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We consider the quantum evolution and relaxation of an electron or hole

which is coupled to a set of bath modes. In most applications the bath modes

would be the vibronic coordinates but the model considered applies to any

type of dynamic boson environment. The method is developed specifically for

the problem of dynamic polaron formation in small non-periodic systems. It

can describe a broad group of experimental situations, including in particu-

lar electron localization in organics and polymeric materials and devices. The

immediate bath is allowed to dissipate energy to a secondary bath.The bath

obeys classical dynamics which puts some restriction on the range of validity

of this approach. Using the density matrix formalism on a tight binding model

consisting of a linear chain coupled to vibronic coordinates, we demonstrate in

real time how the interaction with a dissipative bath makes the initial quan-

tum distribution reach a steady state population. This calculation is based on

the Ehrenfest dynamics approximation. As an example we consider coupling

at a single impurity site and find that for given parameters (bath coupling,

site energy, and relaxation rate), the particle becomes dynamically localized

in space on a particular time scale. This localized particle can be called a

polaron. We define a population formation time in the same way as done in

the experimental measurement. This formation time is studied as a function of

the coupling strength, bandwidth and energy dissipation rate. Energy dissipa-

tion plays a crucial role in the spatial localization process. The formation time

shortens as the electron-vibration coupling increases, and as the intersite tun-

neling increases, but lengthens with impurity trap depth. Polaron formation

is suppressed for sufficiently wide electronic bands.

PACS numbers:
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I. INTRODUCTION

Understanding the quantum mechanical evolution and subsequent relaxation of an electron or

exciton in a system with bath coupling remains a challenging problem1–10. The transfer of charge

or energy along a molecular chain or polymeric material exemplifies the relevant systems. To make

the problem straightforward and intuitive, we restrict ourselves to a linear system of sites described

by the tight binding Hamiltonian. If at time t=0 we inject an electron at a given site or into

a chosen electronic eigenstate in a closed electronic system with electron-vibration and vibration-

phonon (environmental) coupling, the particle should eventually arrive in the ground state of the

coupled system provided there are finite tunneling matrix elements to all the sites and a high enough

local dissipation rate. If the coupling to the bath is very weak, this (final) state will be close to that

of the uncoupled (no bath ) electronic system, because electron-vibration coupling induced shifts

being considered as small. If a set of sites has in some region of the network lower energies than

in the rest but the system cannot dissipate the electronic energy to build up the local populations

(no electron-vibration coupling), the electron may well self-trap into a configuration where the local

energy is higher compared to other sites in the network. Generally the quantum wave function will

localize along the lines of Stark-Wannier11,12 behavior when the energy differences between the sites

in the downward cascade are larger than half the bandwidth. But localization could also be due

to disorder (a finite-system type of Anderson localization)13. Switching on the electron-vibration

coupling then allows the electron to relax its energy and to diffuse to arrive at the lowest level .

To ensure that the system does arrive in a given final state, introducing irreversibility via secondary

bath coupling or (classically speaking) frictional dissipation and energy relaxation is essential. If the

electronic tight binding chain is made very long, and the system is kept closed, it is possible for the

electron-vibration coupling to lead to localized polaron formation in some parameter limits14 even if

there is no energy dissipation. Here a nearly stable final state is achieved because it is entropically

unlikely that once shared to all modes, this shared energy would go back to reform the original

state. But slight changes in parameters give rise to periodic breathing modes in which the polaron

is periodically created and destroyed14. The physically realistic limit is to allow the dissipation of

energy to the outside world. Therefore we will utilize the quantum relaxation methodology15 and

the closely related semi classical16–18 one, both of which allow irreversible energy relaxation to take

place. The quantum method is applied in a limit which is essentially equivalent to the semi-classical

Ehrenfest method19.
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The methods developed here have a wide range of applications to problems where there is a cou-

pling to a bosonic field which can localize or delocalize thermally charge or excitations, or to problems

where this coupling induces dephasing of quantum trajectories. Topical examples are transients pro-

vided by Raman experiments20, femto-second photo-induced absorption9,21,22, and electron (exciton)

transfer studies23–29; this vigorously emerging field also includes quantum and optical computing.

The techniques developed here may have application in photo-induced electron transfer30–32, and

photo-generation and transfer of charge in softer materials. Femtosecond electron transfer and en-

ergy relaxation from copper into a surface layer covered with ice (image potential band) has been

well studied experimentally33.

But we should point out that the classical treatment of the bath can be a source of error. When

phonon modes are slow and/or the splittings are not well resolved, the motion of ions is slow com-

pared to the electronic degrees of freedom, the self-consistent Ehrenfest treatment is known to be

a good approximation. The electrons are moving in a field of slower moving ions which depend

self-consistently on the temporal distribution of the electronic charge. When phonon spectra are

resolved, and splittings are comparable to or larger than the electron bandwidth, this method will

tend to seriously overestimate the polaron formation times, by up to an order of magnitude19. The

reason is that, in reality, vibrations do not only see the average evolving local charge but the actual

evolving local charge. Fortunately the main discrepancy affects the formation times and not the

steady state distributions. Since the full quantum solution is not tractable when more than a few

vibrational modes are involved, in practical situations, it is a good starting point to use the semi-

classical method, remembering where errors might occur. In the present model, the electron-phonon

coupling and the impurity center are described in the Hamiltonian. The motion of the lattice is

solved using a semi-classical method. Such a quasi-classical description has been used to analyze

multiphonon trapping on an impurity center, in a semiconductor, and self-trapping of carriers and

excitons34,35. This approach has also been used in the past and proved to be effective in the limit of

strong electron-phonon coupling36–38. It was shown that in the Froehlich polaron model, the strong

coupling expansion is well suited to describe the optical conductivity34. This is true both in the

limit of the applicability of the Franck-Condon principle and beyond.

In section II we introduce the theoretical model, and in section III we apply this model to polaron

formation, and discuss polaron formation for varying band coupling, electron-vibration coupling, and

vibration-phonon relaxation rate. The total energy relaxation of the system is analyzed. Section IV

concludes, and discusses future applications.
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FIG. 1: The scheme of a chain including 5 sites. The electron-vibration (e-vib) interaction is added to the middle site 2.

II. THEORETICAL MODEL

The Hamiltonian of the 5-site system in Fig. 1 is

H = HS +HB +HSB (1)

HS =

4∑
l=0

εlc
†
l cl +V

3∑
l=0

(c†l cl+1 + c†l+1cl) + ~ω0d
†
0d0 + αc†2c2(d

†
0 + d0) (2)

HB =
∑
s

~ωsd
†
sds (3)

HSB =
∑
s

βs(d
†
0 + d0)(d

†
s + ds) (4)

where HS is the Hamiltonian of the 5-site linear chain54, consisting of a system of sites with orbitals

coupled by the tight binding Hamiltonian with near-neighbor site coupling V and diagonal site

energies εl. One site is also coupled directly to a primary vibronic mode with coordinate d†0+ d0 and

frequency ω0. The operators c†l (cl) create (annihilate) an electron in site l. The last term in the

right side of Eq. 2 is the electron-vibration coupling. We permit this vibronic coupling only at site

2. Besides the primary vibration, the secondary phonons (expressed in Eq. 3) with dimensionless

coordinates d†s + ds and frequencies ωs couple to the primary vibration (Eq. 4)55.

The electronic potential of the vibronic subspace is described in the paper15 of Galperin, et al. as

HPh = ~ω0d
†
0d0 + αc†2c2(d

†
0 + d0) +

∑
s

[~ωsd
†
sds + βs(d

†
0 + d0)(d

†
s + ds)] . (5)

Further using the Langevin equation, a generalized quantum dynamics of the primary vibration is15

d†0(t) + d0(t) =
1

~

∫ t

0

dτDr(t− τ)αc†2(τ)c2(τ) . (6)
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Here Dr is the retarded green function of the active vibration.

Based on the Born-Oppenheimer approximation, we treat the bath in a classical approximation.

This resembles Ehrenfest dynamics39 and may result in substantial quantitative errors. The dimen-

sionless displacement q(t) of the primary vibration can be expressed by a time-dependent configu-

ration as

q(t) =< d†0(t) + d0(t) >=
1

~

∫ t

0

dτDr(t− τ)α < c†2(τ)c2(τ) > , (7)

here < d†0(t)+ d0(t) > and < c†2(τ)c2(τ) > indicate the average vibrational coordinate extension and

the average population on site 2, respectively.

Solving the equation for the displacement q(t) we note that there are two sources of displacement:

i) the action of the charge itself which displaces the q(t) in proportion to its population and delayed

by the relaxation process and ii) the displacement caused by thermal excitations. In this paper we

are concerned with zero temperature so we include only i) .

Using the wide-band approximation15

Dr(ω) =
1

ω + ω0 + iγ0/2
− 1

ω − ω0 + iγ0/2
(8)

and its Fourier transform

Dr(t) = i[e(iω0−γ0/2)t − e(−iω0−γ0/2)t] = −2sin(ω0t)e
−γ0t/2 , (9)

and substituting Eq. 9 into Eq. 7, we get

q(t) = −2α

~

∫ t

0

dτsin[ω0(t− τ)]e−γ0(t−τ)/2 < c†2(τ)c2(τ) > , (10)

here γ0 is the phonon relaxation rate induced by the active vibration-phonon coupling. It is obtained

by taking only the imaginary part of the active phonon self energy Σ as

γ0(ω)/2 =
1

~
Im{Σphonon(ω)} =

1

~

∑
s

|βs|2δ(~ω − ~ωs) . (11)

The effective electronic system Hamiltonian can then be expressed as15–17

Heff =

4∑
l=0

εlc
†
l cl + V

3∑
l=0

(c†l cl+1 + c†l+1cl) + F (t)c†2c2 , (12)
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here F (t) can be taken as the electron-vibration coupling energy and is expressed as

F (t) = αq(t) = −λ0

∫ t

0

dτsin[ω0(t− τ)]e−γ0(t−τ)/2 < c†2(τ)c2(τ) > , (13)

with

λ0 = 2α2/~ . (14)

The system density matrix ρ can be solved using the Liouville equation

i~
dρ

dt
= [Heff , ρ] (15)

with the initial condition that there is one electron at site 0.

The on-site electronic population at any time t is

Pl(t) =< c†l (t)cl(t) > ,with
4∑

l=0

Pl(t) = 1 . (16)

The total system energy is

ET = Ee + Ep + El (17)

with

Ee =

4∑
l=0

εl < c†l cl > +V

3∑
l=0

< c†l cl+1 + c†l+1cl > , (18)

Ep = F (t) < c†2c2 > , (19)

El =
1

2λ0ω0

{ω2
0F

2 + Ḟ 2} . (20)

The three terms in Eq. 17 are the electron energy, the electron-vibration energy and the lattice energy

respectively. Since the vibronic modes are treated classically, the lattice energy can be evaluated

using the definition of the dimensionless displacement q(t) in Eq. 7, to generate a mode displacement

x(t). So we use El =
1
2
Mω2

0x
2 + 1

2
Mẋ2 with x =

1√
2Mω0

q to obtain Eq. 20 (details can be found in

the supporting information). M is the effective mass of the vibronic mode at site 2.

It is important to note that as shown in Eq. 7, and in the absence of thermal noise, the displacement

coordinate “q(t)”is itself a function of the occupation of the site 2 with a time delay. This makes the
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problem intrinsically non-linear and the population self-consistently controls the local displacement

coordinates. If the thermal noise is included, the “q(t)”will depend both on the population and the

random fluctuations induced by the environment. This approach is therefore in line with that of

Lakhno16,17 and differs from the pure fluctuation assisted transport methods used in ref25,40,41.

It is possible to compute the trajectory of Fig.1 by i) allowing mobile electron and stationary

hole to interact, ii) allowing the bath coupling to include more modes, iii) permitting the density to

disappear into a sink, iv) including lattice modulation of the overlap V[|R̃ij|]14,42. We here focus on

describing the trajectory with a given start site at t=0, neglect the Coulomb interaction, and allow

a single mode to couple at a single impurity site only.

III. APPLICATION TO POLARON FORMATION

For the calculation we use energy units as eV, the time unit τ0 =
~

eV
≈ 0.65fs, the unit of λ0 is in

eV · τ−1
0 . We take εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2eV , ~ω0 = 0.1eV . The impurity energy lowering

is ∆E = |ε2 − ε0|. We vary the parameters V, λ0 and γ0.

A. Polaron formation and the band coupling

In all cases where there is bath coupling, the electron that starts at t=0 on a definite site and then

obeys Eq. 15, invariably reaches a steady state population, irrespective of whether a localized polaron

has formed or not. Switching the bath coupling on and off has a drastic effect of the time dynamics,

as can be seen by comparing Fig. 2(a) and Fig. 2(b). As suggested by Zurek7, the environment

forces the quantum particle to behave classically, after a certain relaxation-decoherence time. Now

consider the situation in which the particle actually localizes at the impurity site; we call this the

polaron formation process. The reason for localization is a combination of two effects: i)the impurity

site can have a lower energy and ii) it is coupled to a local vibration which is in turn coupled to a

dissipative bath. Without the vibrations, the lower energy will not on its own cause localization.

It is useful to look at the localization dynamics in Fig. 2(b). In this figure the impurity population

P2 (in the stationary state) at long times is bigger than the population on other sites. Arrival or

formation time of the polaron can be defined as the time point at which population P2 reaches a

certain value. In the same way as done in the experimental measurement by Lewis et al.26 we define

the “arrival time”as the time at which the target population reaches ∼ (1− e−1 ≈ 0.76) of its final
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FIG. 2: Population distribution on different sites shown as a function of time. εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2eV , V = 0.1eV ,

λ0τ0 = 0.01eV , ~ω0 = 0.1eV , ~γ0 = 0.04eV , τ0 =
~

eV
≈ 0.65fs (femtosecond). In the left upper of panel (b), the green and

blue lines indicate the average values of P0 and P2 respectively. In the other panels the red line indicates the average value
of the oscillation shown in black. No electron-vibration coupling (α = 0 in Eq. 2) was used for panel (a) and the dashed line
indicates P2.

value. Thus we use the criterion

P̃2(τp) = P∞
2 (1− e−1) , (21)

here P̃2(τp) is the “time-averaged ”value of P2 at time τp, obtained by averaging the points within

the range τp± 50fs (femtoseconds). P∞
2 is the time-averaged value of P2 in the long time limit (P∞

2

is plotted in the supporting information for varying λ0, γ0 and V). This τp is the arrival time, also

defined as the population formation time56.
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FIG. 3: (a): Stationary population distribution on different sites l with different band coupling V. (b): Population (P2)

shown as a function of time. εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2eV , λ0τ0 = 0.01eV , ~ω0 = 0.1eV , ~γ0 = 0.04eV , τ0 =
~

eV
≈

0.65fs(femtosecond). In panel (b) the red line indicates the average value of the oscillation shown in black.

We now ask a) when does a polaron form (for given values of the vibronic coupling, impurity

energy and relaxation parameters), b)when does the electron localize at the impurity site for a given

tunneling matrix element V? Fig. 3(a) plots the steady state population for different band couplings

V with a fixed impurity energy lowering ∆E. The population on site 2 decreases with increasing

V, as the population tends to equalize on neighboring sites. This means that for V much larger

than the averaged electron-vibration coupling energy F (t), no polaron is formed, the population

is delocalized and tends to be a number ∼ 1/N at each site (strictly 1/N applies only to periodic



10

boundary conditions). Note that for a symmetric chain with one site coupling in the middle only,

the population at that one coupled site never exceeds 0.557. This is an artifact of the simple model.

When coupling is extended to other sites and/or symmetry is broken, the population can indeed

reach 1. For a long chain, the local density tends to 0 as 1/N, and thus longer chains need stronger

vibronic coupling to localize the particle. The combination of the local energy lowering ∆E and the

electron-vibration coupling energy must be large enough to compensate for the localization energy

cost.

In Fig. 3(b) P2(t) is plotted for different values of V, showing how strong the polaron localization

is. For a small value of V=0.04eV, the localized population is larger than
1

5
as one would expect,

and the population (localized state ) formation time (in Eq. 21) is longer. At higher V, the localized

population becomes smaller and the formation time shortens since carriers reach their destination

more quickly (see Fig. 3(b) with V=0.1eV).

For a large V=0.4eV, the local population is fairly uniform and we can no longer talk of localization

or polaron formation as shown in the bottom-right panel of Fig. 3(b). The population reaches steady

state very slowly and its long time average value is of the order of
1

5
(see Fig. S3 in the support

information). The crossover occurs roughly when the half bandwidth 2V exceeds the localization

energy.

Besides the bond coupling V , the different total site number N influences the population distri-

bution. As shown in Fig. 4, the middle site always has the largest population because that is where

the polaron forms. The population on the other sites will decrease with increasing N . By assuming

that the defect and the electron-vibration coupling always occur on the middle site, and that the

starting condition is that the electron begins to transfer from site 0, after a certain access time the

middle site will always have the largest population. The long time population on each of the other

sites will decrease with increasing N .

B. Electron-vibration coupling and vibration-phonon coupling relaxation rate

We now examine the influence of the electron-vibration coupling λ0 and the vibration-phonon

dissipation rate γ0 on the population formation time; results are shown in Fig. 5(a). We see that the

formation time decreases with increasing λ0 but then saturates. The dissipation rate is crucial in

localizing the particle. This rate also determines the strength of the oscillations as can be seen from

Fig. 6. In large closed systems one can in some limits arrive at polaron formation14. But in a physical

molecular environment, energy dissipation is necessary. Fig. 5(b) is a 3D plot of the formation time
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with N being even number). εl = 0 but with the middle site energy εN/2 = −0.2eV , V = 0.1eV , ~ω0 = 0.1eV , ~γ0 = 0.04eV ,

τ0 =
~

eV
≈ 0.65fs(femtosecond).

as a function of V and λ0 (3D plots of the formation time as a function of V and γ0 can be found in

the supporting information). The apparent turnover with increasing V (Fig. 5(b)) in the population

formation time beyond V∼0.06eV for small electron-vibration coupling λ0 occurs because for large

V, the excitation relaxes into a population that is no longer strictly speaking a localized polaron. The

population distribution is roughly constant in this limit as exhibited in Fig. 5(b). The “population

formation time”should now be simply a population relaxation time (time to reach the steady state).

C. Energy relaxation

Let us now apply these techniques to describe the experiments of the Wolf and Harris groups33,43.

This last observation could be another crucial and interesting variable in materials/interfaces with

low work functions and with large polaron energies. This type of experiment has been carried

out with various organic overlayers43. An example of the energy relaxation scenario that matches

the range of experimental parameters is shown in Fig. 7. The relaxation of energy is faster with

increasing λ0. Here ice is grown with different thicknesses on various metals. Charges are injected by
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FIG. 5: (a): Population formation time τp (Eq. 21) shown as a function of the electron-vibration coupling parameter λ0 and
vibration-phonon coupling relaxation parameter γ0. (b): Population formation time τp (Eq. 21) shown as a function of the
nearest neighbor site coupling parameter V and λ0. εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2eV , V = 0.1eV , ~ω0 = 0.1eV , ~γ0 = 0.04eV ,

τ0 =
~

eV
≈ 0.65fs(femtosecond).

femtosecond pulses from the metal electrode into the interfacial image potential band. From here the

charges relax into the conduction band of the ice where they start digging in and building polarons.

Depending on the thickness of the ice layer, and its amorphous or crystalline nature, the polaron

will form on different time scales. The energy of the particle is monitored on a picosecond scale by

an energy and angle resolved photoemission process. The thickness of the ice affects the coupling

strength, the frequency of the phonon modes, and the relaxation rate of the water dipoles. The

metastable charge will eventually relax back into the metal but it has to tunnel through a barrier.
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FIG. 6: (a)Population P2 shown as a function of time with different electron-vibration coupling parameter λ0 and the vibration-
phonon coupling dissipation rate relaxation parameter γ0 = 0.04eV . (b) Population P2 shown as a function of time with different
phonon bath relaxation parameter γ0 and λ0τ0 = 0.01eV . εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2eV , V = 0.1eV , ~ω0 = 0.1eV ,

τ0 =
~

eV
≈ 0.65fs(femtosecond). The red line indicates the average value of the oscillation shown in black.

The tunnel rate depends on the energy of the electron, and the returning charge can only tunnel to

empty states inside the metal (above the fermi energy). No attempt is made to fit the data, but we

give a proof of principle. For the electron solvation problem, the local energy lowering ∆E will be

due to the electronic polarization of the medium, and the induced rotation of the water dipoles will

produce terms very similar to the dynamic bath terms in our Hamiltonian. Here we use the limit

γ0 ≫ ω0 and also a large λ0 to simulate the vibronic coupling.

Fig. 7 illustrates the energy relaxation as a function of time. Wolf et al33 have shown that the

thinner the ice layer, the faster the electron loses its energy to the bath, deforming the medium.
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∆E = 0.2eV . εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2eV , V = 0.1eV , λ0τ0 = 0.8eV , ~ω0 = 0.01eV , τ0 =
~

eV
≈ 0.65fs(femtosecond).

Fig. 7 illustrates how this effect can be simulated within the present model, showing how the energy

relaxation can be varied by varying the dissipation rate γ0. The fast dissipation rate means rapid

relaxation of the lattice coordinates to their final values. This implies that the energy reaches its

optimal “polaronic”value in a shorter time. This agrees with the arguments given by Wolf et al33:

Water dipoles in thin layers are more mobile than in thick layers. A realistic simulation would need

a detailed consideration of the relevant modes and coupling strengths. Temperature can be built in

by adding a noise term in Eq. 7 and carrying out the full stimulation of the displacement, not just

the relaxation.

IV. CONCLUSION

We have developed a methodology and demonstrated that by considering quantum motion with

bath coupling, local energy differences, and energy dissipation, one can achieve dynamic localization

of carriers. More generally we can understand how a particle which started on a quantum trajectory,
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becomes dephased as a result of the bath interaction. This removes the quantum oscillations and

one ends up with a well defined steady state population on each site. The ion displacements are

treated by semi-classical Ehrenfest dynamics which may introduce errors. The method is applicable

to electrons or excitons, and the bath modes can be any boson modes, provided the bath coordinates

can in good approximation, be described in terms of semi-classical dynamics. Subject to the previous

restrictions, we can determine (by simulation) how fast the localized polaron forms.

At long time, the quantum trajectory relaxes into a classical distribution7. The general sketch

shown in Fig.1 gives an idea of the range of problems where the present method can be applied.

The conclusion reached here agrees in spirit with those reached by Emin and Kriman1,44,45 using

the Holstein diatomic polaron lattice model. These authors showed that the polaron formation

depends critically on the tunneling energy V and the width of the phonon Bloch band, with the

population formation time τp (Eq. 21) potentially varying from 10−13 to 1 second. The phonon

bandwidth plays a similar role to the dissipation rate in our finite size model since once emitted

into the extended lattice, the energy of the phonons will not return. But as pointed out right at

the start, the semi-classical treatment of the bath has its problems. The vibrations do not see the

“actual”but the expectation value of the charge density . Also, the zero point point motion of the

lattice is neglected. In parameter ranges where phonon modes are well resolved, and splittings larger

or comparable to electron bandwidths19, the semi-classical approach will tend to overestimate the

relaxation times but still work well to obtain steady state values.

Finally, we note that in the classical bath description, temperature can be introduced by allowing

thermal modulation of the bath modes. Thus a localized polaron formed by the dynamical terms

can be dislodged by the thermal force term15 which has to be introduced in Eq. 15. The thermal

fluctuations self-consistently modulate the local population and tend to prevent localization. They

will cause hopping transport in our model. However it have been proposed that thermal fluctuations

can cause localization in the linear system of degenerate states and in that case, the transport can

not be described by hopping46,47, for example, for the crystalline organic semiconductors at room

temperature. Where the thermal molecular motions cause large fluctuations in the intermolecu-

lar transfer, which destroys the translational symmetry of the electronic Hamiltonian and in turn

localize the charge carrier. Such a puzzling transport regime can be understood from the simulta-

neous presence of band carriers and incoherent states that are dynamically localized by the thermal

lattice disorder. However it has been shown that thermal fluctuations can also (under certain cir-

cumstances) increase disorder and cause localization46,47. In these cases, one cannot say that the
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transport proceeds simply by hopping. Motion takes place by way of a more subtle interplay of

coherent and incoherent processes. Here thermal molecular motions cause large fluctuations in the

intermolecular transfer, which destroys the translational symmetry of the electronic Hamiltonian

and in turn localizes the charge carrier. It has been suggested46,47 that the transport involves the

simultaneous presence of band carriers and incoherent states, which can be dynamically localized

and delocalized by thermal fluctuations. Particles which at temperature T=0 would normally want

to form localized populations at selected localization sites will, at temperature T 6= 0, move both

by coherent tunneling and by hopping transport using the thermal forces which act on diagonal and

tunneling terms V[|R̃ij|]14,42. However, given the limited vibrational space one can use in practice,

and all the related unknowns, there is no guarantee that thermodynamic limits will be reached in

systems with wide energy separations.
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