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Abstract 

Using a combination of Density Functional Theory (DFT), classical potentials, Molecular 

Dynamics (MD), and Nudged Elastic Band (NEB) calculations, we explore the diffusion of 

xenon in uranium dioxide (UO2). We compare migration barriers of empirical potentials with 

DFT by performing NEB calculations and subsequently we use the DFT-validated empirical 

potentials to calculate vacancy clusters, with and without xenon, to determine the migration path 

and barrier of xenon in bulk UO2. We find (i) two empirical potentials out of four tested agree 

qualitatively with DFT derived energetics for Schottky defect migration, (ii) through the use of 

molecular dynamics with empirical potentials, we have found a new path for the diffusion of 

xenon-tetravacancy clusters (Xe + 2 VU + 2 VO), (iii) this new path has an energy barrier 

significantly lower than previously reported paths by nearly 1 eV, (iv) we examine the physical 

contributions to the migration pathway and find the barrier is largely electrostatic and that xenon 

contributes very little to the barrier height, (v) once a uranium vacancy attaches to a xenon-

Schottky defect, the resulting xenon-tetravacancy cluster is strongly bound, and (vi) like xenon 

in a tetravacancy, a xenon-double Schottky defect can diffuse in a concerted manor with a 

comparable barrier to xenon in a tetravacancy, but two of the oxygen vacancies are only weakly 

bound to the defect. 



2 
 

I.  Introduction 

In the nuclear fuel uranium dioxide (UO2), xenon atoms are created during the decay process of 

uranium. Xenon is highly insoluble in UO2 and coalesces into bubbles, swelling the material, 

degrading its properties, and causing it to fail.1 An important component to a more complete 

understanding of how xenon coalesces into clusters is how the individual xenon atoms diffuse. 

Miekeley and Felix measured the activation barrier for xenon diffusion in stoichiometric UO2,2 

by extracting diffusion coefficients between 950 and 1700 °C. For stoichiometric UO2, they 

measure an activation energy of 3.9 ± 0.4 eV (Miekeley and Felix also found a large variation of 

activation energy with stoichiometry, but we concentrate on stoichiometric UO2 in this work).2 

However, the atomistic mechanism of how individual xenon atoms diffuse in the lattice to form 

bubbles is still a subject of active research. 

There exist many possibilities for the location of xenon in UO2 and the pathways it can take for 

diffusion. One possibility is that xenon diffuses interstitially, however, the octahedral interstitial 

position in uranium dioxide is highly strained and, consequently, energetically unfavorable.3 

Another possibility is that xenon diffuses on either the cation or anion sublattice. Matzke et al. 

addressed this possibility through a series of experiments.4 By adding trivalent dopants to UO2, 

vacancies were introduced into the oxygen sublattice, speeding diffusion among oxygen sites. 

Similarly, pentavalent dopants were added to UO2 to produce vacancies in the uranium 

sublattice. However, xenon diffusion was not aided by either set of dopants. These results 

suggest that xenon atoms do not diffuse solely in either the cation or anion sublattice5, instead 

diffusing in a cluster of vacancies. 

The smallest, charge neutral group of vacancies in UO2 is a Schottky defect cluster (SD). A SD 

is a very favorable site for xenon. For example, if xenon occupied an interstitial site (9.7 eV / Xe 
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atom), it would be energetically favorable to create a SD (4.09 eV / SD) and then have the xenon 

atom occupy that SD (1.06 eV / atom).3. SDs have more vacant space than an interstitial for the 

large xenon atoms, which roughly occupy the uranium position of the SD, and subsequently 

create less strain. A possible mechanism for xenon to diffuse in the SD is the xenon atom swaps 

sites with a neighboring uranium atom. However, the volume of a Schottky defect cluster (the 

volume of UO2 primitive cell) is about 42 Å3, very close to the van der Waals volume of xenon,6 

meaning there while the SD is more accommodating of xenon than an interstitial, there is not 

much space for movement of the xenon atom in a SD. Therefore, it is likely that SDs are too 

small to be solely responsible for xenon diffusion.7,8, 9  

The number of vacancies required for xenon diffusion or the mechanism by which the xenon-

vacancy complex diffuse is not known experimentally. Because of the difficulty of measuring 

atomic scale properties, calculating these properties in UO2 has been of interest using both 

Density Functional Theory (DFT) 7,10,11,12,13,14,15,16,17,18,19 as well as empirical potentials. 8,9,11,12, 

19,20,21,22,23 Several theoretical investigations of xenon in UO2 have studied diffusion via a 

tetravacancy (TV, 2 VU + 2 VO) mechanism.7,8,9 These previous investigations have proposed a 

variety of diffusion pathways for xenon using empirical potentials, Nudged Elastic Band (NEB), 

and constrained relaxations. While overall xenon transport in UO2 has a large activation energy, 

that barrier can be attributed to uranium vacancy migration within the defect cluster rather than 

xenon migration. Grimes et al.9  showed that xenon migration within a TV (XeTV) has a lower 

barrier than uranium migration, and therefore, uranium migration is the limiting factor for xenon 

transport. Yun et al.7  proposed that xenon would be immobile in a Schottky defect until a 

(second) uranium vacancy approached the xenon-Schottky defect cluster. The xenon atom could 

move from the first uranium vacancy to the second, leaving the first uranium vacancy to 
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dissociate from the SD. In this way, xenon diffusion would be dependent on isolated uranium 

vacancy diffusion. Govers et al.8 proposed that for xenon to diffuse it would occupy a 

tetravacancy and the xenon-tetravacancy complex would diffuse together through the “migration 

of the whole cluster.” The xenon atom could hop between the two uranium vacancies and then 

the empty uranium vacancy could diffuse to a new site (still neighboring the xenon), yielding net 

motion of the defect.  

Anderson et al.18 have addressed the problem of xenon diffusion in UO2 using DFT. They 

calculate xenon diffusion in a XeUమ defect, as an approximation for xenon in a tetravacancy 

because they were unable to achieve reliable barriers for XeUమO or XeUమOమ clusters. They find a 

pathway similar to that of Govers et al. (Ref. 8), with barriers between 3.64 and 6.56 eV, 

depending on several factors (Jahn-Teller distortion, charged/neutral calculation, and supercell 

size). All of these previous computational studies have found that xenon migration between 

uranium vacancies has a small barrier compared to uranium vacancy migration and that the 

migration of the uranium vacancies is the rate limiting step. 

More recently, Liu et al.19 used a wholly different migration pathway for xenon in UO2: they 

calculated the barrier of xenon with DFT in the thermodynamically unstable interstitial position. 

In this pathway, xenon moves from the interstitial site into an oxygen position, displacing an 

oxygen atom. This oxygen atom moves to a neighboring oxygen site, displacing a second oxygen 

atom. This second oxygen atom then occupies an interstitial site. The barrier from DFT is 1.6 eV, 

much lower than the experimental diffusion barrier (neglecting the energy needed to place xenon 

in an interstitial). 
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We seek to find which, if any, of these descriptions of xenon migration is accurate. Because 

XeTVs are large and are difficult to converge fully with DFT+U due to computational expense, 

we calculate the diffusion barriers with empirical potentials. To ensure the accuracy of our 

calculations, we first benchmark several pair-potentials against DFT energetics for smaller 

defects such as Schottky defects where DFT calculations are feasible. Then we use these 

empirical potentials along with NEB calculations to compare the energetics of several different 

xenon diffusion mechanisms.  

We benchmark four empirical potentials versus DFT: Arima et al.24, Tiwary et al.11, Morelon et 

al.25, and Basak et al.26 For notational simplicity, we refer to these potentials just by the names of 

the first authors of Refs 24, 11, 25, and 26.We find that the Basak and Morelon potentials 

compare favorably with density functional theory for the diffusion of a Schottky defect cluster so 

we use these potentials to calculate the XeTV diffusion barriers. For the xenon components of 

the potentials, we use the empirical potentials of Geng et al.27 and Chartier et al.,28 which have 

been created to add xenon interactions to the Basak and Morelon potentials, respectively. We 

observe a previously unreported path for xenon-tetravacancy migration using molecular 

dynamics with the Basak/Geng potential. This path has a lower energy barrier than all previously 

reported xenon-tetravacancy paths. We examine the possibility of a uranium vacancy 

dissociating from the xenon-tetravacancy cluster and find that once a XeTV cluster has formed, 

large barriers will likely keep the individual point defects bound together in a cluster. We also 

calculate xenon-double Schottky defect migration and find it has a comparable barrier than 

xenon-tetravacancy migration and the oxygen vacancies are weakly bound to the defect.  
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II.  Methodology 

A. DFT 

We calculate defects in uranium dioxide, including vacancy clusters, with and without xenon 

atoms, using density functional theory (DFT). For DFT calculations, we use spin-polarized DFT 

calculations via the Vienna Ab Initio Simulation Package (VASP)29,30,31,32. We use the 

generalized gradient approximation of Perdew and Wang33 with the effective +U correction of 

3.99 eV3,34 (to the uranium f states) for strongly correlated systems as described by Dudarev35 

(here, spin-orbit coupling is neglected). Our energy cutoff was 500 eV with a 2x2x2 gamma 

centered k-point grid. We compared our total energies with those from a Monkhorst-Pack k-point 

grid and found no appreciable difference from the gamma centered grid. We use 96 atom 

supercells. For the perfect UO2 lattice, we used the “U-ramping” method described by Meredig 

et al.36  from a value of U-J of 0 eV to 3.99 eV to ensure low energy orbital occupations were 

achieved in the DFT+U calculation. For defect calculations, we start from the bulk relaxed 

supercell and add the defects without U-ramping (only a U-J = 3.99 eV calculation), as described 

in Ref. 3. For UO2, this method of defect calculation has been found to be on par with a full U-

ramping calculation.3 We use nudged elastic band (NEB) calculations37 to find migration 

barriers, with 5 beads for oxygen motion and 7 beads for uranium motion. The U-ramping 

method is not used for the individual NEB beads, but rather, each calculation reads in the wave 

functions and charge densities of the initial or final configuration (whichever is closest).  

B. Empirical potentials 

We also calculate vacancy clusters, with and without xenon, using empirical potentials. For these 

empirical potential calculations, we use the Gulp code38 to evaluate defect energies as well as 
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migration energies via NEB calculations. While a core-shell potential is more likely to be able to 

accurately replicate vibrational properties, rigid-ion potentials are able to find accurate defect 

energetics (see the Morelon potential below), and we are interested in defect behavior in UO2, 

therefore we utilize several rigid-ion UO2 empirical potentials: Basak,26 Morelon,25 Arima,24 and 

Tiwary.11 In a forthcoming paper, we perform a detailed comparison of defects with core-shell 

potentials.39 The Arima potential was parameterized with room temperature compressibility and 

thermal expansion data to achieve good heat capacities in UO2 (U-O and O-O: Buckingham, 

formal charges). The Tiwary potential was fit to DFT+U data of uranium dioxide and splined 

with the ZBL potential40 for use in cascade simulations (U-O: ZBL splined to Buckingham, O-O: 

ZBL splined to -3rd order polynomial- ଵ௥ల, formal charges). The Basak potential was parameterized 

against thermal expansion and achieves good high temperature properties (lattice parameters, 

thermal expansion and isothermal compressibility) in UO2 (O-O, U-O, and U-U: Buckingham, 

U-O: Morse, non-formal charges). The Morelon potential was fit to experimental defect and 

migration energies of point defects in UO2, which is similar to what we will be examining in this 

paper (O-O: Buckingham Four range, U-O: Buckingham, non-formal charges). The Morelon 

potential includes a Morse interaction for the U-O pair to capture the partly-covalent behavior of 

the uranium and oxygen ions. None of these potentials were originally formulated with Xe-O and 

Xe-U potentials. However, Geng et al.27 have created Xe-O and Xe-U potentials for use with the 

Basak potential. The Xe-O potential was fit to DFT calculations of XeO3 in the hypothetical 

Cu3Au structure and the Xe-U was fit to the same form as Jackson et al.,41 a Born-Meyer 

function, starting with the potential parameters of Jackson et al. and refining them with 

additional ab initio calculations. Chartier et al.28 have created Xe-O and Xe-U potentials for use 

with the Morelon potential fit to four xenon-containing defects calculated from DFT (we note 
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that the Morelon and Chartier potentials were fit to quantities similar to the ones we will use to 

validate the potential). Additionally, in some cases we perform calculations with different 

combinations of these potentials (i.e. Basak UO2 potential with Chartier xenon potentials, or 

Morelon UO2 with Geng xenon potentials). We use the supercell method where the simulation 

cell is periodic in all three directions, so the defect is in a periodic array, but is far enough away 

from its images that the interactions are small. When calculating charged defects, a charge 

neutralizing background is added. We use supercells of 96 atoms for direct comparison with our 

DFT calculations and 768 atoms for xenon diffusion calculations. 

Determining the correct, low-energy diffusion pathway is often difficult in solids. One could try 

to guess the correct pathway, but often the lowest energy pathway is not obvious and difficult to 

find via simple intuition. There are methods that search for low lying transition states, such as the 

dimer method,42 without prior knowledge of the pathway or even the end state. However, for 

problems such as diffusion in UO2, use of these methods becomes problematic: the barriers of 

uranium vacancy migration in the tetravacancy are large while the oxygen barriers are relatively 

small. Irrelevant oxygen hops would be easily found due to the low barriers and the important 

uranium hops would be difficult to find. There is a third option: use molecular dynamics to 

observe the diffusion pathway. Molecular dynamics has the same “low barrier problem”, but can 

be run for a long time frame such that the xenon migration path is eventually observed. We use 

LAMMPS43 for molecular dynamics at artificially high temperature (3000 K) for 6 ns in order to 

accelerate the xenon diffusion process and subsequently calculate the energetics of the MD 

pathway with NEB at T = 0 K to find the transition states and the barrier energies.  

C. Supercell convergence 
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For DFT calculations, the expense of the calculation limits the size of supercell that is used. For 

empirical calculations, the size limit is much less severe. We perform convergence tests on the 

combined Basak/Geng potentials to determine how large our supercells need to be for the 

migration of clusters of point defects. We calculate defect binding energies and migration 

barriers with different supercells (from 2x2x2 conventional fluorite cubic cells with 96 atoms to 

6x6x6 cells with 2592 atoms). The binding energies are also calculated using the Mott-Littleton 

technique.44 In the Mott-Littleton technique, the calculation is divided by two concentric spheres. 

In the inner sphere, Region I, atoms are explicitly relaxed, while atoms within the second sphere, 

Region IIa, are assumed to only be weakly perturbed such that atoms will respond to the 

perturbation in a harmonic way. Outside of the second sphere, Region IIb, the atoms extend 

infinitely, but are not explicitly calculated. 

Point defects calculated with empirical potentials are often calculated using the Mott-Littleton 

technique to calculate defects in the dilute limit,22 so we compared our supercell energetics with 

the Mott-Littleton energetics to ensure proper convergence. Figure 1 shows binding energy of a 

uranium vacancy to a xenon-Schottky defect cluster. The binding energies from largest supercell 

and the largest Mott-Littleton calculations agree within 0.57%, showing that the periodic images 

of the supercell technique have negligible interactions. The binding energy is converged within 

31 meV/defect (0.9%) for the 4x4x4 supercell with respect to the 6x6x6 supercell while 2x2x2 

supercell is under-converged by 228 meV/defect (6.6%). We calculated migration barriers of a 

xenon-tetravacancy cluster with a 4x4x4 and 6x6x6 supercell (a detailed description of this 

pathway is below). The two supercells have nearly identical barriers and differ by only 155 

meV/defect (3.3%) at the highest barrier. A 4x4x4 supercell calculation of these defects is 

reasonably converged and will allow for accurate calculations of many different defects. A 2x2x2 
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supercell, equivalent in size to our largest DFT calculation, was small enough that the interaction 

of the defect with its images caused issues with the convergence of the NEB calculations. 

 

Figure 1:  Convergence of binding energy of VU to XeSD. The supercell method is tested along 
with the Mott-Littleton method. The Mott-Littleton is often used to calculate defect energetics in 
the dilute limit for empirical potentials, but the supercell technique proves to be as reliable. The 
relaxation size corresponds to the size of the calculation that is being explicitly relaxed: the 
supercell lattice parameter for pure UO2 in the supercell method and the Region I radius for the 
Mott-Littleton technique. For the Mott-Littleton calculations, the Region IIa radius is the Region 
I radius plus 11Å. We find that a 4x4x4 supercell (768 atoms, a0 = 21.82 Å) is sufficiently 
converged for binding energetics. For 2x2x2 supercells (96 atoms, a0 = 10.91 Å), equivalent in 
size to our largest DFT calculation, the binding energy is overestimated by 0.2 eV.  

 

III.  Results 

A.  Benchmarking Pair-Potentials against DFT energetics 

We begin by comparing empirical potential energetics with DFT energetics for a series of defects 

and migration barriers in UO2. We have recently performed an extensive study of noble gas 

atoms and Schottky defects in UO2 using the DFT+U methodology3 (we will refer to these 

DFT+U calculations throughout this paper simply as DFT calculations). While these DFT 
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calculations are able to give insight into small, simple defects in UO2, a well converged 

calculation of more complex defects (as in this paper) requires larger supercells. which can be 

computationally prohibitive. As discussed above, xenon is too large to diffuse in a Schottky 

defect and migration in UO2 requires a tetravacancy. While a tetravacancy can be calculated 

within the limitations of DFT, we will show that the diffusion pathway is quite spatially extended 

and therefore impractical to calculate within DFT. Empirical potential calculations can 

accommodate the large supercell necessary for well converged defect energetics, but lack the 

predictive power of DFT calculations. So to bridge this gap between empirical potentials and 

DFT, we compare small, simple defects using both DFT and empirical potentials in order to find 

which empirical potentials (if any) are in energetic agreement with our DFT calculations.  We 

then use the best potential(s) instead of DFT for spatially extended calculations where DFT 

would be computationally prohibitive.   

We compare DFT with UO2 potentials from Arima24, Tiwary11, Morelon25, and Basak26. We first 

calculate the diffusion path of a Schottky defect with both methods. The geometry of the cluster 

can be defined by the positions of the two oxygen vacancies: 1st, 2nd, or 3rd nearest neighbors, 

relative to each other (we refer to these geometries as SD1, SD2, and SD3 respectively). The 

Schottky defect can transition from SD1 to SD2, as well as from SD2 to SD3 via the migration 

of an oxygen atom. However, these transformations are not sufficient for diffusion of a SD. In 

order for the empty Schottky defect to diffuse throughout the lattice, a uranium hop can 

transform SD1 into another SD1 via motion of the uranium atom (and, hence, the uranium 

vacancy) between the two oxygen vacancies. We calculate the migration of SD1 ՜ SD1’ (VU 

hop), SD1’ ՜ SD2 (VO hop), and SD2 ՜ SD3 (VO hop) using both DFT and empirical 

potentials. 



12 
 

Figure 2 shows the diffusion path of the constituent defects in the Schottky defect cluster. Table 

1 shows the migration barriers along this pathway of Schottky defect migration calculated with 

DFT+U and the empirical potentials, relative to the lowest energy configuration. The lowest 

energy configuration for DFT, Basak, Morelon, and Arima was SD2 and for Tiwary was SD1. 

Because the limiting step for xenon diffusion in UO2 is the uranium vacancy migration, it is most 

important that the potential agrees with DFT for the uranium barrier. Both DFT and the empirical 

potentials find that the barrier of oxygen vacancy migration is much smaller than the uranium 

barrier. Relative to the DFT calculated barriers, the Arima potential overestimates the uranium 

and oxygen barriers significantly and the Tiwary potential underestimates the barriers. Both the 

Morelon and the Basak potentials give good agreement with DFT for the uranium vacancy 

barrier for SD motion (the Morelon potential was fit to point defect energetics and barriers and 

unsurprisingly performs well); therefore, we will use the Basak and Morelon potentials to 

calculate the XeTV diffusion in UO2 rather than the computationally expensive DFT. 

 

 

Figure 2: Migration path of a Schottky defect cluster. Only vacancies are shown. The large 
wireframe cube is a single unit cell of UO2 and the inner wireframe cube corresponds to the 
oxygen atom positions. The gray cubes are VU and the small red cubes are VO. Hop 1 
corresponds to a uranium vacancy hop (SD1 ՜ SD1), hops 2 and 3 correspond to an oxygen 
vacancy hop (SD1 ՜ SD2 and SD2 ՜ SD3, respectively).  

1 2 3 

SD1 SD1 SD2 SD3 
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Table 1: Relative formation energies of Schottky defects and migration barrier energies from 
DFT+U and empirical potential NEB calculations, calculated with 93 atoms. The formation 
energies are relative to the lowest energy SD configuration. Hop 1 corresponds to a uranium 
vacancy hop (SD1 ՜ SD1), hops 2 and 3 correspond to an oxygen vacancy hop (SD1 ՜ SD2 and 
SD2 ՜ SD3, respectively). The Arima potential overestimates all barrier energies when 
compared to DFT+U. The Tiwary potential underestimates all of the barrier energies. The 
Morelon and Basak potentials have good agreement with the DFT+U uranium diffusion barrier. 
The Morelon potential, which was fit to experimental defect energetics and migration barriers, 
agrees well with DFT+U for both the barrier heights as well as the defect energetics.   

Schottky defect barriers for DFT+U and empirical potentials 

Configuration DFT+U Arima24 Tiwary11 Morelon25 Basak26 
Defect formation energies (eV/defect)
SD1 0.76 2.10 0.00 0.69 1.79 
SD2 0.00 0.00 0.71 0.00 0.00 
SD3 0.12 0.38 0.69 0.00 0.32 
Barrier height w.r.t. lowest energy defect (eV/defect)
1) U Hop  5.88 12.43 3.15 5.83 6.72 
2) O Hop 1.77 3.77 1.29 2.00 2.14 
3) O Hop 1.34 3.76 1.32 1.92 1.96 

 

 

B.  Diffusion of XeU and Xe-Schottky Defect 

Although these UO2 potentials were not developed with a xenon component, Chartier28 and 

Geng27 created Xe-U and Xe-O potentials for the Morelon and Basak potentials, respectively, 

which enables the calculation of xenon in UO2. Firstly, we check the assumption that xenon is 

unable to diffuse with only a single uranium vacancy.5 We calculated possible pathways of 

xenon diffusion both in a single uranium vacancy and in a Schottky defect, using the nudged 

elastic band method with the Basak/Geng and Morelon/Chartier potentials. We calculated an 

exchange between the xenon atom and a neighboring uranium ion. The barrier for the exchange 

is over 12 eV for Basak/Geng and 7 eV for Morelon/Chartier, rendering xenon in these defects 
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essentially immobile with respect to thermally activated diffusion. Xenon is so large that 

diffusion is very difficult without a second uranium vacancy9 needed to create a tetravacancy 

(TV). 

C.  Diffusion of Tetravacancy and Xe-Tetravacancy 

Because xenon is immobile in a single uranium vacancy or even a SD, we next turn to the 

calculation of diffusion barriers for the migration of a xenon-tetravacancy cluster. Since vacancy 

clusters, like tetravacancies, have many possible configurations and component hops for the 

cluster to move, we must carefully define a migration energy. For each pathway considered, we 

define the migration energy (ܧ௕) as the transition state of the largest barrier, ்ܧௌ௉௘௔௞, with respect 

to the energy of the lowest energy configuration of the vacancy cluster, ܧ௅ா.  

௕ܧ  ൌ ௌ௉௘௔௞்ܧ  െ ܧ௅ா   (1) 

In our calculations of xenon diffusion, we assume that the material has already been damaged by 

the creation of xenon atoms such many small vacancy clusters (SD, TV, etc.) exist in the 

material. With interatomic potentials, we cannot determine the thermodynamically preferred trap 

site because there is no unambiguous way to calculate the formation energy of charged defects.8 

Therefore, we do not consider the formation energy of these defect clusters and cannot compare 

directly with experimental activation energies, but rather can only distinguish pathways by which 

has the lowest barrier according to Eq. (1).  

We examine pathways for TV migration with and without xenon present. In the TV and the 

XeTV, we have enumerated the possible oxygen vacancy configurations around two nearest 

neighbor uranium vacancies and found for the lowest energy configuration, the oxygen vacancies 

are located between the uranium vacancies. An intuitive pathway for uranium vacancy diffusion 
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within the TV and XeTV is for one uranium vacancy to hop directly to a different nearest 

neighbor position relative to the second uranium vacancy. This pathway was suggested by 

Govers et al. for the XeTV8, and we call this the direct path. Figure 3 shows the direct path for 

the XeTV and the corresponding energetic barriers. For the XeTV, the xenon atom roughly 

occupies the uranium vacancy position for Basak/Geng and is halfway between uranium 

vacancies for Morelon/Chartier. Without xenon, the energetic barrier of the direct path is 3.0 eV 

for the Basak/Geng potential and 4.0 eV Morelon/Chartier potential, but when xenon is added to 

the tetravacancy, the barriers increase, somewhat dramatically, to 5.6 eV for both sets of 

potentials.  This direct path migration barrier is quite large, suggesting that there is a lower 

energy pathway for migration energy of xenon.  

To investigate novel low energy pathways, we have used molecular dynamics to evolve xenon in 

a TV over time using the Basak/Geng potential. Molecular dynamics is not viable for xenon 

diffusion over long distances because the barriers are so large that they are infrequently 

overcome. To accelerate the xenon diffusion process we use an artificially high temperature 

(3000 K). Even at this high temperature a hop of the uranium vacancies in the XeTV is rare; 

however there were a small amount of hops observed. In the molecular dynamics simulation, we 

find a new, previously-unsuspected diffusion pathway: the uranium vacancy begins in a first 

nearest neighbor position with respect to the xenon atom. The uranium vacancy partly dissociates 

from the TV by hopping to a second nearest neighbor position. Instead of fully dissociating from 

the TV, the uranium vacancy then hops to a new first nearest neighbor position with respect to 

the xenon atom. We call this new pathway the indirect pathway, and we use nudged elastic band 

calculations of this indirect pathway to determine the migration barriers. However, because of 

the extended nature of this pathway, well converged DFT calculations of this pathway are not 
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practical so we focus on empirical potential calculations. Figure 4 shows the indirect pathway for 

the XeTV and the energetic barriers of each of the component hops. The largest barriers 

correspond to the migration of the uranium vacancies, while the oxygen and xenon barriers are 

much smaller. In contrast to the direct pathway, adding xenon only slightly increases the 

diffusion barriers. The barrier is 4.2 eV without xenon and 4.5 eV with xenon for the 

Basak/Geng potential. This new pathway is very different from the path proposed by Andersson 

et al.,18 which only had a single uranium hop. The indirect pathway also differs from the 

mechanism proposed by Yun et al.7 in that the empty uranium vacancy need not diffuse away 

from xenon atom. This new indirect pathway barrier is significantly lower than that of the 

previously-proposed direct pathway when xenon is present (by 0.9 eV Basak/Geng, 0.5 eV 

Morelon/Chartier).  

Interestingly, the presence of a xenon atom greatly affects the barrier for the direct pathway 

while the indirect pathway is comparatively unaffected. There are a few possible reasons that the 

addition of a xenon atom could change which pathway is more energetically favorable. For the 

direct path, the diffusing uranium atom comes closer to the xenon atom than for the indirect 

pathway. The difference in barrier energies between the two pathways could be caused by the 

Xe-O and Xe-U interactions being stronger for the direct pathway. The difference could also be 

attributed to electrostatic interactions or even interactions among uranium and oxygen atoms (U-

O, U-U, and O-O interactions). In the next section, we consider separately each of these various 

contributions. 
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Figure 3. (a): Xenon-tetravacancy migration in UO2 along the direct pathway. The black spheres 
are XeU, the gray cubes are VU, the small red cubes are VO. The large wireframe cube is a single 
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unit cell of UO2 and the inner wireframe cube corresponds to the oxygen atom positions. The 
uranium vacancy hops directly from a nearest neighbor position to xenon to a second nearest 
neighbor position to xenon. Two oxygen vacancies hop and the defect returns to its original 
configuration. The oxygen hops experience a complicated potential landscape. The xenon atom 
roughly occupies the uranium vacancy position for Basak/Geng and lies directly between 
uranium vacancies for Morelon/Chartier. (b): The energy barriers of xenon-TV migration. The 
largest barrier corresponds to uranium migration (5.6 eV). Below, we find that the Basak 
potential has a small metastable state for uranium motion at the where the uranium is in an 
interstitial. The interstitial position is not stable for this path. 
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Figure 4: (a): Xenon-tetravacancy migration in UO2 along the indirect pathway. The black 
spheres are XeU, the gray cubes are VU, and the small red cubes are VO. The large wireframe 
cube is a single unit cell of UO2 and the inner wireframe cube corresponds to the oxygen atom 
positions. (1) xenon moves from one uranium vacancy to the other, (2) the uranium vacancy 
hops to a second nearest neighbor position, (3&4) the oxygen vacancies rearrange, (5) the 
uranium vacancy moves to a new first nearest neighbor position, and (6) xenon can move into 
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the empty uranium vacancy. (b): The energy barriers of xenon-TV migration for the Basak/Geng 
and Morelon/Chartier potentials. The xenon barriers are very small (Basak/Geng: 0.5 eV, 
Morelon/Chartier: no barrier) and the largest barrier corresponds to uranium migration 
(Basak/Geng: 4.5 eV, Morelon/Chartier: 4.9 eV). The oxygen vacancy steps have small barriers. 
The dip in the uranium hops correspond to uranium occupying an interstitial position which is a 
small local minimum. (c): The energy barriers of xenon-TV migration for the Morelon/Geng and 
Basak/Chartier potentials. The xenon atoms are located between uranium vacancies, so there are 
no barriers. The differences in the energies between the potentials are largely due to the different 
xenon potentials (Geng and Chartier) rather than the UO2 potential. 

 

D.  Energetic components of diffusion barriers 

We next examine the energetic components (electrostatic and different pair interactions) of the 

calculated Basak/Geng XeTV barrier energies in order to better understand the physical 

contribution to migration barriers. We analyze the energetics of the barriers by examining the 

component energies that make up the barrier: electrostatic (ܧ௠௘ ), xenon interactions (ܧ௠௑௘), and 

uranium and oxygen interactions (ܧ௠௎ைమ). The sum of these three energetic contributions is the 

full migration barrier energy, ܧ௕. 

௕ܧ  ൌ ௠௘ܧ ൅ ௠௑௘ܧ ൅  ௠௎ைమ (2)ܧ

Figure 5 shows the components of the migration barriers of the direct and indirect pathways, 

with and without xenon present. The presence of xenon causes the direct pathway to have larger 

unfavorable electrostatic interactions in transition state. For the indirect pathway, adding xenon 

incurs a small electrostatic penalty while the U-O and O-O interaction decreases a small amount. 

The diffusing uranium atom moves closer to the xenon in the direct pathway, which would 

increase the xenon interaction energy, but the xenon interactions are the smallest component for 

both pathways. Rather than being a direct result of Xe-O and Xe-U interactions, the indirect 

pathway is lower in energy when xenon is present because of the very large electrostatic penalty 
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for the direct pathway. The unfavorable XeTV direct pathway is due to the fact that the presence 

of xenon alters the path of the diffusing uranium atom such that the configuration at the 

transition state is distorted from the ideal, fluorite positions, causing unfavorable electrostatic 

interactions.  

Surprisingly, xenon does not have a large impact directly in the energetics of the pathway but 

rather has an indirect effect, namely the addition of xenon causes the other contributions to 

change drastically for the direct pathway. Having found the barrier energies and physical 

contributions to diffusion, we next examine the binding of the XeTV cluster. Depending on the 

binding of the cluster, it may either diffuse in a concerted way or the vacancies may dissociate 

from the xenon atom, rendering it immobile. 

 

Figure 5: The components of the empirical potential energies for the TV and XeTV migration 
calculated with the Basak/Geng potential. We examine the energetic components of the largest 
energy bead from the NEB calculations. Overall, electrostatics tend to dominate the barrier 
heights. Adding xenon to the empty TV has different effects for the two pathways. For the direct 
pathway, adding xenon incurs a very large electrostatic penalty. For the indirect pathway, adding 
xenon incurs a smaller electrostatic penalty than the direct pathway, and the energy of the 
empirical potential actually decreases. The indirect pathway is lower in energy for when xenon is 
present because of the very large electrostatic penalty for the direct pathway.  
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E.  XeTV Binding Energy 

The two uranium vacancies in a TV cluster allow xenon to hop from one uranium site to another, 

but if the vacancies in the cluster are not strongly bound together, one uranium vacancy may 

dissociate from the TV, leaving xenon immobile as a XeSD until another uranium vacancy joins 

the cluster. To quantify how strongly each component of the XeTV is held together, we calculate 

their binding energies, ܧ௕. When a point defect is removed from the XeTV (either a vacancy or a 

xenon atom), the defect cluster that remains is different for each component removed; for a 

uranium vacancy it is a xenon-Schottky defect cluster, for an oxygen vacancy it is a ܺ݁௎మை, and 

for a xenon atom it is an empty TV. For example, to determine how difficult it is to remove a 

uranium vacancy from a XeTV, we consider the formation energy of the constituent defects: 

XeTV (ܺ݁௎మைమ), XeSD (ܺ݁௎ைమ), and a uranium vacancy ( ௎ܸ): 

ࢌ૛ࡻ૛ࢁࢋࢄࡱ  ൌ ૛൯ࡻ૛ࢁࢋࢄ൫ࡱ െ ሻ࢑࢒࢛࢈ሺࡱ ൅ ૛ࢁࣆ ൅ ૛ࡻࣆ െ  (3)  ,ࢋࢄࣆ

ࢌ૛ࡻࢁࢋࢄࡱ  ൌ ૛൯ࡻࢁࢋࢄ൫ࡱ െ ሻ࢑࢒࢛࢈ሺࡱ ൅ ࢁࣆ ൅ ૛ࡻࣆ െ  (4)  ,ࢋࢄࣆ

ࢌࢁࢂࡱ  ൌ ሻࢁࢂሺࡱ െ ሻ࢑࢒࢛࢈ሺࡱ ൅  (5)  .ࢁࣆ

where ܧ൫ܺ݁௎మைమ൯ and similar terms are the energies of a supercell of UO2 with the specified 

defect, ܧሺܾ݈݇ݑሻ is the energy of a supercell of UO2 without any defects, and ࡻࣆ ,ࢁࣆ, and ࢋࢄࣆ are 

the chemical potentials of uranium, oxygen and xenon, respectively. The binding energy of the 
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௎ܸ to the  ܺ݁௎ைమ is the difference in formation energies of those defects when they are infinitely 

separated and the formation energy of the defects clustered together in a ܺ݁௎మைమ: 

,ࢁࢂሺ࢈ࡱ  ૛ሻࡻࢁࢋࢄ ൌ ࢌࢁࢂࡱ ൅ ࢌ૛ࡻࢁࢋࢄࡱ െ ࢌ૛ࡻ૛ࢁࢋࢄࡱ ,  (6) 

,ࢁࢂሺ࢈ࡱ  ૛ሻࡻࢁࢋࢄ ൌ ሻࢁࢂሺࡱ ൅ ૛൯ࡻࢁࢋࢄ൫ࡱ  െ ૛൯ࡻ૛ࢁࢋࢄ൫ࡱ െ  ሻ. (7)࢑࢒࢛࢈ሺࡱ

Here, a positive binding energy indicates favorable binding. Similarly, we can define equations 

for the removal of an oxygen vacancy or a xenon atom: 

,ࡻࢂሺ࢈ࡱ  ሻࡻ૛ࢁࢋࢄ ൌ ሻࡻࢂሺࡱ ൅ ൯ࡻ૛ࢁࢋࢄ൫ࡱ  െ ૛൯ࡻ૛ࢁࢋࢄ൫ࡱ െ  ሻ,  (8)࢑࢒࢛࢈ሺࡱ

,ࢋࢄሺ࢈ࡱ  ૛ሻࡻ૛ࢁࢂ ൌ ሻࢋࢄሺࡱ ൅ ૛൯ࡻ૛ࢁࢂ൫ࡱ  െ ૛൯ࡻ૛ࢁࢋࢄ൫ࡱ െ  ሻ.  (9)࢑࢒࢛࢈ሺࡱ

Table 2 shows the binding energy of the constituent point defects to the xenon-tetravacancy 

cluster. Uranium vacancies are most weakly bound, followed by oxygen vacancies, and xenon 

atoms are most strongly bound. The choice of xenon potential greatly affects the binding 

energies. Calculations using the Chartier potential find that the binding of uranium and oxygen 

vacancies as stronger than calculations using the Geng potential for both the Morelon and Basak 

potentials. There is a large difference between the Geng and Chartier potentials for the binding 

energy of xenon to the tetravacancy. Essentially, the difference lies with the energetics of xenon 

in an interstitial. The defect energy of Xei calculated with the Geng potential is nearly double that 

of Chartier potential (Basak/Geng: 21.95 eV, Basak/Chartier: 12.84 eV, Morelon/Geng: 22.13 
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eV, Morelon/Chartier: 11.79 eV). The Chartier potential defect energetics are much closer to 

previously published DFT+U calculations for xenon in an interstitial (DFT: 9.7 eV).3 However, 

because there is agreement among the UO2-Xe potential combinations about the relative ordering 

of the two diffusion pathways, these xenon potentials can still find accurate migration barriers 

for the XeTV. We perform a comparison of xenon potentials across variety of defects in a 

forthcoming paper.39  

The uranium vacancies are bound to the XeSD cluster by 2.5 eV for the Basak/Geng potential 

and 3.3 for the Morelon/Chartier potential. Therefore, there is a large driving force working 

against a uranium vacancy moving away from the rest of the xenon-tetravacancy cluster. 

However, after a single uranium hop away from the XeTV, as seen from Figure 4, that the 

energy of the XeTV is raised on the order of the binding energy of a uranium vacancy. While it 

appears that the vacancy has dissociated from the XeTV, this increase in energy does not mean 

that the uranium vacancy is fully dissociated. We need to know the migration barriers at this new 

position to determine if the uranium vacancy will continue to diffuse away from or if it will 

rejoin the XeTV. 

Table 2: The binding energies of point defects to a xenon-tetravacancy cluster (Eq. 6). We use 
the xenon parameters from Geng and Chartier for both the Basak and Morelon UO2 potentials in 
order to highlight that the differences in binding energies are largely due to the xenon potential 
rather than the UO2 potential. For example, the Chartier potential increases binding energies for 
VU and VO relative to the Geng potential. The Geng potential greatly increases binding energies 
for Xei relative to the Chartier potential. All of the constituent defects of the xenon-tetravacancy 
were bound by at least 2.5 eV.  
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 ஻௜௡ௗ௜௡௚ of Point defects to XeTVܧ

Defect Basak/Geng Basak/Chartier Morelon/Geng Morelon/Chartier 
VO 3.38 4.91 3.20 3.61 
VU 2.50 4.13 2.81 3.33 
Xe 17.65 8.77 17.95 8.68 

 

 

F.  Uranium migration away from xenon-Schottky defect 

The binding energy is not the only factor for determining if a vacancy will dissociate from the 

rest of the cluster- migration barriers are also an important factor in considering the possibility of 

dissociation.  Take, for example, the configuration after the first hop of the indirect pathway 

where the uranium vacancy is at a second nearest neighbor position to the XeSD. The uranium 

vacancy can hop away to separate from the rest of the cluster or it can hop to a first nearest 

neighbor position and rejoin the cluster. If the migration barrier for separation from the XeSD is 

smaller than the barrier of rejoining, the uranium vacancy would more easily migrate away from 

the XeSD cluster, rendering the xenon atom immobile until another (or the same) uranium 

vacancy approaches. If the opposite is true, the uranium vacancy will be more likely to return to 

the xenon-Schottky defect cluster and the xenon tetravacancy cluster would then be able to 

diffuse as a cluster of vacancies. Hence, we next calculate a diffusion path of a uranium vacancy 

away from the xenon-Schottky defect cluster. 

There are many pathways for a uranium vacancy to dissociate from a XeTV, but we will limit 

our discussion to one example pathway. Figure 6 shows energy barriers for dissociation of a 

uranium vacancy from the xenon-tetravacancy. We take the first step for the dissociation of the 

uranium vacancy to be the same as the first step of the indirect pathway: the uranium vacancy 
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moves from a first nearest neighbor to the xenon atom to a second nearest neighbor. The next 

step for the uranium vacancy to dissociate from the rest of the XeTV (which is now a XeSD) is 

3.2 eV for Basak/Geng and 3.8 eV for Morelon/Chartier. This energetic barrier is on the order of 

other uranium vacancy hops, however, rejoining the uranium vacancy with the XeSD has a much 

smaller barrier (1.7 eV for Basak/Geng, 2.0 eV for Morelon/Chartier) and therefore the uranium 

vacancy much more likely to rejoin the cluster. Even though the first hop of the uranium vacancy 

increases the energy by about the binding energy of a uranium vacancy to XeSD, this 

configuration is not “dissociated”.  
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Figure 6: Energy barriers to dissociate a uranium vacancy from xenon-TV cluster for the (a) 
Basak/Geng potential and (b) the Morelon/Chartier potential. The diffusion barriers from Figure 
4  for the self-contained diffusion of the xenon-TV cluster is shown in the bottom left corner. 
Additionally, a barrier is shown, starting from a metastable geometry of the diffusion process for 
uranium dissociation. For a sense of scale, the isolated uranium vacancy diffusion barriers are 



28 
 

also shown. The isolated uranium vacancy is referenced to the binding energy to XeSD. This 
example barrier is 1.5 eV higher than the barrier to rejoin the two defects for Basak/Geng (1.8 
eV for Morelon/Chartier). The fact that the final energy of the dissociation hop is so close to the 
isolated uranium vacancy energy is coincidental.  

 

G.  Migration barriers of vacancy clusters 

In addition to the XeTV and TV barriers, we have calculated the migration barriers of several 

other vacancy clusters, all containing at least one uranium vacancy, with and without xenon (see 

Figure 7). We begin with a discussion of uranium diffusion in the absence of xenon. Our 

calculated value for the migration barrier of an isolated, single uranium vacancy (4.1 eV 

Basak/Geng, 3.9 eV Morelon/Chartier) is larger than the experimental activation energy of 2.5 

eV45 (the activation energy will be larger than the migration barrier alone). However, the authors 

of Ref. 18 argue that the experimental value corresponds to a coordinated pair of uranium 

vacancies, which have a lower migration barrier, and that a single uranium vacancy barrier 

should be about 3.9-4.9 eV. This is consistent with the notion that the barrier to xenon motion is 

actually caused by a uranium vacancy motion. Interestingly, the migration barrier of an isolated 

uranium vacancy and that of a TV in the indirect pathway are roughly equivalent energetically 

because the uranium motion in the TV isn’t aided by the second uranium vacancy. In contrast, 

the lowest migration barrier was the direct pathway of a TV (no xenon). This is consistent with 

the findings in Ref. 18 that coordinated migration of multiple uranium vacancies has a lower 

migration barrier than the migration of a single uranium vacancy and may be the dominant form 

of uranium diffusion for high concentrations of uranium vacancies.  

We also calculated the barrier to migration of xenon in the smallest, mobile, charge neutral 

cluster of vacancies, a double Schottky defect (XeUమOర). A SD will favorably bind to a XeSD (3.8 
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eV for both Basak/Geng and Morelon/Chartier). We calculated 32 configurations of XeUమOర that 

have two oxygen vacancies situated between the two uranium vacancies (like the low energy 

configuration of a TV) and the third and fourth oxygen vacancies in a nearest neighbor position 

to one of the uranium vacancies. We have determined the lowest energy configuration and 

migration configurations of the XeUమOర are these are shown in Figure 8a. Like with the XeTV, 

the xenon atom roughly occupies the uranium vacancy position for Basak/Geng and lies directly 

between uranium vacancies for Morelon/Chartier. We used the XeTV indirect pathway as a 

model for the XeUమOర path. The extra oxygen vacancies can aid uranium diffusion in the cluster if 

they are between the empty uranium vacancy and the second nearest neighbor site (Figure 8b). 

The diffusing uranium ion moves through the extra pair of oxygen vacancies. For the 

Basak/Geng potential, the barrier for XeUమOర is 4.7 eV, which is close to the barrier energy for a 

XeTV (4.5 eV). For the Morelon/Chartier potential, the XeUమOర barrier (4.2 eV) is smaller than 

the XeTV barrier (4.9 eV). The migration barriers for XeUమOర are just above (Basak/Geng) or 

below (Morelon/Chartier) the XeTV barriers, however, these defects may not persist for very 

long. We have calculated the binding energy of the two extra oxygen vacancies in XeUమOర and 

found they are less strongly bound than the oxygen vacancies that sit between the two uranium 

vacancies (1.6 eV Basak/Geng, 1.1 eV Morelon/Chartier). These weakly bound oxygen 

vacancies may dissociate and rejoin the cluster easily and could participate in the diffusion of 

xenon.  
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Figure 7: ܧ௕of several mobile vacancy or xenon-vacancy clusters calculated using the nudged 
elastic band method with a) the Basak/Geng potential and b) the Morelon/Chartier potential. 
V(U) is a uranium vacancy. SD is a Schottky defect and 2SD is a double Schottky defect. The 
dashed line corresponds to the lowest energy barrier for a xenon containing defect. For most 
vacancy clusters, adding a xenon atom increased the barrier height, but this was not the case for a 
double Schottky defect for both potentials. For the Basak/Geng potential, the xenon migration 
barrier that is lowest in energy is the xenon-tetravacancy along the indirect pathway. For the 
Morelon/Chartier potential, the xenon-double Schottky defect has the lowest energy xenon 
migration barrier. Interestingly, the migration barriers of a single uranium vacancy and of a 
Schottky defect are larger than a tetravacancy. 
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Figure 8: Xenon-double Schottky defect (XeUమOర) configurations. (a) The lowest energy 
configuration of XeUమOర- the vacancies lie in the same 110 plane. The configuration is similar to 
a XeTV with the two extra oxygen vacancies occupying sites at opposite corners of the defect. 
This configuration of vacancies is the lowest energy geometry of VUమOర without xenon as well. 
(b) The configuration modeled after the XeTV indirect pathway. Configuration (b) is 1.77 eV 
higher in energy than configuration (a) for Basak/Geng and 0.86 eV higher for Morelon/Chartier. 

 

IV.  Conclusions 

Using a combination of Density Functional Theory (DFT), classical potentials, Molecular 

Dynamics (MD), and Nudged Elastic Band (NEB) calculations, we explore the diffusion 

pathway and migration barriers of xenon in uranium dioxide (UO2). We perform nudged elastic 

band calculations to compare four empirical potentials with DFT and subsequently use two 

empirical potentials that agree with DFT for the calculation of xenon-vacancy clusters to 

determine the migration path and barrier of xenon in bulk UO2. In our calculations, we find that 

the Basak and the Morelon UO2 potentials agree qualitatively with DFT for Schottky defect 

diffusion. We use molecular dynamics with the Basak/Geng potential at elevated temperature to 

predict a new, previously-unknown xenon diffusion path in a tetravacancy. We calculate this 

novel pathway (indirect pathway) using nudged elastic band theory to find the migration barrier, 
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and we find this new pathway barrier is lower than the barrier for the previously reported xenon-

tetravacancy mechanism of diffusion (direct pathway). In contrast to diffusion for xenon 

tetravacancies, without xenon present, the direct pathway is a lower energy pathway than the 

indirect pathway. Adding xenon to the tetravacancy causes a large electrostatic penalty to the 

direct pathway, but not the indirect pathway. We find the direct and indirect barriers are largely 

electrostatic and that xenon has very little direct contribution to the barrier heights. The XeTV 

cluster is very stable and it is difficult for a uranium vacancy to break away from the rest of the 

defect, making it likely that all the components of the defect will diffuse in a concerted, self 

contained manner. In addition to xenon diffusion in a tetravacancy, xenon can also diffuse in a 

double Schottky defect with comparable barrier to the XeTV. With these new pathways and 

barrier energetics, atomistic models for diffusion of xenon in UO2 (such as kinetic Monte Carlo) 

can be used to more accurately study the mechanisms of how isolated xenon atoms diffuse and 

eventually coalesce into bubbles.  
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