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We report theoretical analysis of thermal-spin and thetewdgc properties of noncollinear spin-valves driven
by a high frequency AC voltage bias. The spin-valve congi$tsvo ferromagnetic contacts sandwiching a
single-level or multi-level quantum dot (QD). A generalrfarlation for the time-averaged thermal-spin and
thermoelectric properties of spin-valves is derived wittiie nonequilibrium Green'’s function theory, which
provides a starting point for further numerical calculaticof these properties. Numerical results of a spin-
valve having a spin-degenerate single-level QD are giveanasxample. The AC bias induces various photon-
assisted transmission peaks which can greatly enhanceetiee&k coicients and the figures of merit, and
offer a new possibility to tune both the spin-dependent and alattmermoelectric properties of the spin-valve.
Details of these properties and how they depend on the nitinearity of the spin-valve, magnetic polarization,
temperature, AC bias, and other control parameters aretegpd\ particularly interesting result is the opposite

dependency of the thermoelectric properties on the magpelarization and non-collinearity for contacts with
or without spin accumulation.



I. INTRODUCTION

Concerns about the deteriorating global environment aptktiag natural resources have prompted a new wave of téogyo
development for green energy solutions in which the centlyphenomenon of thermoelectriffects has regained particular
prominence:® Thermoelectricity converts heat to electricity or vice s&rthus has been used in harvesting waste heat in
industrial processes and in on-chip cooling for integratiecuits®® The maximum conversionfiiciency of thermoelectricity
is measured by a dimensionless figure of merit calléctodficient, defined a& T = GS?T/(ke + kpn), WwhereG is the electric
conductancesS is the Seebeck cdigcient, ke the electronic thermal conductance, agglthe lattice thermal conductance of the
thermoelectric material. The relentless search for metlhod materials to increagd has been going on for over a century. The
highest value oZ T for bulk materials is about unity which appears to b&idilt to increase further because of the Wiedemann-
Franz Law that dictatess « ke, thus any increase of electric conductacis not automatically translated into an increase of
ZT due to the balancingfiect of thermal conductande- especially in metals; and due to the relatively largedatthermal
conductance accompanied with limited valueS3( in semiconductors. Recognizing this problem, recéfdrts have been
shifted toward nano-structured materials (as opposed ltorbaterials) where lattice thermal conductance can berdghed
and much largeZ T may be possiblé°

Besides exploiting the nano-structured materials to degr¢he lattice thermal conductance, their electronicent@s can
also be manipulated to increag@. According to Mott's relatiot}~*3in the linear response regime the Seebeckfument
S~ (—nszBT/3|e|) [In 7 ()], le=u, Wwhere [INT (€)], |-, IS the energy derivative of N (¢) at the electrochemical potentjal7 (¢)
is the transmission function. Therefore, a sharp condeet@eak versus energy around the electrochemical potshtalld
greatly enhanc§, thereby improving the figure of me@T.'4%In this regard and according to Mahan and Sofo, the B&st
for a given lattice thermal conductivity can be achieved yfanction like transmission céicient® For bulk materials, it is
difficult to realizes-function like transmission; but for nanostructures sush@antum dots (QDs) having discrete energy levels,
the transmission cdicient7 (&) versus energy exhibits a Lorentzian line shape around each level, whichbsaviewed as
broadened-like line shapes. The peak positionsfofe) in QD devices can also be tuned conveniently by a gate voltaglign
with the electrochemical potentialso that an enhanced Seebeckfio®nt is achieved. Nanostructures such as QD systems
also provide new opportunities toward manipulating cusemdor achieving spin-accumulation by the thermoelectrifi@as.

More recently, two very interesting research directionthefmoelectricity of nanostructures have been pursued fifst is
the spin caloritronids'” which studies thermoelectricity in spintronic devices amabnetic structures. The second is the photon-
assisted heat transport which studies thermoelectrioifetutime-dependent electromagnetic radiation at verytémaperatures
when phonons are largely frozét?! Most recently, Zhangt al?? reported an experimental discovery of a novel Seebeck
rectification and frequency-dependent transport measmtnat GHz frequency for magnetic tunnel junctions (MT haZget
al.’s work is the first to explore the possibility of utilizing ispcaloritronics in high-frequency applications. Motigdtby this
very interesting experiment and the research directiogpitesents, in this work we theoretically analyze both theventional
and the spin-dependent Seebeckfionts in spin-valves with non-collinear magnetic struefuwnder high frequency AC
voltage bias.

A MTJ is a spin-valve structure where two ferromagnetic (Fldiitacts sandwich a non-magnetic space |&yas schemati-
cally shown in Fig. 1. In our work, the non-magnetic spaceefdaced by a QD. By varying the relative anglhich measures
the non-collinearity between the magnetic moments of tleedwntacts, the electric current and spin current can béraanisly
modulated between a maximumeat 0 and a minimum a = 7.24?° Replacing the space layer by a QD is interesting because
of resonant tunneling which typically gives rise to sharpksein the transmission cficients. Furthermore, clearly resolved
photon-assisted side peaks in resonant tunneling in QDerudHZ%-3Cand THz radiation¥ have been observed experimen-
tally. Therefore, it is possible to tune the peak positiopplhoton-assisted processes driven by AC fields to enharc&@abbeck
codficient.

Theoretical investigations of thermoelectritexts in MTJ or under AC fields have discovered rich propeitigdD models
having non-collinear ferromagnetic contacts in DC fief&,or models having non-magnetic contacts in AC fiell®ur work
focuses on the most general situation of QD based non-ealligpin-valves in AC fields. In particular, we note that frexqcy
dependent features of thermoelectric properties of theaodlimear spin-valves have not been theoretically ingased and this
work reports the necessary theoretical formalism and nigaleanalysis for understanding these properties.

We begin by deriving general expressions for the spin-uesbélectric current and thermoelectric properties of GRBYFM
spin-valve structure under both the DC and AC driving fielsissed on the Keldysh nonequilibrium Green’s function (NEGF
formalism. Analytical expressions for the char@g)(and spin-dependent Seebeck ffi@gents Ss), the chargeZ.T) and spin
figure of merit £sT), as well as normal Seebeck ¢beient (S) and figure of meritZT), are derived in terms of spin-resolved
transmission cdécients7,(g), which is expressed in terms of the Green'’s functions ofsihie-valve that can be calculated
from the Hamiltonian of the device. Based on the analytioatiulation, we have calculated the influence of the AC bias on
transmission, Seebeck dbeients, and figures of merit as functions of the non-colliitga, the electron energy, and the AC
frequencyw, for the FMQD/FM spin-valve.

Our results clearly show that the AC field induces side peakslg distributed at energiggo in the time-averaged (e),
which induces significant variation to both thermal-spiogmrties and thermal-charge properties of the spin-vale report



FIG. 1. (color online) Schematic plot of a two probe spinveatievice consisting of a QD connected to FM leads with ndimealr magnetic
moments. An AC bias is applied across the leads.

a very interesting opposite dependency of the thermo@equmtoperty against magnetic non-collinearity for sitoas with or
without spin accumulation in the FM contacts. For the cagl gpin accumulation, there is an induced spin voltage ttitat a
as a third driving force - in addition to the external biastagk and the temperature gradient, to determine the chargjmesk
codficient S. via an average of the individual Seebeck féi@éents of the two spin channels. It is shown tiSgtgenerally
achieves its maximum wheh= 0 (parallel spin-valve configuration, PC). For the case aithspin accumulation in the FM
contacts, the relevant quantity is the normal SeebecKicnt which we find to usually has its maximumét= n (anti-
parallel configuration, APC), consistent with several e experiments®?32- implying no spin accumulationfiect in those
experiments. The Seebeck @aents (including the spin-dependent Seebeckiment) are found to have negligible change
when AC frequencyw is small, but at largew in and beyond the microwave range, the SeebeckKictnts oscillate around
its DC value before going back to the DC value after |¢o — y|. Using reasonable materials and device parameters which
correspond to those in typical QD experiments, the caledI&eebeck cdigcients are consistent to the experimentally reported
values??> Most importantly, the predicted oscillation in Seebeckfionts of the spin-valves also results in an similar ogixilfa

in ZT, suggesting a fascinating possibility to tune relevantrtieelectric properties of spintronic systems by nonceHirity and

AC fields.

The rest of the paper is organized as follows. In Sectiondhegal formulae for the charge and spin transport proyseofie
a multi-level noncollinear spin-valve under AC bias areidst using the NEGF technique. Specifically, we focus onithe-t
averaged expressions for the thermal-spin and thermoielpobperties. These analytical expressions are appli&ection 111
to a spin degenerate single-level spin-valve system, wthergeneral, qualitative behaviors are investigated fixf§erward, the
angular, polarization, and frequency dependencies ofttbiertal-spin and thermoelectric properties are carefallgstigated
using realistic materials and device parameters. Finalggnclusion is drawn in Section IV. To simplify the preséiota we
organize the details of the theoretical analysis into ss\v&ppendices.

II. THEORETICAL ANALYSIS

In this section, we present analytical derivations baseNB6F formalism of various Seebeck d¢beients and the figures of
merit for the noncollinear FXQD/FM spin-valve under an external AC bias voltage.



A. TheHamiltonian of the device model

We consider a typical FKQD/FM spin-valve as shown in Fig. 1. For a multi-level QD coneecto FM leads with non-
collinear magnetic moments under AC bias, the Hamiltonamnlze written in the following forni3

H =H_ + Hr + Hc + Hr, 1)
H = Z [Ekw (t) + O'ML] C:(-O,D.Ckmr, (2)
o kael
HC = Z Snrrdjq—o—dnrr, (3)
no
Hgr = Z [Exa (t) + oMr COSH] G __Ciacr
o kaeR
+ Z MRSINOC . _Cracs @)
o kaeR
Hr = Z (Tka,nclm,-dnrr + H.C.), (5)
o,nkael,R

Whereci'q (Ckaer) Creates (annihilates) an electron with spirand Bloch wavevectdt in energy band of the leads, whilel;,,
(dm) creates (anmhllates) an electron of spmnccupylng leveh in the QD.o =T, | labels the spin eigenstates alangxis;

o =—o,i.e.o Tif o =], and vice versaEy, (t) = E LT A = E0 —eA, coswt (—ethe electron charge) when a harmonic AC
bias is applied. This AC model which includes the mﬂuencé@fflelds by modifying the energy levels of the isolated leads
was originally proposed by Jauletal.3* and has been successfully used by Stal 3 to explain the experimentally observed
resonant structures of average current vs gate voltage ahgarowave field is shed on one lead of a tunneling®Bj; is the
hopping term between the QD and the leads. As shown in Figpelytagnetic momen, of the left lead (L) is aligned with
thez axis, while that of the right lead (R)Mg, has a tilted anglé with thez axis, forming a noncollinear magnetic configuration.
Misalignment betweeM, andMg, i.e., forg # 0, 7, introduces anféective spin-flip process as shownHtx. Transforming the
reference axis into the spin quantization axis aldfig lead R turns from an interacting lead to a non-interactixagllas

Hr= > [Ek () + SMy] Cf, Ciaus (6)
k,aeR
S=+,—
where the spin indices = +, — denote the spin eigenstates along the directiokigfandC;

(Ckes) creates (annihilates) an
electron labeled bykgs) in lead R. The hopping term is now

kas

Hr = Z (ch,ncos Cmdm TkenSIN= Cm dn

n,keeR
+ Tka.n COS= Cka_dnl + Tka.n SiN= Ckwdnl + H.c)
+ Z Tkw’ncli(aa_dng— + HC)
n,o,kael
= Z (tkasnr Gy oo + H.C.). @)
kas,no
where for compactness, we I@fj o) = (k'Bm) in lead L. Note that in the above and as is typical, the tumgetioupling

parameteiTy, , is assumed to be spin-independ&nt® With these manipulations, the two-probe FMD/FM device model
under the AC driving field is specified by the Hamiltonian oSE(L)-(3), (6), and (7).

In the NEGF derivations of transport properties such as (e golarized current, the FNMpD/FM two-probe structure is
divided into three regions: the Igfight FM leads and the QD. By integrating out the degreeseddom (i.e., the operators)
of the leads, one focuses on the NEGF of the QD. In this waeftleets due to the leads on the QD are included into a set of
self-energies. Following Ref. 33, the self-energies dubémoncollinear FM leads are found to be

=ViglV =R'ZL R, =/ =37, (8)

wherey = r, a, < indicates retarded, advanced, and lesser quantities;ispiss, L indicate the left, right leadsy” is the surface
Green’s function of the semi-infinite leads; aRds the rotation matrix:

_ [ cosf/2 sing/2
R_(—sine/z coh/2 | ©)



The quantitiex? ) (o = L, R) above are defined as

. 0 )
ZZO = ( (60T EyOl )’ ZZO{T:I’T‘LH = Z Tkﬁ»nTkﬁ,mg)lé;KB(r’ (10)
@ kBea

which is the self-energy of lead when M, is parallel withz axis. The time variables due to the external AC fields appiied
the leads (see Egs. (2) and (6)) are not written out explititthe self-energies.

The self-energies can be transformed into energy spaceitivdee further derivations and, for simplification of dysis, the
wide-band limit (WBL) will be applied. This is an approxinat that amounts to neglecting the energy dependence of the
coupling between the leads and the QD, which is reasonaide she leads are made of good metals. In WBL, the retarded
self-energy can be expressed in terms of bandwidth fureasi 34

i
Er z__ra,
L (0) ~ 3
where
+f T 0 r 0
_pf[ IR _ [t
rR_R(O FRL)R’ rL_(O FLl) (11)

with boldface notatio” to denote a full matrix of the bandwidth function. The orgimatrix elements of - are

[Tae ()mn = 27 " 03 (&) T (8) Ty (e -
Bea

HereTgsn (k) = Tign, @ = L/R s the label for either of the two FM leads, apg (¢) is the spin density of states (DOS) as a
function of energy in lead for spin-channetr.

If there is one energy level in the QD and consider a channbldnieads, from its definition and the fact tiig, , is free of
spin labels, we observe that

Lot (8) /Tay (&) = par (&) /pay (€) .-
Consequently, by introducing the spin polarization as

Pat (‘9) ~ Pal| (5)
Par (8) + Pa) (8) |

P =
we obtairf’38
Lo (€) =To (1+0py,) (12)
with
Ty = 27(Toq(€) P [par (€) + pay ()],

ando =T, | denoting diferent spin channels. Herein, spin-up#£1) is assumed to be the majority spin channel.
For time-dependent cases, the self-energies still can latedeto the time-independent bandwidth matrices (Eq.)(a$)
indicated by Egs. (B2) and (C1) in the appendices.

B. Spin polarized current

From the device model specified by the Hamiltonian Eqgs. 8))6). and (7), the electric current contributed by spin-
(s = +,—, denoting the spin eigenstates of local spin quantizatiag) @&lectrons in lead L under the WBL is given by the
following expression (for detailed derivations, see Apgigm, 7 = 1):

t
Jis= —-2eTr Im {f d_ngrrLSf dT1Gr(t, Tl) . f|_(8)

x gem-ei [ AL(T)"T} —eTr ImILG<(t,1), (13)
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FIG. 2. (color online) Total transmission d@eients,7 (¢), of a non-polarizedif = 0) single-level FMQD/FM device in parallel configuration
(9 = 0) and under AC bias withw/T" = 1 (blue dashed line), 5 (green dash dotted line), 12 (red $oick line), and without AC bias (black
solid thin line) foreA/fiw = (a) 01, (b) 1, and (c) 10, respectively.

wherel' s is the spins bandwidth matrix of lead L, and its elements are defined as

(FLS)n’(r’, noe = 21 prs (e) tasno (€) t;s,n’(r’ (e).

ael

Eq. (13) is a simple extension of the charge current derineRigf. 34. If bothM, and Mg are aligned collinearly to theaxis
(PC or APC), all quantities become diagonalized in spin spkarthermore, if there is no AC current, Eq. (13) reducebdse
derived in Refs. 39 and 40, namely

sa=ef [ F1L0- REITIC O Tre ).

where the trace goes over the orbital degrees of freedom.
As mentioned before, we assume the magnetic moment of tHedefV, to be parallel with the axis. Therefore, the spis-
bandwidth matrices of lead L are diagonalized in spin space,

'y O 0 0
IﬂL+:( IdT 0)’ FL—=(O FL,],)’

of CLs)oo = (CLs)oreb0r0» @and+(=) =T (1). In this case, the current expression (13) can be rewrtsen

t
\]L,o' =-2elmTr {f d—;FLU—f dTlGL_G_(t, T]_) . fL(S)

o eiem-Dge [ AL(T)dT} —elmTrT LGS (L 1) . (14)

Note that the trace in Eq. (13) goes over both spin and orbégtees of freedom, while in Eqg. (14), only orbital degrefes o
freedom.

To move forward, the retarded and lesser Green'’s functiarst e calculated. The retarded Green’s func@bmf the QD
of the two-probe device is obtained from the correspondinge@'s function of the isolated QD (without the leads) udimg
Dyson equation (for details see Appendix B),

r A +00% r —e(t-t)
Gtt)= [ G @, (15)

G (&) = (e + :7 —Ho+2=)7t. (16)

As for the lesser Green's functiga<, we make utility of the Keldysh relatiolG< = G'X<G?, which can be easily calculated
onceG' is known.

In this work we are interested in the time averaged curremthib end we assume that the amplitudes of the AC bias applied
to the two leads to be the samg, = Ar = A. As detailed in Appendix C, Eq. (14) is reduced to the follogvform:

+00

wo=e [ S0 - w6 ) %2

k=—co
X Tr[IL,G" (g — kw) TRG? (& — kw)], a7)



where Jy is thek-th order Bessel function of the first kind. When= 0, i.e., no AC bias is applied, Eq. (17) reduces to the
familiar DC expression), , = ef g—fr (fL = fR) Tr[IL,G" (6) TRG? (€)] vor-

From Eq. (17), various physical quantities of interest dstaimed. The time-averagedfective transmission cdécient of
spino channel is given by the main integrand of Eq. (17),

w (€A
T, (e) = Z J2 (Z) Tr[FLoG' (¢ — kw) TrG? (¢ — kw)] . (18)
k=—co

In this work, 7, (¢) and7 (&) denote the transmission d&ieient of spine- electrons and total transmission, respectively. To
avoid possible confusion, the energy dependence of trasgmicoéficients is always written out explicitly. The spin current
and charge current are obtained as thfEedénce or sum of contributions from the two spin channels,

Js=Jr (-, (), (19)
Je=Jd () +3I (@) . (20)
For the thermoelectric properties of the FRD/FM device, we shall distinguish two situations: with or vatt spin accumu-
lation at the FM contacts.
a. With spin accumulation. Spin accumulation will generate a spin chemical potentiaictv drives a spin current. For
finite systems applied a small temperaturegtence, achieving equilibrium means that there should beehepin current nor
net charge current:

lt+1, =0,
It -1, =0,
ie.,
l;=0, 1, =0.
Therefore, the definition of charge Seebeckfiont should b
AV
SC - E 1=0,Is=0

In other words, for systems with spin accumulation, the tpio shannels are independent and the charge accumulatiba is
sum of individual accumulations. In this situation, theetthermal-spin quantities can be deduced straightforyarthe
electric conductanc@,,, the Seebeck cdiécient of spine- S,;, and the electronic contribution to the thermal conduatdag
are expressed by the transmissionfio®nt 7, (¢) (% restored explicitly):

6 =% [ @11 Tie) = o, @)
_ 1 JAee )T le) 1 Ly (22)
7T [ de(- )T (e) eT Lo’
Kooy = 1 (L - L_if] (23)
T Loo )’

where
Ln = %fds (e=W)" (=) 11T (),
and the referential electrochemical potenti@nd temperatur€ are set as
p= %(NLT +uLy+pRy Ry, T = %(TL +Tr).

Using these quantities, the charge and spin thermoelectgficients are obtained from the following expressiéh;

Ss=5-S,, Gs =Gy -Gy, (24)
Sc=(51+S5))/2, G =G + G, (25)
ZsT = |Go| S2T /ke, (26)
ZT =GcS2T/Ke, ke = Kep + Koy . (27)

Note that there is an extra factor gRlin Ref. 26 in the definition of spin-dependent SeebeckmentS,*® resulting from a
different definition of “spin voltage’ys. Here, we adopt the natural definitioms = 1y — y;, which is generally accepted and
widely used in the literaturgl?4142:44
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FIG. 3. (color online) Transmission cieients of (a) spin-up, (b) spin-down electrons, and (c) batds of electrons of the single-level
FM/QD/FM spin-valve in parallel configuration with fiérent polarizations in leadp, = 0 (blue dash dotted line).f(green dashed line), 1
(red solid line). The AC bias is applied witlaw = eA = 10T..

b. Without spin accumulation.If there is no spin accumulation in the FM leads due to spiaxation, no spin voltage will
be generated and the Seebeckficient is determined by the condition that the total chargestu equals to zero, i.e., balanced
by the external voltage bias and temperature bias:

AV

s=-2Y|
AT lio

In this case, the total transmission @@ent should be employed to calculate the correspondimgthelectric quantities. And
we have

e? de

G=- |5 (—f) 177 (e) = €L, (28)
_ 1 [dee-mRhaTl) | 1L (29)
€T [de(=1) 117 (e) eT Lo’
o= 2L~ b
_ f( - L_O), (30)

where

T(e) = ). Tole),

1
Loz [ dete=i DL TE)

Especially for spin degenerate cases, we can use the trssiemcoéicient of a single spin channef,,(¢), and include the
spin degeneracy by adding a factor 2 into the expressiohg.of

For our problem of non-collinear spin-valves driven in Add the above derived formulae appear rather similar tegho
of collinear magnetic structure in AC or non-collinear in Dihe diferences lie in the content of the physical quantities such
as transmission céigcients and linewidth functions. In this work we shall ignohe lattice thermal conductance since it is
essentially a constant for small AC fields and for any noiredrityd of the magnetic tunnel junction. This approximation does
not change the quantitative behaviors of the thermoetegtdperties to be discussed below. Without the latticerdmution to
thermal conductance, the absolute valu€ ®fdoesn’t correspond to those obtained in experiments. Torerenve shall focus
on the trends oZT, i.e., how the qualitative trends are altered by the AC fialdd under noncollinear magnetic structures.

1. NUMERICAL RESULTSAND DISCUSSION

Having derived the general expressions of thermoelectdpgrties for noncollinear magnetic tunnel junctions éniby an
external AC bias, in the rest of the paper we investigate eiip&M/QD/FM system where the QD has a single spin-degenerate
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level. For this model, all quantities associated with the d2ome 2< 2 matrices, and the trace in thffective transmission
Eq. (18) needs only to go over spin degrees of freedom.

For clarity, we suppose that the two FM leads are made of thee saaterial, having the same spin polarization such that
the components of bandwidth functions in Eqg. (11) are givemh, = T'(1+ op). In the following, thermal-spin féects
are presented and discussed first, followed by results ahalothermoelectric properties, among which dependenciespmn
polarization, noncollinear angle, and AC frequency willfbeused.

A. Transmission coefficients

While the behaviors of transmission d¢heients of QD in many dferent situations have been well documented in the litera-
ture, for completeness and for later discussions (e.gnibelectric properties), we shall briefly discuss them is fubsection
usingI” as the energy unit. We begin by considering the paralle! Q) configuration and non-polarizeg & 0) situation under
the AC fields. For this case both spin channels have the samspiort features and the total transmissiorffozient is plotted
in Fig. 2 as a function of energy.

As shown in Fig. 2(a), the DC transmission (black line, cappiing with the other lines) is in the expected Lorentziae li
shape with a full width at half maximum equalinglto The maximum of the total transmission is 2 and it occutsatsy, due
to the resonant tunneling through the two degenerate QBsstdthen a harmonic AC source with small amplited¢siw = 0.1
is applied, changes caused by the AC field immerse in the D&trspe and are too small to decern. Whexyziw = 1, the
photon-assisted features are more clearly seen, asalledtin Fig. 2(b). First, there are side peaks located at

e—gy=kiw,k=0,1,2,---. (32)

These peaks are due to the well knokphoton-assisted tunneliftf*® and each term in the summation of Eq. (18) can
be viewed as the contribution from tlkephoton process. As shown in the figure, transmissiorficent is symmetric about
leo—u| = 0 (chemical potential is set to zero throughout). From the photon point of view)dffieside of transmission cdigcient
is associated with first absorption and then emission ofgrigwhile the right side, first emission and then absorptsatond,
the major peak at—&o = 0 is suppressed, and the peak heights of resonant tunneloogrie lower for largek. The suppression
is due to the prefacto]lf(eA/hw) in each term of the summation in Eq. (18), and tﬂﬁiF.-A/hw) monotonically decreases with
k wheneA/hiw = 1. In fact, for the parallel magnetic configuration, the D&nsmission is determined by the density of states
po (g) of the QD ad®46

Loler ) o). (32)

T(r =2 o
(S) I'y +TRs

from which one finds that the total area under the transmissiove is a constant that only depends on the linewidth param
ters,

fﬁ;@ms=2fmr%/¢w+r%y (33)

When the AC bias is applied, the transmission is a weighted with weighting factors],f(eA/hw). Since the total weight
equals to oné’

Y R@=1, (34)

the total area under the transmission fécent for the AC case is the same as that for the DC case. Iir atbals, the
transmission probability is redistributed over the whglecdrum. This well explains why the main peak is suppressekiu

AC. In fact, in Appendix D we prove that the area is not influsshdy the AC bias (within WBL approximation) even for
noncollinear magnetic tunnel junctions. A maifieet of an AC bias is therefore to redistribute the transmissipectrum

for both collinear and noncollinear magnetic structurascréasing the amplitude parameter of the AC bias furthgr, &
eA/hw = 10, heights of the photon-assisted side peaks may overgteontain peak, and particular side peaks may disappear as
well due to the oscillation of the functiojﬁ(a) with k, as shown in Fig. 2(c).

The spin polarizatiop of the FMQD/FM spin-valve also has significant impact on the transmissjgectrum. As plotted
in Fig. 3, transmission cdicients of the two spin channels are equal wipen 0, but become quite fferent asp is increased.
Fig. 3(a) shows that transmission of the majority spin deses with increasing; Fig. 3(b) shows that the opposite is true for
the minority spin. This behavior can be understood as faldWwhenp = 0 (normal metal), there is nofiiérence in transmission
between the two spin channels heffGge) = 7 (¢). For p = 1 (half metal), only the majority spin can tunnel through @i
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FIG. 4. (color online) Transmission ceients of (a) spin-up, (b) spin-down electrons, and (c) batls of electrons of the FDD/FM
device with diferent angles of the magnetic moments of the le@ds0 (blue dash dotted),.Br (green dashed); (red solid), under AC bias
with 7iw = eA = 10T, andp = 0.6.

region, sd7; (¢) = 1 and7 (¢) = 0. These limits determine the general trends of transnrissigficients when polarization in
leads increases from zero to one. By contrast, total tressan has smoother variationagicreases, resembling as shown in
Fig. 3(c). Importantly, Fig. 3 shows that decreaspigan make the transmission peaks (in the total transmissiach sharper
thus enhancing the derivatives of the transmission fundim as to change the Seebeckfiiognts. In addition, increasing
(decreasingp makes the transmission peaks of minority-spin (majonityyschannel sharper. We conclude that END/FM
spin-valves made of fferent FM materials should have ratheffelient Seebeck céiecients due to dierent polarizations.

Now let’s look at the impact of the alignment of the leads’ meiic moments. In Fig. 4, the transmission function is plbts
a function of energy at éierent noncollinearity angles Quite diferent from changing the polarization, varying the spinsgal
rotation angle gives rise to remarkable variation of resbpaak heights. A8 increases from 0 ta, transmission of spin-up
electrons is suppressed and transmission of the spin-dmetr@ns is enhanced. Such a spin-valve behavior is welvkno
from the Julliere modef® As 6 increases, the energy derivative®f gradually increases, that @f, decreases; and the total
transmission has faster variation withasé increases. These variations finally result iffetient dependencies for spin-valve
systems with or without spin accumulation as we shall seabdh next subsections, we shall mainly investigate whicle,
polarization, and frequency are best for thermal-spin awchal thermoelectric properties.

B. Thermal-spin properties

It is interesting to investigate how noncollinear magnetiements influence the Seebeck fiméents under the AC fields.
Fig. 5 plots the Seebeck ciieients of spin-up$%;) and spin-down$,) electrons, together with spin-dependent Seeb8gk (
and charge%.) Seebeck cdéicients. These quantities are calculated using the comeipgexpressions in Section I B. All of
them are 2-periodic functions o, and are symmetric abo@t= = because of the spatial symmetry of the spin-valve. As shown
in Fig. 5, the Seebeck cficientS; (blue dots) achieves its maximumét 0 (PC), and its minimum a = = (APC). Among
the interval [Qx], S; monotonically decreases with In contrastS; has the opposite trend. According to the Mott’s relation
discussed in the introduction, faster changes in transomisgoduce a higher Seebeck fibgent. Since resonant transmission
of minority spin at PC is unity regardless of polarizatioriasy asp # 1, and is generally lowest at other energy points at PC,
[T1(e)]. is biggest at PC, also shown in Fig. 4. That is v8jyhas the maximum value ét= 0 andS; has the opposite behavior.

As an average 05; andS,, the charge Seebeck dhieientS; has a weaker dependence @n Interestingly and rather
unexpectedly, the maximum & appears aff = 0, which means PC is actually better for obtaining a largargh Seebeck
codficient. The spin-dependent SeebeckiiomntSg also has the maximum value (largest negative value) at P@ecrgéases
with increasing angle until = =, whereSs = 0. The zero value db; is because that; (¢) = 7, (¢) for our symmetric spin-valve
whené = &, and therSs vanishes by Eq. (24). We also observe tBaandS; are of the the same order and of opposite signs,
which implies that they are mainly determined®y.

What alignment of the magnetic moments of the spin-valveetteb for enhancing the Seebeck fiusents? As shown in
Fig. 6, for the case of afp = —10 eV, both charge and spin-dependent SeebecKicmnts achieve their maxima at parallel
configuration, regardless of the polarization in the ledtlss also shown that Seebeck ¢beients aty = x are independent
of polarization, a fact attributed to the spin-independesrismission at APC. In general, a higher polarization favogher
Seebeck cd#cients for other noncollinear angles.

Next, we investigate the variation offeresonance Seebeck ¢beients and figures of merit on AC frequency. Heré; o
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FIG. 5. (color online) Charge Seebeck (thin pink solid lirg)in-dependent Seebeck (thick green solid line), spisegbeck (red dashed

line), and spin-down Seebeck (blue dotted line)fioents as functions af. Other parameters are chosen tolbe- 10 ueV, p = 0.6,
g =-10ueV, T = 0.03 K, w = 25 GHz, anceA/hw = 1.
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FIG. 6. (color online) (a) Charge Seebeck ffméent and (b) spin-dependent Seebeckfltcient as functions of at different polarizations of

the leadsp = 0.2 (blue solid thin line),p = 0.4 (green dashed linep = 0.6 (pink dash dotted line), anp = 0.8 (red solid thick line). The
other parameters are set tode- 25 GHz,eA/fiw = 1,T = 10ueV, eg = —10ueV, andT = 0.03 K.
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FIG. 7. (color online) Spin-dependent (blue dashed) andgeh@ink solid) (a) Seebeck ciieients and (b) figures of merit as functions of

the AC frequencyw. The QD level locates afy = —200ueV, and the AC bias is applied with /7 = 25 GHz fixed, meaning constant power.
Other parameters are chosenpas 0.6, = 10ueV, = 0, andT = 0.03 K.
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FIG. 8. (color online) Contour plots of (a) spin-dependeeelSeck coicient, (b) charge Seebeck ¢heient, (c) spin figure of merit, and (d)
charge figure of merit, as functions of level positignand AC frequencyv. The amplitude of AC bia4 is fixed ateA/# = 25 GHz. Other
parameters are chosen tolbe 10ueV, p=0.6,0 =0, T = 0.03 K.

resonance means electron enetgy: o Wheregg is the energy level of the QD. It is found that there is phaoitwhiced
magnetoresistance oscillation in tunneling systems asrshi Ref. 50. What about thermoelectric properties? Shthudan
monotonically change with the applied frequency or havelamoscillation? In Fig. 7, we plo§.s andZ.sT as functions of

w. The spin-dependent Seebeck fmdentS; is nearly independent af for smallw. Whenw increases to moderate valu&s,
starts to vary around its DC value and the variation becomesster whenw increases further. At around ~ |¢o — | and larger,

Ss reaches its largest peak and finally falls back to approaelbth value wherw further increases. Interestingly, the charge
Seebeck caiicientS; has essentially the same oscillatory behavior, but its paakl valleys occur out-of-phase with those in
Ss. This variation ofSs and S, versusw is in fact consistent with the variation of the transmissimaficient7 (). When
hw ~ leg — ul, single-photon-assisted tunneling enhar€és), showing an 1-photon-assisted side peak around the chemic
potentialy, leading to significant values of Seebeck fiméents. Especially foliw = (1 - 6)(u — &0), § < 1, u locates at the
right-hand side of the first side peak, leading to a positaeie of S, while for iw = (1 + 6)(u — o), § < 1, the left-hand
side, leading to negativ@&. Importantly, Seebeck céiecients vanish at the middle of a symmetric transmissiontspecdue to
electron-hole symmetry, so it is nearly zero at the middla tthnsmission peak provided that thermal smearing is essthe
peak width. Therefore, a side peak will introduce an oddillein S as a function of AC frequency. In fact, thephoton-assisted
will have major contributions t@ (&) or current wherkiiw = |eg — ul, or w = (1/%)|eo — ul/k. There are dense photon-assisted
tunneling peaks whew is very small. Side peaks i (¢) generally have lower peak heights and overlap with eackrpth
resulting in tiny changes &. This is the reason wh$. s are rather flat whew is small. Wherfiw > |go — ul, which means the
energy of a single photon is larger than thfatience between the QD level position and the chemical patgetitere is hardly
any photon-assisted tunneling; And as a consequenceatistilof S disappears.

There are also oscillations it T andZsT as shown in Fig. 7(b). The zeros BsT is the same as those 8,5, originating
from the relations shown in Egs. (26) and (27). An oscillatio S¢;s generally corresponds to two peaksZfsT because
ZeysT o S(Z:/s' Itis also shown that a larg&s is better for a largeZT. From Fig. 7(b), it is clear that the single-photon-assiste
tunneling Is of most significance f@,sT .

The behaviors of Seebeck dheients and figures of merit versus the QD energy level pas{tig) and AC frequencyd) are
summarized in the contour plot of Fig. 8. Whepis close to the chemical potential, applying an AC bias I@#ke major peak
in the transmission spectrum, yielding a suppression db&gecodficient. As shown in Fig. 8(a), there are pairs of peaks and
valleys around each line @f = kiiw. The region where» < 6 GHz is rather flat as we have addressed befsgen Fig. 8(b)
has smoother variation th&y. What's more, the opposite signs and trendSo&ndSs can be seen clearly from the two panels
(peaks and valleys @, andSs are out of phase). Note th8t andSs are of the same order. Spin and charge figures of merit
are plotted in Fig. 8(c) and (d). Compared to the SeebecKicmats, the photon-assisted resonance features are neardycl
standing-out. For the regian < 2.5 GHz~ 10ueV=T andegg < T, bothZsT andZ.T are almost zero because the changes
caused by the AC field immerse in the original main resonared.p

It is intriguing and important to point out that the photossistedZ. sT peaks - i.e., those due to photon side peaks in the
transmission cdécients, have the same order of values as those due to the esaimance peak 6f(¢), as shown in Figs. 8(c)
and (d). Although the photon-assisted peak® (&) are much lower than the main resonance peak() as depicted in Figs. 3
and 4, transmission peak heights have little influence omtheimum ofZ.sT. Combining with the Mott's relation, we can
conclude that a general scaling on the transmission hassainoodfect onSc s and onZ.sT whenk. dominates the thermal
conductance.

Finally, we have also investigated other non-collineasitgles. For APCSs is always zero whileS. oscillates with the
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FIG. 9. (color online) Normalized thermoelectric quaestiS| (red line),G (blue line),x. (Magenta line), and T (green line) as functions of
6. The normalizing factors ar®,, = 58.6 uV/K, G, = 0.172x (2€?/h) kem = 4.97x 1078 nW/K, andZT,, = 0.146. Here, the QD level position
is supposed to bey = —115ueV. The other parameters dre= 10ueV, T = 0.03 K, w = 25 GHz,eA/hw = 1, andp = 0.6.
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FIG. 10. (color online) Normalized thermoelectric quaastS| (red line),G (blue line),x. (magenta line), and T (green line) as functions
of leads’ polarization. The normalizing factors &g = 586 uV/K, Gy, = 0.189x (26°/h) kem = 5.13x 10°% nW/K, andZT,, = 0.146. The
other parameters afe= 10ueV, T = 0.03 K, w = 25 GHz,eA/hw = 1,0 = 0, andgy = —115ueV.

AC frequency, similar to what is reported above. In genarstillations ofSc s andZ.sT on w are commonly found in other
non-collinear angles.

C. Thermoelectric Properties

In this subsection we investigate the normal thermoeleefiects where there is no spin accumulation in the FM leads.isn th
situation, the total transmission due to both spin chansedsployed to calculate the thermoelectric quantitiesaddressed
before, the angular and polarization dependencies are difierent between the total transmission and the individual spi
channels.

As shown in Fig. 9, we fix the QD level positionat = —115ueV, which is in the vicinity of the first photon-assisted pe&k
Seebeck caéicient under an 25 GHz AC bias (25 GHz103ueV). Two major features can be seen from this figure. Firkt, al
guantities monotonically vary with. |S| andZT have their maximum values at APC and the minima at PC, whiehaally
different from the spin-dependent case discussed in the las¢atign. On the other hand, the electrical conduct&head
electronic thermal conductaneg have similar variations, and both have the maximum valuddCatWhen the temperature
is low enoughxe has essentially the same behavioiGaswhich is consistent with known literatupé Second, the calculated
magneto-thermopower, defined as MIFSap — Sp)/Sp, is about 16% which is qualitatively consistent with expents®®
We may therefore conclude that the APC is best for enhanbimgérmal thermoelectric properties.

As for the variation of polarization, we plot the normalizéérmoelectric properties in Fig. 10 at PC. The chang&s amd
ke due to polarizatiorp are small because the summation over the two spin channgédyaverages out thetect of p. On the
other hand|S| andZT decrease fast as polarizatiprincreases, hence non-polarized leads are better for hifhealues.
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FIG. 11. (color online) Thermoelectric properties in spaive where no spin accumulates in the leads. Contour pi¢t9 Seebeck cdicient,
(b) electric conductance, (c) thermal conductance, andigdje of meritZT, as functions of AC frequency, and the quantum dot level
position,eq. Other parameters are choserfas0,I' = 10ueV, p = 0.6, eA/f = 25 GHz.

TABLE I. The calculated DC values of parallel and antipaiaBeebeck cdicients (with no spin-accumulation) for a QD spin-valve mayi
a spin-degenerated energy level. The experimental vaheeguated from Ref. 22. The parameters are chosen fohd0ueV, T = 0.03 K,
andp = 0.6.

TMR Sp(uV/K) Sap(uV/K)
This work 76% 44.4 545
Ref. 22 76% 22 53

Finally, the frequency dependence of the physical quasti «., S, andZT are plotted in Fig. 11, for parallel spin-valve
(9 = 0) with p = 0.6. The impressive radial pattern is also observed resemiilimse of the spin-dependent case (see Fig. 8).
However, the AC-induced variations @andx, are much weaker here than the spin case, which also restitts gimilarity of
S andZT.

So far we have focused on varying model parameters to esttiabljeneral physical picture for the transport properfi¢iseo
FM/QD/FM spin-valve under external AC fields. To make better corisparwith experiments, we choose linewidth parameter
' = 10ueV, which is a typical experimental value for QD deviées? p = 0.6, which is the polarization for FM alloy CoFe,

w about tens of GHz - the range of frequency in and beyond miaves;, andl = 0.03 K (or kgT ~ 4.3 pueV). Although a
lower temperature usually means a lowdr, here we are interested in the low temperature fine struztfrgquantum origin
such as photon-assisted resonant tunneling in the tenuperstale okgT < I', w. Using these realistic parameter values in
Eq. (25), the calculated normal Seebeckfionts are found to be quite close to those measured in expets?? as shown in
Table Il C. Given the substantialfiiérences in device structures and materials, the quanditedinsistency is quite reasonable.

IV. SUMMARY

In summary, we have carried out a theoretical analysis afrithkspin and thermoelectric properties of non-collingain-
valves driven by a high frequency AC voltage bias. A genemdlexact formulation for the time-averaged physical propsof
the spin-valve model is derived by the nonequilibrium Gig&mction theory in the linear response regime under thieviand
limit, and the analytic formulation provides a starting mtdfor further numerical calculations of these properti& find that
non-collinear FMQD/FM spin-valves under harmonic AC bias have very interestiegmal-spin and thermoelectric properties
which can be tuned by several control parameters. It is shbatnphoton-assisted tunneling processes manifest ylieatthe
transmission spectra, and strongly depend on the magradéidzation and magnetic configuration.

For thermal-spin #ects, both spin-dependent and charge Seebedk@entsSs andS; generally achieve their maximum
absolute values at parallel magnetic configuration, andltmination of minority-spin Seebeck dtieient leads to opposite
signs and opposite variations 8§ andS.. On the other hand, for normal thermoelectiifeets,S andZT achieve the maxima
at anti-parallel configuration of the spin-valve. For bdterimal-spin and normal thermoelectritezts, when an AC bias with
a moderate frequency is applied,andZT oscillate around their DC value as the AC frequency is insedadue to photon-
assisted tunneling. At higher frequency, these quantijeback to their DC values. The microscopic details behirdeh
behaviors are discussed based on the transmissidhicieets. It is found that the area under the transmissiontspads a
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constant even under the AC bias, which provides a conswaittie variation of the thermoelectric properties. Finallg note
that the oscillation behavior of the thermoelectric praisrof the spin-valve driven by an AC biaffers a “knob” to tune the
thermoelectric behaviors of magnetic tunneling junction.

Finally, we note that the electron-electron and electrbarfmn interactions are not considered in our device modwd.farmer
gives rise to interesting phenomena of the Coulomb bloclexiKondo resonance in QD systems while the latter is needed
for exactly determining the lattice thermal conductivityhigh temperature. Adding these terms to the device Hanédtowill
make the analysis significantly more complicated but théfsets clearly warrant further investigations. Since our arioal
results of the device model showed very reasonable consisteith the experimental results, the general formalisrBed. ||
may be extended further to better explore the AC therma@tgqmtoperties in magnetic tunneling junctions.
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Appendix A: spin-polarized current

Some of the derivation details of Section Il are organizedeweral appendices below. We first derive expressions éor th
spin-polarized current. As defined in Eq. (1), the Hamilémis

H =H_ + Hc + HrR + Hr.

To calculate the electric current, we consider the changieeohumber of electron g in the leads as

Nyjr = Z C/ Cras, (A1)
ksael/R

hh#%%MMHFHMﬁD

=ie Z I:tkas,no' <C|Ia/3dna—> - t;as,n(r <d::m_CkaS>]

ksnr,ael
=€ Z [tkas,n(rG;mkas (tv t) - tlias,n(relfas,na'(t’ t)]
ks, el
=2eRe D tiusnGrpus (L), (A2)
ks, el

where the lesser Green’s functions are defined as

M&w%@@m%&»%%ymw} (A3)

1 . ,
Glasne (L) = = (Te (Cuas O i (1)) = 1 {d, (1) Cras (1)) (A4)
. T
and have the relatiofGy; .. (t.t)| = G ¢, (t. ).
Regarding the expression of total current in Eq. (A2), itatunal to introduce a spin-resolved current as

Jsr =26RE D" thasnrGrippes (1), (A5)

n,k,ael

which accounts for the contribution from the sgilectrons in lead L tunneling to the QD as spin-Then the spirs current
and the total current arg s = 3, J. s andJ. = 3 J_ s, respectively.
o

so
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Using Eqg. (A5) , we shall express the current in terms of badthfunctions in the following. First, from the Dyson eqjigat,
we have

Gna—,kas (t’ t,) = Z delGno',n’(r’ (t’ Tl) tn’o",kasgkas (Tl, t/)
n,o’

Z f 1Gnrrro (t,71) t;as,n'a/ Okos (T2, 1) .
A P n.,o’
plying the Lengreth theorem, we obtain

r<m—,kws (t’ t) = Z delG{w,n’o’ (t’ Tl) tlﬁasn’a—/gﬁas (Tl’ t)
n,o’

(A6)
+ Z delG;o,n/g/ (t,71) t;as,n’a—/ gsas (1, 1).
n,o’
For noninteracting and isolated leads, the Green’s funstioé*
Okos (T2, 1) = i (EEQS) it [ Au(@dr
O (r1.1) = i6/(t — 71) @ sVt [ Au)dT, (A7)

Substitute Eq. (A7) into Eq. (A6) and replace the summatiark, >, by integration over energy", dep (g), we have
K

Z tk@svno'Gﬁo',ka/S (t’ t)
k,ael

t
i) [ dopus(eoan @)Y, [ driGhe ()
no’

acl

: t;g’n/a—/ (8) . fa/ (g) e_iS(Tl—t)e—i ftfl Ay (7)dr

t
#1)° [ dops(etan @)Y, [ diGie (1)
no’ —

ael

Ao (6) griemi-Ygi [ Au(n)dr
(0% (o

rd t . e
- 27? D Tiswer e (6) f drye ol K7 A (e
no’ -

: [Gao',n’(r’ (t’ Tl) : f(Y (‘9) + Gr<'|g—,n/g—’ (t’ Tl)] )

where the spirsbandwidth functiod s is defined as

I'ishone (5) =2r prs (3) tosno («9) t;s,n/(r/ (5) (A8)

ael

Under WBL, which neglects the energy dependence of bantidictions, the integration involving< can be carried out:

de
Je = —2elm Tr{ f > ;nsm
t
: f driGl . (t71) - fi () e Ve ik 1AL(T)dT} (A9)
—elmTr Z Iis00Gy o (L),
where the trace goes over orbital degrees of freedom, and
2e d
Je= ——f drlf—gﬁ_ (€) ImTr{
hJe 2n . (A10)
giemg [T A0 G (¢, rl)} -2 ImTrILG= (t,1),

tracing over both spin and orbital degrees of freedom.
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Appendix B: Retarded Green’sfunction of the QD
For further calculation, we need to calculate the retardegb@s function of the central region. By Dyson equation haee

G (t,t) = GL (L) + f G (t, ) 2 (tz, ) G (ta, V') dtydlty, (B1)

whereGj is the retarded Green’s function of the isolated QD (i.e. lecteodes), and the retarded self-energy under WBL can
be written a¥

X (t,t) = —i—2F5 (ti—t2). (B2)

The time-dependent retarded Green’s function of the isdI&D can be obtained by
Gh(t,t)=Gh(t-t) = dEGr (E) e 1), (B3)
GL(E) = [E +in—Ho] ™, (B4)

whereHg is the Hamiltonian of the isolated QD.
In virtue of Egs. (B2) and (B3), Eq. (B1) can be rewritten as

G'(tt)=Gyt—t)+ fG{) (t—ty) (—%F)Gr (t,t) dty.
To get an analytic form, we carry out the double-Fouriergfarm:
G'(E,E) = f G' (t,t)eFe B dtdt
= 271G} (E) 6 (E - E) -
iz f f f G (t - ty) €EWe EVELTG! (1, ) dtydtdt

= 272G (E)6 (E - E') - %G{) (E)IG' (E,E)

=26 (E-E) (—lzeg(E) r) G} (E)
n=0
= 275 (E - E')G' (E),

where we have defined' (E) as

RN E A A 265(3 (-5res®)

n=0

= G} (E) + G, (E) (—izr) G (E).

It shows thaG' (E) andG{(E) have a Dyson-equation-type connection.
SinceGj(E) can be obtalned by Eqg. (B4Y' (E) defined above can be obtained similarly by

-1
Gr(E)z[E+in—H0—2r]‘1=[E+i77—H0+121‘ . (B5)
There are two auxiliaries that we shall use afterwards.

(1) G' (t,t") is now expressed in terms &f (E) as

G’ (t,t’):fd—E dE Gr(E E’) e EtdE

f dE dE 2716(E - E)G' (E)e EleE

Gr (E) —IE(t t) (BG)
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(2
G' (E) - G*(E) = —iG' (E)I'G3(E). (B7)

Using Eq. (B5), we have
[G"(EB)] -G (B =ir.

Multiplying the above equation on both sides 8/ E) from the left andG?(E) from the right, we obtain Eq. (B7), which is
actually an identity relation without assuming the WBL.

Appendix C: (J)

To facilitate the calculation of time averaged current, Wellsdeduce an explicit expression for currents in a meliel QD
under harmonic modulation. First, the Keldysh equatioregiv

G=(t,1) = ff G (t,t1) == (t1, t2) G? (1o, 1) dtrdty,
where the lesser self-energy from definition is
T (t o) = VI () 0% (. ) V (1)
Substitute Eq. (A7) to the above equation, we obtain thetesalf-energy as
e (t. 1)

de. i i [t T)dr
_ Z fz_;lf” (8) e—ls(trtz)e 'fle A, (7)d S (Cl)
a=L,R

With To:mone = 2sLasmono» Wherel',s is defined in Eq. (A8).
Accordingly, the lesser Green’s function can be simplified a

co= ff G (Lt) > f it () eetug 2
a=L,R 2r
-T,G23(ty, t) dtodty
= Vi [t @A GITALED. ()
a=L,R

where the spectral functioh, (e, t) is defined a¥
A, (e,1) = f h duG' (t, ty) e otV [ Aa(rdr (C3)
and
A (e, D TLA! (e,1) = f - At G (t, ty) e oDt [ Aa(r)dr
‘T, f " G (t, 1) €t Vel £ 2.

+00 +00
=f mf dhG' (L )T,

G2 (tp, t) et el ﬁ;l Aq(r)dr o

With Egs. (C2) and (C3), the time dependent spin-polarizecenit can be written in terms @, (¢, t):

dr=e 3, [ G ETILA EOTA ) o

- Zef d_2781' f|_ (8) ImTr [FL,a-AL (8, t)] .
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Noting thatTl’, is a real and symmetric matrix, the quantity A, A}) is real.

Using the expression f@' in Eq. (B6), the spectral function is actually

A, (8 t) = f dthr (t tl) —ie(ti— t)eleA ﬁlco&urdr
eroo dtlf G (E) e—lE(t tl) —le(ty— t)eI%” (sinwt; —sinwt)

i e smwtf “Edte-Bgr (E)
f dtleltl(E 8) Z ( )elkmtl
_ Z Je ﬂ gltle- E)e—IM” sinwt
w

k=—oc0

dE

271_(3r (E) 276 (E — € + kw)

+00

— Z 'Jk (Ta)eikmtei% sinthr (8 _ k(/.)) ,

k=—c0

where we have adopted an identity expansion relation fofitstekind Bessel function that exiginwt) = 3 Jk(2) explkwt).
Performing time-averaging, we have

(A (e.1) = ZJK(
k

m A, ) = Y %
k

)Gf (e — kw)

s|8 e\@

) mG' (e - kw) (C6)
- ‘%ZJE(%)G' (¢ — k) IG? (& — ko).
K

Note that in the last equation, Eq. (B7) has been utilized.

Similarly,

A(Y (8, t) F(YAT (S t)
_ Z (eAw )e'k‘”t 7|— SlnthI’ (g —_ kw)

T, Z‘]k ( ) ek (utelﬂ” sintza (& — kw)

= Z Jk(eAw) , ( » )e'(k KIAG (& — kw) - T,G? (¢ — kw)

<Aq (e, OTLA] (5, 1))

_ZJK(

)Gr (& — kw) - T',G? (¢ — kw) . (C7)
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Then the time-averaged current is found to be

o = (e (1)

de eA
= - —fo JZ( .
ea;R f 2 (8) zk: X w )
-THLeG (& — kw) - T,G? (& — kw)]
+efd—2ifL(e)ZJlf(%)
k
-Tr[FL,G' (& — kw) TG? (& - kw)]

e[ 3[u0s() wos()

Tr LG (¢ — kw) TRG? (¢ — k)] . (C8)

In particular, whem\| = Ag = A, we obtain

o = efd—zi [fL () — fr(e)] Z ‘]E(%) (C9)
X

Tr[FLoG' (¢ — kw) TRG? (& — k)] .

Appendix D: Area Under the Transmission Curve
As shown in Eq. (18) above, the transmission spectrum foeigdicases is
T (€) = ZJK( )Tr [TL,G' (¢ - kw) TRG? (¢ - kw)].
The pre-factot is independent of energy, so the integration over ener@y,dt) becomes
AAC = f‘]} (8) dE}
2 eA r a
= Z 32 (Z) f de Tr[TLG" (¢ — kw) TrRG? (¢ — kw)]
k

= zk: [Jlf (%)] fds Tr[[L,G" (¢) TrG? (¢)]

= f de Tr[I'L,G' (¢) TrG? (¢)]

= Apc,

where} Jlf(z) = 1.4 Therefore, the total area under the transmission specsunadépendent of the AC frequency and equal
to that of the DC case under WBL.
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