonance magnetoabsorption
technique. In this technique a fixed-frequency microwave
absorption is measured versus an external magnetic field
applied parallel to the sample surface. Due to the reso-
nant character, the technique is very sensitive. However,

for the same reason, only a few points of an effective
potential Veff (z) (linked with B(z) calculated from the
BCS theory) trapping quasiparticles in the penetration
layer were identified. Besides, the interpretation of the
experimental spectra requires detailed knowledge of pa-
rameters of the normal state, whose accuracy is difficult
to quantify. This work of Doezema et al. is an undis-
puted experimental masterpiece; its results are consistent
with the nonlocal theory, although obtained quantitative
parameters remain to be verified via independent mea-
surements.

The appearance of Polarized Neutron Reflectometry
(PNR)14,15 and Low-Energy Muon Spin Rotation spec-
troscopy (LE-µSR)16,17 techniques qualitatively changed
the landscape of studies of surface magnetization. In
particular, these techniques enable direct measurements

of B(z). The PNR and LE-µSR techniques are based
on different principles, hence complementing each other
and providing a possibility for mutual cross checking of
experimental results.

The nonlocal effect has been unambiguously confirmed
for the first time by LE-µSRmeasurements on Pb, Ta and
Nb3,18, and soon after by PNR measurements in In10. In
Refs. 3,18 a first attempt was made to infer ξ0 from B(z)
in Pb. However, due to an unresolved issue of systematic
errors only statistical errors were estimated. One can
overcome this problem by combining LE-µSR and PNR
measurements since in the latter the systematic errors
can be excluded. Therefore the method of our choice
is to combine LE-µSR and PNR measurements of B(z);
such an approach enables an independent verification of
the inferred values of ξ0 and λL and an estimate of their
total uncertainties.

The paper is organized as follows: Section II presents
an approach to deduce the renormalization factor Z; a
brief description of the LE-µSR and PNR techniques and
approaches for the treatment of experimental data are
presented in Section III; the sample characteristics are
described in Section IV; the experimental results are pre-
sented and discussed in Section V; Sec. VI contains a
summary and outlook.

II. RENORMALIZATION FACTOR

Electrons near the Fermi surface are dressed by a cloud
of virtual phonons, leading to an enhancement of their
effective mass and consequently to a reduction of the
Fermi velocity vF. Below the critical temperature Tc the
phonon-mediated attraction of electrons exceeding their
screened Coulomb repulsion results in the formation of
Cooper pairs. In BCS theory the electron-electron cou-
pling is weak: N(0)V ≪ 1, where V is the pairing poten-
tial and N(0) is the single-spin electron density of states
at the Fermi surface, which can be obtained from specific-
heat measurements. Eliashberg’s strong-coupling theory
(SCT) is free from this limitation and agrees better with
experimental results1.

In SCT the effective mass of electrons near the Fermi
surface is m∗ = Zm and consequently the effective mass



3

of the Cooper pairs is m∗

cp = 2Zm. Correspondingly (as
can be seen from the London’s formula for λL and the
Pippard/BCS formulas for ξ0

2), λL and ξ0 are renormal-
ized with respect to their values in the weak-coupling
(wc) limit as follows,

λL =
√
Z λwc

L , (1)

ξ0 = ξwc
0 /Z. (2)

If λL(T → 0) is measured, the factor Z can be inferred
from Eq. (1). Neglecting effects of anisotropy, λwc

L (0) can
be obtained using Λ for electrons not colliding with the
lattice19,20. This leads to

λwc
L (0) =

√

3c2

8πe2N(0)v2F
. (3)

On the other hand, if ξ0 is measured, Z can be cal-
culated from Eq. (2) using the BCS definition ξwc

0 ≡
~vF/π∆(0) = 0.18~vF/kBTc, where ∆(0) ≡ ∆(T = 0) is
the energy gap and h = ~× (2π) and kB are the Planck
and Boltzmann constant, respectively.
Unfortunately neither of these approaches is applica-

ble for quantitative analysis since reliable calculation of
vF (the Fermi velocity averaged over the free area of the
Fermi surface SF) is hardly possible due to the complex
topology of SF in polyvalent metals8,21. However, if both
λL(0) and ξ0 are known, one can eliminate vF, thus ob-
taining

Z =
c2~2

12.5πT 2
c e

2γ
· 1

λL(0)2ξ20
, (4)

where it is taken into account that N(0) = 3γ/2π2k2B,
γ being Sommerfeld constant (the electron heat capacity
coefficient) 21. Hence Eq. (4) allows one to determine
Z from B(z) in nonlocal materials. We want to stress
that Eq. (4) is independent of the relationship between
the current density and the vector potential and of the
specific nature of the electron-electron pairing. Therefore
Eq. (4) can be applied to any pure superconductor. For
impure superconductors the influence of the finite mean
free path can be accounted for via an effective range of
coherence ξ′(ℓ) = [(α/ξ0) + (1/ℓ)]−1, where α is a factor
on the order of unity2,4.
In SCT Z = 1+λm, where λm is a mass-enhancement

parameter tabulated in Ref. 1 on the basis of electron
tunneling experimental data. λm can also be obtained
from McMillan’s equation for Tc

8, but this approach is
less reliable1. Therefore, for nonlocal superconductors
Eq. (4) builds a bridge between the B(z) and the tun-
neling data, hence providing an independent test of the
values of λL and ξ0 inferred from the B(z) data. On the
other hand, the vast majority of superconductors are lo-
cal. For those Eq. (4) allows one to determine ξ0 from
the measured values of λL(0) and Z using, e.g., LE-µSR
and tunneling experiments, respectively.
III. EXPERIMENTAL TECHNIQUES

µSR and LE-µSR.

µSR makes use of polarized positive muons, µ+. Im-
planted into the host material they thermalize on a pico-
second time scale without loss of the spin-polarization.
Similar to NMR, the µ+ is acting as a local magnetic
micro-probe in the sample under investigation. The µ+

is a radioactive particle with a life-time of 2.2µs, decay-
ing into 3 particles (2 neutrinos and a positron). Due
to the parity violation of the weak decay, the positron
is preferentially emitted along the spin direction of the
µ+22. Hence, by time-ensemble averaging of 106 − 107

muons, precession signals can be recorded which reflect
the measured magnetic field at the muon site.
Surface muon based µSR uses energetic (∼ 4MeV) µ+

with a stopping range in solids on the sub-mm scale, im-
plying it is suitable for bulk studies. Low-energy µSR
(LE-µSR) uses 100% polarized µ+ of tunable energies
in the keV range to study local magnetic properties in
thin films. keV muons are obtained by a moderation
technique16,23. At these energies the implantation depth
of the µ+ ranges from a few nm to a few hundred nm. The
stopping range profile can be calculated by the Monte
Carlo program TRIM.SP, which treats the µ+ as a light
proton24,25.
Due to the “short” life-time of the muon, high qual-

ity statistics of data sets can be collected in a rather
short time (. 1 hour). Another advanced feature of µSR
is its ability to operate with small (few mm) or mosaic
samples26,27. Complications in using this technique for
B(z) measurements arise from the rather broad distribu-
tion of muon stopping distances3, which makes it difficult
to quantify uncertainties.

LE-µSR data treatment.

Typical time spectra of muon polarization P in the
normal and the Meissner states are presented in Fig. 2.
We use two models to interpret these spectra: a Gaussian
and a time-domain model.
In the Gaussian model the time dependence of the

muon polarization P (t) has the form

P (t) = w exp

[

−1

2
(σSCt)

2

]

cos(γµBSCt)+

(1− w) exp

[

−1

2
(σBGt)

2

]

cos(γµB0t) , (5)

where BSC is the magnetic field at the muon site inside
the sample, B0 is the applied field, σSC and σBG are
respective depolarization rates of the muons inside and
outside (background) the sample, and w is the statistical
weight of muons stopped in the sample (in our experi-
ments w ≥ 0.92). The fitting parameters are BSC , σSC ,
σBG and w. The model assumes a Gaussian spectrum
of the field; this is exact in the normal state (Fig. 2a).
In the Meissner state the model assumes different fields
inside and outside the sample, both fields having a Gaus-
sian spectrum. Although the real field distribution in the
sample is not Gaussian, it still can be approximated by
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FIG. 2: Time spectra of muons with energy of 22 keV at an
applied field of 47Oe in the normal state (a) and in the Meiss-
ner state (b) measured on the IN-1 sample. The curves are
fits to the Gaussian (a) and the time-domain (b) models. The
inserts present the field spectra P (B). In the insert in (b) bg is
the background contribution, while the curve represents two
Gaussian peaks to approximate the experimental spectrum.
A0 is the maximum observable asymmetry of the muon decay.

a Gaussian peak (line in the insert of Fig. 2b), which
makes the model sufficient for a qualitative analysis of
the B(E) data, where E is the implantation energy of
the muons. An additional uncertainty in using this model
for a nonuniform B(z) field arises from the distribution
of stopping distances3 because there is no strict criterion
to which depth z the field B extracted from the Gaussian
fit should be assigned. It can be the mean value 〈z〉 of
the implanted profile or its peak value zp. As shown in
ref. 3, the mean 〈z〉 is more appropriate for the analysis
of field profiles in nonlocal superconductors.
The time-domain model assumes a priori a specific

shape of the field profile following from theory. In the
case of nonlocal superconductivity it is the Pippard/BCS
magnetic field profile BBCS(z) ≡ BBCS(z, λL(T ), ξ0, ℓ).
The muon polarization P (t) in the time-domain model
has the form

P (t) = w exp
[

−(σSCt)
2/2

]

PBCS(t)+

(1− w) exp
[

−(σBGt)
2/2

]

cos(γµB0t) , (6)

where

PBCS(t) =

∫

∞

0

n(z) cos(γµB(z)t) dz , (7)

with

B(z) =

{

B0 when z < z0
BBCS(z − z0) when z ≥ z0

(8)

and z0 being the thickness of a “dead layer”, an ad-
justable parameter that accounts for imperfections of the
sample surface, such as an oxide layer and roughness, and
for uncertainties of the Monte Carlo code TRIM.SP used
for the calculation of the muon distribution n(z). In this
model the fitting parameter is not the field B, but the
parameters of the chosen model for the field profile. In
our case these parameters are λL and z0.

PNR.

PNR is an optical technique relying on the interaction
of polarized neutrons with the magnetized sample inte-
rior. By measuring the intensity of the reflected neutron
beam as a function of the incident neutron spin state and
its wave vector it is possible to determine the magnetic
field profile in a sample. At grazing angles of incidence
the interaction can be described by a one-dimensional op-
tical potential composed of a nuclear (neutron-nucleus in-
teraction) and a magnetic contribution. The latter arises
from the interaction of the neutron magnetic moment −→µ
and the magnetic field

−→
B inside the sample and is equal

to −−→µ · −→B . Therefore, the reflectivity R+ of neutrons

with spin parallel to
−→
B differs from the reflectivity R−

(the neutron spin is antiparallel to
−→
B ), and the difference

R+ −R− depends on B.
Upon tuning the nonmagnetic parameters of the sam-

ple (effective surface roughness ǫ, oxide layer and sample
thickness) and the neutron beam resolution on the re-
flectivity curve measured in the normal state, the spin
asymmetry s ≡ (R+ − R−)/(R+ + R−) is solely deter-
mined by the magnetic field profile B(z). The effective
roughness ǫ is a parameter of the model used to simu-
late the reflectivity in the normal state; it is related to
but not the same as the physical roughness, such as, e.g.,
the root-mean-square roughness (rms) σ. In particular,
ǫ ≈ σ in case of uniform, short wavelength roughness of
nanometer scale as in high quality polished surfaces, like
in our Sn sample; but these quantities are only weakly
related for the terrace-like surface structures, like in our
In samples.
PNR operates with a polarized neutron beam incident

under grazing angle θ near the critical angle θc of total ex-
ternal reflection. Therefore systematic instrumental er-
rors in the angle of incidence and reflectivity are easily
detected and corrected using Snell’s law for θc and unity
of the reflectivity for θ < θc, respectively. However, to
obtain high quality PNR data the sample surface should
be large (> 3 cm2), flat and mirror-like smooth. Another
challenge is associated with the necessity to use a highly
collimated beam, which leads to a decrease of the neu-
tron flux and therefore to a long exposure time (several
days) needed to collect data sets with appropriate statis-
tics. More technical details about neutron reflectometry
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FIG. 3: Magnetization of IN-1 and SN samples.

TABLE I: Parameters of the samples. d is the thickness, σ
is the AFM measured rms roughness, ̺ is the oxide layer
thickness inferred from the neutron reflectivity measurements
(see Ref.10); RRR is the residual resistivity ratio; ℓ is the
elastic mean free path.

sample type size(cm) d (µm) σ(nm) ̺(nm) RRR ℓ(µm)
IN-1 film 2×3 2.5 5 ≤1 560 11
IN-2 film Ø6 3.3 6 ≤1 730 14
SN cryst 1.5×2 2 · 103 2 7 >1300 >12

can be found in Ref. 28; details about using PNR for
measurements of B(z) in superconductors are available
in Ref. 10.

IV. SAMPLES

The indium samples were films deposited on an oxi-
dized silicon wafer (IN-1) and on a sapphire crystal (IN-
2) held at room temperature via thermal evaporation of
indium shots (Alfa-Aesar, 99.9999% purity) at a base
pressure . 5 · 10−9mbar. The IN-1 sample was used
for PNR measurements and for LE-µSR measurements
down to 2.9 K. The IN-2 sample was used for LE-µSR
measurements at lower temperatures. The tin sample
was a polished single crystal (Surface Preparation Labo-
ratory, The Netherlands); the same sample was used in
both LE-µSR and PNR experiments. Parameters of the
samples are listed in Table I.
Magnetization data measured with a SQUID magne-

tometer on IN-1 and SN samples are shown in Fig. 3.
The samples exhibit a clear-cut first-order phase tran-
sition and deep supercooling of the normal state under
decreasing field, hence testifying for the high purity of
the samples. The electrical resistance was measured with
a low-current AC bridge. The resistance data obtained
with the IN-2 sample are shown in Fig. 4; the very high
purity of this sample is also evident from the fact that
the resistance does not reach a temperature independent
residual value at temperatures down to Tc

29. The elas-
tic mean free path ℓ was calculated from the measured
residual resistivity ratio (RRR); the necessary for that
values of the product ℓρ (ρ is the resistivity) at room
temperature were taken from Ref. 30.

Typical AFM images and scans of indium and tin sam-
ples are shown in Fig. 5. The surface of the In films con-
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FIG. 4: Temperature dependence of electrical resistance of
IN-2 sample.
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FIG. 5: Typical AFM images and scans of the samples.

sists of nearly atomically flat terraces (the root-mean-
square roughness of the terrace areas is . 2 Å) with a
typical size of about 5µm with voids in between. This
size is much larger than ξ0 while the total area of the
voids does not exceed 3% of the sample surface. There-
fore the terrace surface structure should not affect the
electrodynamic properties of the films. The surface of
the polished Sn sample has a short-wavelength roughness
well characterized by the rms roughness.

The phase diagrams of the samples used in this work
along with other high purity Alfa-Aesar In and Sn sam-
ples are shown in Fig. 6. The measured data on the ther-
modynamic critical field Hc(T ) and Tc perfectly agree
with values reported in the literature31,32. For all sam-
ples the elastic mean free path ℓ > 10µm ≫ ξ0, therefore
the samples are type-I superconductors in the pure limit2.

IV. RESULTS AND DISCUSSION

The LE-µSR experiments were performed at the
µE4 beamline of the Swiss Muon Source at the Paul
Scherrer Institute33. The B(z) points obtained using the
Gaussian model for the depolarization of the precessing
muons along with the B(z) curve calculated from the lo-
cal and nonlocal theories for In and Sn are presented in
Figs. 7 and 8, respectively. The sample temperature was
determined in situ based on the Hc(T ) phase diagram
obtained from magnetization measurements (Fig. 6). As
can be seen in Figs. 7 and 8, the “Gaussian” B-points ex-
hibit a pronounced non-exponential depth dependence,
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FIG. 6: The phase diagrams of the indium and tin samples.

FIG. 7: Reduced field B/B0 in indium obtained from the LE-
µSR measurements using the Gaussian model. The depth is
the average stopping distance of the implanted muons calcu-
lated from the Monte Carlo TRIM.SP code. The solid line is
the field profile calculated from the nonlocal theory at T =
2.92 K with ξ0 = 380 nm, λL(0) = 30 nm and z0 = 4 nm, in-
ferred from the χ2 and the time-domain analysis. The dashed
line represents B(z)/B0 calculated from the local theory at
the same temperature with the same values of λL(0) and z0.
The insert presents the same field profiles on a linear scale.

consistent with the nonlocal effect. Discrepancies be-
tween the points and the “nonlocal” theoretical curves
are mainly caused by incomplete adequacy of the Gaus-
sian model. On the other hand, the qualitative consis-
tency of the “Gaussian” points with the nonlocal theory
justifies the application of the time-domain model, di-
rectly assuming the “nonlocal” shape of B(z) with λL as
an adjustable parameter.

In nonlocal superconductors the effective penetration
depth is λ3

eff ≈ λ2
Lξ0

2. Therefore either λL or ξ0 has to
be determined using an additional criterion. Since λeff is
mainly sensitive to λL and ξ0 depends weakly on temper-

FIG. 8: Reduced field B/B0 in tin obtained from the LE-µSR
measurements using the Gaussian model. The depth is the
average stopping distance of the implanted muons calculated
from the Monte Carlo TRIM.SP code. The solid line rep-
resents the field profile calculated from the nonlocal theory
at T =2.96 K with ξ0 =310 nm, λL(0) =36 nm and z0 =20
nm, inferred from the χ2 and the time-domain analysis. The
dashed line represents B(z)/B0 calculated from the local the-
ory at the same temperature with the same values of λL(0)
and z0. The insert presents the same field profiles on a linear
scale.
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ature, this parameter is ξ0. Its optimal value was found
from a χ2 analysis of the global fits (simultaneous fitting
of all implantation energy data sets at each temperature).
The fits were performed with different ξ0 chosen around
a theoretically estimated value of 377 nm for In8 and of
230 nm for Sn20. The graphs for χ2/NDF (NDF stands
for number of degrees of freedom) versus ξ0 are presented
in Fig. 9 for In and in Fig. 10 for Sn. Values of ξ0 at the
minima and the best estimate for ξ0 are given in the in-
serts. The best estimate for the Pippard coherence length
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FIG. 10: Sn sample: χ2/NDF versus ξ0 and the corresponding
polynomial fittings normalized to the minimum value for each
temperature. The shaded area indicates the range of the best
estimates for ξ0. The inserted table gives positions of the
minima and their average with the standard deviation.

FIG. 11: Reflectivity of neutrons polarized parallel (R+) and
antiparallel (R−) to the magnetic field in the Meissner state in
In at T = 0.3K and B0 = 275Oe. Insert (a): Measured spin
asymmetry (points) and its simulation with B(z) obtained
from the local (dashed curve) and nonlocal (solid curve) the-
ories with λL = 28 nm and ξ0 = 380 nm. Insert (b): Measured
(points) and simulated (curve) reflectivity in the normal state.

is 380± 30 nm (In) and 310± 25 nm (Sn). The values of
λL obtained from the global fits with these values of ξ0
are presented in summary graphs in Figs. 13 and 14.

The PNR measurements were performed on the
D3 reflectometer at the NRU reactor in Chalk River28.
The experimental data and simulations for the reflectiv-
ity of neutrons polarized parallel (R+) and antiparallel
(R−) to the magnetic field and for the spin asymme-
try (R+ −R−)/(R+ +R−) are presented in Fig. 11 and
12 for In and Sn, respectively. In agreement with our
LE-µSR results and previous PNR results10, the neutron
spin asymmetry (inserts (a) in Figs. 11 and 12) simulated
with B(z) calculated from the nonlocal theory matches
the experimental data significantly better than the sim-
ulation based on the London field profile. The “nonlo-
cal” B(z) was calculated with the values of ξ0 obtained

FIG. 12: Reflectivity of neutrons polarized parallel (R+) and
antiparallel (R−) to the magnetic field in the Meissner state
in Sn at T = 1.75K and B0 = 157Oe. Insert (a): Mea-
sured spin asymmetry (points) and its simulation with B(z)
obtained from the local (dashed curve) and nonlocal (solid
curve) theories with λL = 37.5 nm and ξ0 = 310 nm. Insert
(b): Measured (points) and simulated (curve) reflectivity in
the normal state.

FIG. 13: Temperature dependence of the London penetration
depth in indium determined from the LE-µSR (muons) and
PNR (neutrons) measurements.

from the LE-µSR data. The best match of the simu-
lated spin asymmetry with the experimental data was
achieved for λL(T = 0.3K) = 28.0± 2.5 nm (In) and for
λL(T = 1.75K) = 37.5± 3.8 nm (Sn).

Results for λL inferred from the LE-µSR and PNR
measurements for In and Sn are shown in Figs. 13 and
14, respectively. For both metals the values of λL(T ) are
consistent with each other and agree with the two-fluid
formula λ2(T ) = λ2(0)/[1−(T/Tc)

4]2. The best estimate
of λL(0) in In is 30± 2 nm; in Sn it is 36± 4 nm.

Having determined λL(0) and ξ0 we calculated Z from
Eq. (4). The results are summarized in table II, from
which it can be concluded that both for In and Sn the
values of Z obtained in this work agree with the values
obtained from electron tunneling data. This implies that
our results quantitatively confirm the nonlocal electrody-
namic effect and confirm the validity of Eq. (4).
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FIG. 14: The London penetration depth in tin determined
from the LE-µSR (muons) and PNR (neutrons) measure-
ments.

TABLE II: Values of London penetration depth λL, of Pip-
pard coherence length ξ0 and of the renormalization factor Z
in In and Sn obtained in this work. Z in Ref. 1 was obtained
from tunneling spectroscopy data; Z in Ref. 8 was deduced
from the McMillan’s equation for Tc.

sample λL(0) (nm) ξ0 (nm) Z Z1 Z8

In 30± 2 380± 30 2± 0.4 1.81 1.55
Sn 36± 4 310± 25 1.8± 0.5 1.72

V. SUMMARY AND OUTLOOK

High resolution measurements of the Meissner state
magnetic field profiles B(z, T ) were performed, for the
first time, in two extreme type-I superconductors, in-
dium and tin, combining LE-µSR and PNR measure-
ments. The B(z) profiles quantitatively confirm the Pip-
pard/BCS nonlocal electrodynamic effect predicted by
Pippard 6 decades ago. The B(z) data were used to de-
termine the Pippard coherence length ξ0, the renormal-

ization factor Z for the electron-phonon mass enhance-
ment of the Cooper pairs, and the London penetration

depth λL(T ) in In and Sn. An equation (4) linking ξ0,
λL(0) and Z is introduced and experimentally verified.
As demonstrated, in nonlocal superconductors this ex-
pression allows one to infer the renormalization factor Z
from the B(z) data. In local superconductors, including
unconventional materials, for which ξ0 cannot be mea-
sured, Eq. (4) allows one to determine ξ0 from measured
λL(0) utilizing, e.g., LE-µSR spectroscopy and Z using,
e.g., electron tunneling spectroscopy.
Finally it is worth noting that in type-II superconduc-

tors the size of the Cooper pairs can, in principle, be
deduced from µSR spectra measured in the mixed state.
However a specific procedure for that still needs to be
developed34. Eq. (4) can be used to verify such a proce-
dure.
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