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We report theoretical analysis of thermal-spin and thermoelectric properties of noncollinear spin-valves driven
by a high frequency AC voltage bias. The spin-valve consistsof two ferromagnetic contacts sandwiching a
single-level or multi-level quantum dot (QD). A general formulation for the time-averaged thermal-spin and
thermoelectric properties of spin-valves is derived within the nonequilibrium Green’s function theory, which
provides a starting point for further numerical calculations of these properties. Numerical results of a spin-
valve having a spin-degenerate single-level QD are given asan example. The AC bias induces various photon-
assisted transmission peaks which can greatly enhance the Seebeck coefficients and the figures of merit, and
offer a new possibility to tune both the spin-dependent and normal thermoelectric properties of the spin-valve.
Details of these properties and how they depend on the non-collinearity of the spin-valve, magnetic polarization,
temperature, AC bias, and other control parameters are reported. A particularly interesting result is the opposite
dependency of the thermoelectric properties on the magnetic polarization and non-collinearity for contacts with
or without spin accumulation.
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I. INTRODUCTION

Concerns about the deteriorating global environment and depleting natural resources have prompted a new wave of technology
development for green energy solutions in which the century-old phenomenon of thermoelectric effects has regained particular
prominence.1–5 Thermoelectricity converts heat to electricity or vice versa, thus has been used in harvesting waste heat in
industrial processes and in on-chip cooling for integratedcircuits.6–8 The maximum conversion efficiency of thermoelectricity
is measured by a dimensionless figure of merit calledZT coefficient, defined asZT ≡ GS2T/(ke+ kph), whereG is the electric
conductance,S is the Seebeck coefficient,ke the electronic thermal conductance, andkph the lattice thermal conductance of the
thermoelectric material. The relentless search for methods and materials to increaseZT has been going on for over a century. The
highest value ofZT for bulkmaterials is about unity which appears to be difficult to increase further because of the Wiedemann-
Franz Law9 that dictatesG ∝ ke, thus any increase of electric conductanceG is not automatically translated into an increase of
ZT due to the balancing effect of thermal conductancek - especially in metals; and due to the relatively large lattice thermal
conductance accompanied with limited value ofS2G in semiconductors. Recognizing this problem, recent efforts have been
shifted toward nano-structured materials (as opposed to bulk materials) where lattice thermal conductance can be diminished
and much largerZT may be possible.1,10

Besides exploiting the nano-structured materials to decrease the lattice thermal conductance, their electronic properties can
also be manipulated to increaseZT. According to Mott’s relation,11–13 in the linear response regime the Seebeck coefficient
S ≈

(

−π2k2
BT/3|e|

)

[ln T (ε)]′ε |ε=µ, where [lnT (ε)]′ε |ε=µ is the energy derivative of lnT (ε) at the electrochemical potentialµ,T (ε)
is the transmission function. Therefore, a sharp conductance peak versus energy around the electrochemical potentialshould
greatly enhanceS, thereby improving the figure of meritZT.14,15 In this regard and according to Mahan and Sofo, the bestZT
for a given lattice thermal conductivity can be achieved by aδ-function like transmission coefficient.16 For bulk materials, it is
difficult to realizeδ-function like transmission; but for nanostructures such as quantum dots (QDs) having discrete energy levels,
the transmission coefficientT (ε) versus energyε exhibits a Lorentzian line shape around each level, which can be viewed as
broadenedδ-like line shapes. The peak positions ofT (ε) in QD devices can also be tuned conveniently by a gate voltage to align
with the electrochemical potentialµ so that an enhanced Seebeck coefficient is achieved. Nanostructures such as QD systems
also provide new opportunities toward manipulating currents and/or achieving spin-accumulation by the thermoelectrical effects.

More recently, two very interesting research directions ofthermoelectricity of nanostructures have been pursued. The first is
the spin caloritronics4,17which studies thermoelectricity in spintronic devices andmagnetic structures. The second is the photon-
assisted heat transport which studies thermoelectricity under time-dependent electromagnetic radiation at very lowtemperatures
when phonons are largely frozen.18–21 Most recently, Zhanget al.22 reported an experimental discovery of a novel Seebeck
rectification and frequency-dependent transport measurements at GHz frequency for magnetic tunnel junctions (MTJ). Zhanget
al.’s work is the first to explore the possibility of utilizing spin caloritronics in high-frequency applications. Motivated by this
very interesting experiment and the research direction it represents, in this work we theoretically analyze both the conventional
and the spin-dependent Seebeck coefficients in spin-valves with non-collinear magnetic structure, under high frequency AC
voltage bias.

A MTJ is a spin-valve structure where two ferromagnetic (FM)contacts sandwich a non-magnetic space layer,23 as schemati-
cally shown in Fig. 1. In our work, the non-magnetic spacer isreplaced by a QD. By varying the relative angleθ which measures
the non-collinearity between the magnetic moments of the two contacts, the electric current and spin current can be continuously
modulated between a maximum atθ = 0 and a minimum atθ = π.24,25 Replacing the space layer by a QD is interesting because
of resonant tunneling which typically gives rise to sharp peaks in the transmission coefficients. Furthermore, clearly resolved
photon-assisted side peaks in resonant tunneling in QDs under GHz28–30 and THz radiations31 have been observed experimen-
tally. Therefore, it is possible to tune the peak positions by photon-assisted processes driven by AC fields to enhance the Seebeck
coefficient.

Theoretical investigations of thermoelectric effects in MTJ or under AC fields have discovered rich propertiesin QD models
having non-collinear ferromagnetic contacts in DC fields,26,27or models having non-magnetic contacts in AC fields.21 Our work
focuses on the most general situation of QD based non-collinear spin-valves in AC fields. In particular, we note that frequency
dependent features of thermoelectric properties of the non-collinear spin-valves have not been theoretically investigated and this
work reports the necessary theoretical formalism and numerical analysis for understanding these properties.

We begin by deriving general expressions for the spin-resolved electric current and thermoelectric properties of FM/QD/FM
spin-valve structure under both the DC and AC driving fields,based on the Keldysh nonequilibrium Green’s function (NEGF)
formalism. Analytical expressions for the charge (Sc) and spin-dependent Seebeck coefficients (Ss), the charge (ZcT) and spin
figure of merit (ZsT), as well as normal Seebeck coefficient (S) and figure of merit (ZT), are derived in terms of spin-resolved
transmission coefficientsTσ(ε), which is expressed in terms of the Green’s functions of thespin-valve that can be calculated
from the Hamiltonian of the device. Based on the analytical formulation, we have calculated the influence of the AC bias on
transmission, Seebeck coefficients, and figures of merit as functions of the non-collinearity θ, the electron energy, and the AC
frequencyω, for the FM/QD/FM spin-valve.

Our results clearly show that the AC field induces side peaks evenly distributed at energies~ω in the time-averagedT (ε),
which induces significant variation to both thermal-spin properties and thermal-charge properties of the spin-valve.We report
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FIG. 1. (color online) Schematic plot of a two probe spin-valve device consisting of a QD connected to FM leads with noncollinear magnetic
moments. An AC bias is applied across the leads.

a very interesting opposite dependency of the thermoelectric property against magnetic non-collinearity for situations with or
without spin accumulation in the FM contacts. For the case with spin accumulation, there is an induced spin voltage that acts
as a third driving force - in addition to the external bias voltage and the temperature gradient, to determine the charge Seebeck
coefficient Sc via an average of the individual Seebeck coefficients of the two spin channels. It is shown thatSc generally
achieves its maximum whenθ = 0 (parallel spin-valve configuration, PC). For the case without spin accumulation in the FM
contacts, the relevant quantity is the normal Seebeck coefficient which we find to usually has its maximum atθ = π (anti-
parallel configuration, APC), consistent with several available experiments5,22,32- implying no spin accumulation effect in those
experiments. The Seebeck coefficients (including the spin-dependent Seebeck coefficient) are found to have negligible change
when AC frequencyω is small, but at largerω in and beyond the microwave range, the Seebeck coefficients oscillate around
its DC value before going back to the DC value afterω > |ε0 − µ|. Using reasonable materials and device parameters which
correspond to those in typical QD experiments, the calculated Seebeck coefficients are consistent to the experimentally reported
values.22 Most importantly, the predicted oscillation in Seebeck coefficients of the spin-valves also results in an similar oscillation
in ZT, suggesting a fascinating possibility to tune relevant thermoelectric properties of spintronic systems by noncollinearity and
AC fields.

The rest of the paper is organized as follows. In Section II, general formulae for the charge and spin transport properties of
a multi-level noncollinear spin-valve under AC bias are derived using the NEGF technique. Specifically, we focus on the time-
averaged expressions for the thermal-spin and thermoelectric properties. These analytical expressions are applied in Section III
to a spin degenerate single-level spin-valve system, wherethe general, qualitative behaviors are investigated first.Afterward, the
angular, polarization, and frequency dependencies of the thermal-spin and thermoelectric properties are carefully investigated
using realistic materials and device parameters. Finally,a conclusion is drawn in Section IV. To simplify the presentation, we
organize the details of the theoretical analysis into several Appendices.

II. THEORETICAL ANALYSIS

In this section, we present analytical derivations based onNEGF formalism of various Seebeck coefficients and the figures of
merit for the noncollinear FM/QD/FM spin-valve under an external AC bias voltage.
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A. The Hamiltonian of the device model

We consider a typical FM/QD/FM spin-valve as shown in Fig. 1. For a multi-level QD connected to FM leads with non-
collinear magnetic moments under AC bias, the Hamiltonian can be written in the following form,33

H = HL + HR + HC + HT , (1)

HL =
∑

σ,k,α∈L

[Ekα (t) + σML] c†kασckασ, (2)

HC =
∑

nσ

εnσd†nσdnσ, (3)

HR =
∑

σ,k,α∈R

[Ekα (t) + σMR cosθ] c†kασckασ

+
∑

σ,k,α∈R

MR sinθc†kασckασ̄, (4)

HT =
∑

σ,n,k,α∈L,R

(

Tkα,nc†kασdnσ + H.c.
)

, (5)

wherec†kασ (ckασ) creates (annihilates) an electron with spin-σ and Bloch wavevectork in energy bandα of the leads, whiled†nσ
(dnσ) creates (annihilates) an electron of spinσ occupying leveln in the QD.σ =↑, ↓ labels the spin eigenstates alongz axis;
σ̄ = −σ, i.e.,σ̄ ↑ if σ =↓, and vice versa.Ekα (t) = E0

kα+∆α(t) = E0
kα−e∆α cosωt (−e the electron charge) when a harmonic AC

bias is applied. This AC model which includes the influence ofAC fields by modifying the energy levels of the isolated leads,
was originally proposed by Jauhoet al.,34 and has been successfully used by Sunet al.35 to explain the experimentally observed
resonant structures of average current vs gate voltage whena microwave field is shed on one lead of a tunneling QD.28 HT is the
hopping term between the QD and the leads. As shown in Fig. 1, the magnetic moment~ML of the left lead (L) is aligned with
thezaxis, while that of the right lead (R),~MR, has a tilted angleθ with thezaxis, forming a noncollinear magnetic configuration.
Misalignment between~ML and ~MR, i.e., forθ , 0, π, introduces an effective spin-flip process as shown inHR. Transforming the
reference axis into the spin quantization axis along~MR, lead R turns from an interacting lead to a non-interacting lead as

HR =
∑

k,α∈R
s=+,−

[Ekα (t) + sMα] C†kαsCkαs, (6)

where the spin indicess = +,− denote the spin eigenstates along the direction of~MR, andC†kαs (Ckαs) creates (annihilates) an
electron labeled by (kαs) in lead R. The hopping term is now

HT =
∑

n,kα∈R

(Tkα,n cos
θ

2
C†kα+dn↑ − Tkα,n sin

θ

2
C†kα−dn↑

+ Tkα,n cos
θ

2
C†kα−dn↓ + Tkα,n sin

θ

2
C†kα+dn↓ + H.c.)

+
∑

n,σ,kα∈L

(

Tkα,nc†kασdnσ + H.c.
)

≡
∑

kαs,nσ

(

tkαs,nσC
†

kαsdnσ + H.c.
)

, (7)

where for compactness, we letC(†)
kα+(−) = c(†)

kα↑(↓) in lead L. Note that in the above and as is typical, the tunneling coupling

parameterTkα,n is assumed to be spin-independent.33,36 With these manipulations, the two-probe FM/QD/FM device model
under the AC driving field is specified by the Hamiltonian of Eqs. (1)-(3), (6), and (7).

In the NEGF derivations of transport properties such as the spin polarized current, the FM/QD/FM two-probe structure is
divided into three regions: the left/right FM leads and the QD. By integrating out the degrees of freedom (i.e., the operators)
of the leads, one focuses on the NEGF of the QD. In this way, theeffects due to the leads on the QD are included into a set of
self-energies. Following Ref. 33, the self-energies due tothe noncollinear FM leads are found to be

Σ
γ
R = V†gγRV = R†ΣγR0R, ΣγL = Σ

γ

L0, (8)

whereγ = r, a, < indicates retarded, advanced, and lesser quantities; subscriptsR, L indicate the left, right leads;gγ is the surface
Green’s function of the semi-infinite leads; andR is the rotation matrix:

R =
(

cosθ/2 sinθ/2
− sinθ/2 cosθ/2

)

. (9)
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The quantitiesΣγ
α0 (α = L,R) above are defined as

Σ
γ

α0 ≡

(

Σ
γ

α0↑ 0
0 Σ

γ

α0↓

)

, Σ
γ

α0σ;m,n =
∑

k,β∈α

Tkβ,nT
∗
kβ,mgγR;kβσ, (10)

which is the self-energy of leadα when ~Mα is parallel withz axis. The time variables due to the external AC fields appliedon
the leads (see Eqs. (2) and (6)) are not written out explicitly in the self-energies.

The self-energies can be transformed into energy space to facilitate further derivations and, for simplification of analysis, the
wide-band limit (WBL) will be applied. This is an approximation that amounts to neglecting the energy dependence of the
coupling between the leads and the QD, which is reasonable since the leads are made of good metals. In WBL, the retarded
self-energy can be expressed in terms of bandwidth functions as33,34

Σr
α (ε) ≈ −

i
2
Γα,

where

ΓR = R†
(

ΓR↑ 0
0 ΓR↓

)

R, ΓL =

(

ΓL↑ 0
0 ΓL↓

)

(11)

with boldface notationΓ to denote a full matrix of the bandwidth function. The original matrix elements ofΓασ are

[Γασ (ε)]m,n ≡ 2π
∑

β∈α

ρβσ (ε) Tβ,n (ε) T∗β,m (ε) .

HereTβ,n (εk) = Tkβ,n, α = L/R is the label for either of the two FM leads, andρβσ (ε) is the spin density of states (DOS) as a
function of energy in leadα for spin-channelσ.

If there is one energy level in the QD and consider a channel inthe leads, from its definition and the fact thatTkα,n is free of
spin labels, we observe that

Γα↑ (ε) /Γα↓ (ε) = ρα↑ (ε) /ρα↓ (ε) .

Consequently, by introducing the spin polarization as

pα ≡
ρα↑ (ε) − ρα↓ (ε)

ρα↑ (ε) + ρα↓ (ε)
,

we obtain37,38

Γα,σ (ε) = Γα (1+ σpα) (12)

with

Γα = 2π|Tα,d (ε) |2
[

ρα↑ (ε) + ρα↓ (ε)
]

,

andσ =↑, ↓ denoting different spin channels. Herein, spin-up (σ =↑) is assumed to be the majority spin channel.
For time-dependent cases, the self-energies still can be related to the time-independent bandwidth matrices (Eq. (11)) as

indicated by Eqs. (B2) and (C1) in the appendices.

B. Spin polarized current

From the device model specified by the Hamiltonian Eqs. (1)-(3), (6), and (7), the electric current contributed by spin-s
(s = +,−, denoting the spin eigenstates of local spin quantization axis) electrons in lead L under the WBL is given by the
following expression (for detailed derivations, see Appendix A, ~ = 1):

JL,s = −2eTr Im

{∫

dε
2π
ΓLs

∫ t

−∞

dτ1G
r (t, τ1) · fL(ε)

× e−iε(τ1−t)e−i
∫ τ1
t
∆L(τ)dτ

}

− eTr ImΓLsG
<(t, t), (13)
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FIG. 2. (color online) Total transmission coefficients,T (ε), of a non-polarized (p = 0) single-level FM/QD/FM device in parallel configuration
(θ = 0) and under AC bias with~ω/Γ = 1 (blue dashed line), 5 (green dash dotted line), 12 (red solid thick line), and without AC bias (black
solid thin line) fore∆/~ω = (a) 0.1, (b) 1, and (c) 10, respectively.

whereΓLs is the spin-sbandwidth matrix of lead L, and its elements are defined as

(ΓLs)n′σ′ ,nσ ≡ 2π
∑

α∈L

ραs (ε) tαs,nσ (ε) t∗αs,n′σ′ (ε).

Eq. (13) is a simple extension of the charge current derived in Ref. 34. If both~ML and ~MR are aligned collinearly to thez axis
(PC or APC), all quantities become diagonalized in spin space. Furthermore, if there is no AC current, Eq. (13) reduces tothose
derived in Refs. 39 and 40, namely

JL,s = e

{
∫

dε
2π

[

fL (ε) − fR (ε)
]

Tr[ΓL,sG
r
s (ε) ΓR,sG

a
s (ε)]

}

,

where the trace goes over the orbital degrees of freedom.
As mentioned before, we assume the magnetic moment of the left lead ~ML to be parallel with thezaxis. Therefore, the spin-s

bandwidth matrices of lead L are diagonalized in spin space,

ΓL+ =

(

ΓL↑ 0
0 0

)

, ΓL− =

(

0 0
0 ΓL↓

)

,

or (ΓLs)σ′σ = (ΓLs)σ′σδσ′σ, and+(−) =↑ (↓). In this case, the current expression (13) can be rewrittenas

JL,σ = −2eIm Tr

{∫

dε
2π
ΓLσ

∫ t

−∞

dτ1G
r
σσ(t, τ1) · fL(ε)

× e−iε(τ1−t)e−i
∫ τ1
t
∆L(τ)dτ

}

− eIm Tr ΓLσG
<
σσ(t, t) . (14)

Note that the trace in Eq. (13) goes over both spin and orbitaldegrees of freedom, while in Eq. (14), only orbital degrees of
freedom.

To move forward, the retarded and lesser Green’s functions must be calculated. The retarded Green’s functionGr of the QD
of the two-probe device is obtained from the corresponding Green’s function of the isolated QD (without the leads) usingthe
Dyson equation (for details see Appendix B),

Gr (t, t′
)

=

∫ +∞

−∞

dε
2π

Gr (ε) e−iε(t−t′) , (15)

Gr (ε) = (ε + iη − H0 + Σ
r )−1 . (16)

As for the lesser Green’s functionG<, we make utility of the Keldysh relation,G< = GrΣ<Ga, which can be easily calculated
onceGr is known.

In this work we are interested in the time averaged current. To this end we assume that the amplitudes of the AC bias applied
to the two leads to be the same,∆L = ∆R ≡ ∆. As detailed in Appendix C, Eq. (14) is reduced to the following form:

JL,σ = e
∫

dε
2π

[

fL(ε) − fR(ε)
]

+∞
∑

k=−∞

J2
k

(

e∆
ω

)

×

×Tr
[

ΓL,σG
r (ε − kω)ΓRGa (ε − kω)

]

, (17)
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whereJk is thek-th order Bessel function of the first kind. When∆ = 0, i.e., no AC bias is applied, Eq. (17) reduces to the
familiar DC expression,JL,σ = e

∫

dε
2π ( fL − fR) Tr[ΓL,σGr (ε)ΓRGa (ε)]σσ.

From Eq. (17), various physical quantities of interest are obtained. The time-averaged effective transmission coefficient of
spin-σ channel is given by the main integrand of Eq. (17),

Tσ (ε) =
+∞
∑

k=−∞

J2
k

(

e∆
ω

)

Tr
[

ΓL,σG
r (ε − kω)ΓRGa (ε − kω)

]

. (18)

In this work,Tσ (ε) andT (ε) denote the transmission coefficient of spin-σ electrons and total transmission, respectively. To
avoid possible confusion, the energy dependence of transmission coefficients is always written out explicitly. The spin current
and charge current are obtained as the difference or sum of contributions from the two spin channels,

Js = JL,↑ (t) − JL,↓ (t) , (19)

Jc = JL,↑ (t) + JL,↓ (t) . (20)

For the thermoelectric properties of the FM/QD/FM device, we shall distinguish two situations: with or without spin accumu-
lation at the FM contacts.

a. With spin accumulation.Spin accumulation will generate a spin chemical potential which drives a spin current. For
finite systems applied a small temperature difference, achieving equilibrium means that there should be nonet spin current nor
net charge current:

I↑ + I↓ = 0,

I↑ − I↓ = 0,

i.e.,

I↑ = 0, I↓ = 0.

Therefore, the definition of charge Seebeck coefficient should be41

Sc = −
∆V
∆T

∣

∣

∣

∣

∣

I=0,Is=0

In other words, for systems with spin accumulation, the two spin channels are independent and the charge accumulation isthe
sum of individual accumulations. In this situation, the other thermal-spin quantities can be deduced straightforwardly. The
electric conductanceGσ, the Seebeck coefficient of spin-σ Sσ, and the electronic contribution to the thermal conductance ke,σ

are expressed by the transmission coefficientTσ(ε) (~ restored explicitly):

Gσ =
e2

h

∫

dε
(

− f ′ε
)

|µ,TTσ(ε) = e2L0σ, (21)

Sσ = −
1

eT

∫

dε(ε − µ)(− f ′ε )|µ,TTσ(ε)
∫

dε(− f ′ε)|µ,TTσ(ε)
= −

1
eT

L1σ

L0σ
, (22)

ke,σ =
1
T













L2σ −
L2

1σ

L0σ













, (23)

where

Lnσ ≡
1
h

∫

dε (ε − µ)n (

− f ′ε
)

|µ,TTσ(ε),

and the referential electrochemical potentialµ and temperatureT are set as

µ =
1
4

(

µL↑ + µL↓ + µR↑ + µR↓
)

,T =
1
2

(TL + TR) .

Using these quantities, the charge and spin thermoelectriccoefficients are obtained from the following expressions,26,42

Ss = S↑ − S↓, Gs = G↑ −G↓, (24)

Sc =
(

S↑ + S↓
)

/2, Gc = G↑ +G↓, (25)

ZsT = |Gs|S
2
sT/ke, (26)

ZcT = GcS
2
cT/ke, ke = ke↑ + ke↓ . (27)

Note that there is an extra factor of 1/2 in Ref. 26 in the definition of spin-dependent Seebeck coefficientSs,43 resulting from a
different definition of “spin voltage”,µs. Here, we adopt the natural definition:µs = µ↑ − µ↓, which is generally accepted and
widely used in the literature.4,17,41,42,44
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FIG. 3. (color online) Transmission coefficients of (a) spin-up, (b) spin-down electrons, and (c) bothkinds of electrons of the single-level
FM/QD/FM spin-valve in parallel configuration with different polarizations in leads,p = 0 (blue dash dotted line), 0.4 (green dashed line), 1
(red solid line). The AC bias is applied with~ω = e∆ = 10Γ.

b. Without spin accumulation.If there is no spin accumulation in the FM leads due to spin relaxation, no spin voltage will
be generated and the Seebeck coefficient is determined by the condition that the total charge current equals to zero, i.e., balanced
by the external voltage bias and temperature bias:

S = −
∆V
∆T

∣

∣

∣

∣

∣

I=0
.

In this case, the total transmission coefficient should be employed to calculate the corresponding thermoelectric quantities. And
we have

G =
e2

~

∫

dε
2π

(

− f ′ε
)

|µ,TT (ε) = e2L0, (28)

S = −
1

eT

∫

dε (ε − µ)
(

− f ′ε
)

|µ,TT (ε)
∫

dε
(

− f ′ε
)

|µ,TT (ε)
= −

1
eT

L1

L0
, (29)

ke =
1
T













L2 −
L2

1

L0













, (30)

where

T (ε) =
∑

σ

Tσ(ε),

Ln ≡
1
h

∫

dε (ε − µ)n (

− f ′ε
)

|µ,TT (ε).

Especially for spin degenerate cases, we can use the transmission coefficient of a single spin channel,Tσ(ε), and include the
spin degeneracy by adding a factor 2 into the expressions ofLn.

For our problem of non-collinear spin-valves driven in AC fields, the above derived formulae appear rather similar to those
of collinear magnetic structure in AC or non-collinear in DC. The differences lie in the content of the physical quantities such
as transmission coefficients and linewidth functions. In this work we shall ignorethe lattice thermal conductance since it is
essentially a constant for small AC fields and for any noncollinearityθ of the magnetic tunnel junction. This approximation does
not change the quantitative behaviors of the thermoelectric properties to be discussed below. Without the lattice contribution to
thermal conductance, the absolute value ofZT doesn’t correspond to those obtained in experiments. Therefore, we shall focus
on the trends ofZT, i.e., how the qualitative trends are altered by the AC fieldsand under noncollinear magnetic structures.

III. NUMERICAL RESULTS AND DISCUSSION

Having derived the general expressions of thermoelectric properties for noncollinear magnetic tunnel junctions driven by an
external AC bias, in the rest of the paper we investigate a specific FM/QD/FM system where the QD has a single spin-degenerate
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level. For this model, all quantities associated with the QDbecome 2× 2 matrices, and the trace in the effective transmission
Eq. (18) needs only to go over spin degrees of freedom.

For clarity, we suppose that the two FM leads are made of the same material, having the same spin polarization such that
the components of bandwidth functions in Eq. (11) are given by Γα,σ = Γ (1+ σp). In the following, thermal-spin effects
are presented and discussed first, followed by results of normal thermoelectric properties, among which dependencies on spin
polarization, noncollinear angle, and AC frequency will befocused.

A. Transmission coefficients

While the behaviors of transmission coefficients of QD in many different situations have been well documented in the litera-
ture, for completeness and for later discussions (e.g., thermoelectric properties), we shall briefly discuss them in this subsection
usingΓ as the energy unit. We begin by considering the parallel (θ = 0) configuration and non-polarized (p = 0) situation under
the AC fields. For this case both spin channels have the same transport features and the total transmission coefficient is plotted
in Fig. 2 as a function of energy.

As shown in Fig. 2(a), the DC transmission (black line, overlapping with the other lines) is in the expected Lorentzian line
shape with a full width at half maximum equaling toΓ. The maximum of the total transmission is 2 and it occurs atε = ε0, due
to the resonant tunneling through the two degenerate QD states. When a harmonic AC source with small amplitudee∆/~ω = 0.1
is applied, changes caused by the AC field immerse in the DC spectrum and are too small to decern. Whene∆/~ω = 1, the
photon-assisted features are more clearly seen, as illustrated in Fig. 2(b). First, there are side peaks located at

ε − ε0 = k~ω, k = 0, 1, 2, · · · . (31)

These peaks are due to the well knownk-photon-assisted tunneling34,45 and each term in the summation of Eq. (18) can
be viewed as the contribution from thek-photon process. As shown in the figure, transmission coefficient is symmetric about
|ε0−µ| = 0 (chemical potentialµ is set to zero throughout). From the photon point of view, theleft side of transmission coefficient
is associated with first absorption and then emission of photons, while the right side, first emission and then absorption. Second,
the major peak atε−ε0 = 0 is suppressed, and the peak heights of resonant tunneling become lower for largerk. The suppression
is due to the prefactorJ2

k(e∆/~ω) in each term of the summation in Eq. (18), and thatJ2
k(e∆/~ω) monotonically decreases with

k whene∆/~ω = 1. In fact, for the parallel magnetic configuration, the DC transmission is determined by the density of states
ρσ (ε) of the QD as39,46

Tσ (ε) = 2π
ΓLσΓRσ

ΓLσ + ΓRσ
ρσ (ε) , (32)

from which one finds that the total area under the transmission curve is a constant that only depends on the linewidth parame-
ters,

∫

Tσ (ε)dε = 2πΓLσΓRσ/ (ΓLσ + ΓRσ) . (33)

When the AC bias is applied, the transmission is a weighted sum with weighting factorsJ2
k(e∆/~ω). Since the total weight

equals to one,47

∑

k
J2

k (α) = 1, (34)

the total area under the transmission coefficient for the AC case is the same as that for the DC case. In other words, the
transmission probability is redistributed over the whole spectrum. This well explains why the main peak is suppressed under
AC. In fact, in Appendix D we prove that the area is not influenced by the AC bias (within WBL approximation) even for
noncollinear magnetic tunnel junctions. A main effect of an AC bias is therefore to redistribute the transmission spectrum
for both collinear and noncollinear magnetic structures. Increasing the amplitude parameter of the AC bias further, e.g., to
e∆/~ω = 10, heights of the photon-assisted side peaks may overshootthe main peak, and particular side peaks may disappear as
well due to the oscillation of the functionJ2

k(α) with k, as shown in Fig. 2(c).
The spin polarizationp of the FM/QD/FM spin-valve also has significant impact on the transmission spectrum. As plotted

in Fig. 3, transmission coefficients of the two spin channels are equal whenp = 0, but become quite different asp is increased.
Fig. 3(a) shows that transmission of the majority spin decreases with increasingp; Fig. 3(b) shows that the opposite is true for
the minority spin. This behavior can be understood as follows. Whenp = 0 (normal metal), there is no difference in transmission
between the two spin channels henceT↑ (ε) = T↓ (ε). For p = 1 (half metal), only the majority spin can tunnel through theQD
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FIG. 4. (color online) Transmission coefficients of (a) spin-up, (b) spin-down electrons, and (c) bothkinds of electrons of the FM/QD/FM
device with different angles of the magnetic moments of the leads,θ = 0 (blue dash dotted), 0.5π (green dashed),π (red solid), under AC bias
with ~ω = e∆ = 10Γ, andp = 0.6.

region, soT↑ (ε) = 1 andT↓ (ε) = 0. These limits determine the general trends of transmission coefficients when polarization in
leads increases from zero to one. By contrast, total transmission has smoother variation asp increases, resemblingT↑ as shown in
Fig. 3(c). Importantly, Fig. 3 shows that decreasingp can make the transmission peaks (in the total transmission)much sharper
thus enhancing the derivatives of the transmission function so as to change the Seebeck coefficients. In addition, increasing
(decreasing)p makes the transmission peaks of minority-spin (majority-spin) channel sharper. We conclude that FM/QD/FM
spin-valves made of different FM materials should have rather different Seebeck coefficients due to different polarizations.

Now let’s look at the impact of the alignment of the leads’ magnetic moments. In Fig. 4, the transmission function is plotted as
a function of energy at different noncollinearity anglesθ. Quite different from changing the polarization, varying the spin-valve
rotation angle gives rise to remarkable variation of resonant peak heights. Asθ increases from 0 toπ, transmission of spin-up
electrons is suppressed and transmission of the spin-down electrons is enhanced. Such a spin-valve behavior is well known
from the Julliere model.48 As θ increases, the energy derivative ofT↑ gradually increases, that ofT↓ decreases; and the total
transmission has faster variation withε asθ increases. These variations finally result in different dependencies for spin-valve
systems with or without spin accumulation as we shall see below. In next subsections, we shall mainly investigate which angle,
polarization, and frequency are best for thermal-spin and normal thermoelectric properties.

B. Thermal-spin properties

It is interesting to investigate how noncollinear magneticmoments influence the Seebeck coefficients under the AC fields.
Fig. 5 plots the Seebeck coefficients of spin-up (S↑) and spin-down (S↓) electrons, together with spin-dependent Seebeck (Ss)
and charge (Sc) Seebeck coefficients. These quantities are calculated using the corresponding expressions in Section II B. All of
them are 2π-periodic functions ofθ, and are symmetric aboutθ = π because of the spatial symmetry of the spin-valve. As shown
in Fig. 5, the Seebeck coefficientS↓ (blue dots) achieves its maximum atθ = 0 (PC), and its minimum atθ = π (APC). Among
the interval [0, π], S↓ monotonically decreases withθ. In contrast,S↑ has the opposite trend. According to the Mott’s relation
discussed in the introduction, faster changes in transmission produce a higher Seebeck coefficient. Since resonant transmission
of minority spin at PC is unity regardless of polarization aslong asp , 1,49 and is generally lowest at other energy points at PC,
[T↓(ε)]′ε is biggest at PC, also shown in Fig. 4. That is whyS↓ has the maximum value atθ = 0 andS↑ has the opposite behavior.

As an average ofS↑ and S↓, the charge Seebeck coefficient Sc has a weaker dependence onθ. Interestingly and rather
unexpectedly, the maximum ofSc appears atθ = 0, which means PC is actually better for obtaining a larger charge Seebeck
coefficient. The spin-dependent Seebeck coefficientSs also has the maximum value (largest negative value) at PC anddecreases
with increasing angle untilθ = π, whereSs = 0. The zero value ofSs is because thatT↑(ε) = T↓(ε) for our symmetric spin-valve
whenθ = π, and thenSs vanishes by Eq. (24). We also observe thatSc andSs are of the the same order and of opposite signs,
which implies that they are mainly determined byS↓.

What alignment of the magnetic moments of the spin-valve is better for enhancing the Seebeck coefficients? As shown in
Fig. 6, for the case of atε0 = −10 µeV, both charge and spin-dependent Seebeck coefficients achieve their maxima at parallel
configuration, regardless of the polarization in the leads.It is also shown that Seebeck coefficients atθ = π are independent
of polarization, a fact attributed to the spin-independenttransmission at APC. In general, a higher polarization favors higher
Seebeck coefficients for other noncollinear angles.

Next, we investigate the variation of off-resonance Seebeck coefficients and figures of merit on AC frequency. Here, off-
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FIG. 5. (color online) Charge Seebeck (thin pink solid line), spin-dependent Seebeck (thick green solid line), spin-upSeebeck (red dashed
line), and spin-down Seebeck (blue dotted line) coefficients as functions ofθ. Other parameters are chosen to beΓ = 10 µeV, p = 0.6,
ε0 = −10µeV, T = 0.03 K,ω = 25 GHz, ande∆/~ω = 1.
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FIG. 6. (color online) (a) Charge Seebeck coefficient and (b) spin-dependent Seebeck coefficient as functions ofθ at different polarizations of
the leads,p = 0.2 (blue solid thin line),p = 0.4 (green dashed line),p = 0.6 (pink dash dotted line), andp = 0.8 (red solid thick line). The
other parameters are set to beω = 25 GHz,e∆/~ω = 1, Γ = 10µeV, ε0 = −10µeV, andT = 0.03 K.
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FIG. 7. (color online) Spin-dependent (blue dashed) and charge (pink solid) (a) Seebeck coefficients and (b) figures of merit as functions of
the AC frequencyω. The QD level locates atε0 = −200µeV, and the AC bias is applied withe∆/~ = 25 GHz fixed, meaning constant power.
Other parameters are chosen asp = 0.6, Γ = 10µeV, θ = 0, andT = 0.03 K.
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FIG. 8. (color online) Contour plots of (a) spin-dependent Seebeck coefficient, (b) charge Seebeck coefficient, (c) spin figure of merit, and (d)
charge figure of merit, as functions of level positionε0 and AC frequencyω. The amplitude of AC bias∆ is fixed ate∆/~ = 25 GHz. Other
parameters are chosen to beΓ = 10µeV, p = 0.6, θ = 0,T = 0.03 K.

resonance means electron energyε , ε0 whereε0 is the energy level of the QD. It is found that there is photon-induced
magnetoresistance oscillation in tunneling systems as shown in Ref. 50. What about thermoelectric properties? Shouldthem
monotonically change with the applied frequency or have similar oscillation? In Fig. 7, we plotSc,s andZc,sT as functions of
ω. The spin-dependent Seebeck coefficientSs is nearly independent ofω for smallω. Whenω increases to moderate values,Ss

starts to vary around its DC value and the variation becomes greater whenω increases further. At aroundω ∼ |ε0− µ| and larger,
Ss reaches its largest peak and finally falls back to approach the DC value whenω further increases. Interestingly, the charge
Seebeck coefficientSc has essentially the same oscillatory behavior, but its peaks and valleys occur out-of-phase with those in
Ss. This variation ofSs andSc versusω is in fact consistent with the variation of the transmissioncoefficientT (ε). When
~ω ∼ |ε0 − µ|, single-photon-assisted tunneling enhancesT (ε), showing an 1-photon-assisted side peak around the chemical
potentialµ, leading to significant values of Seebeck coefficients. Especially for~ω = (1− δ)(µ − ε0), δ ≪ 1, µ locates at the
right-hand side of the first side peak, leading to a positive value ofS, while for ~ω = (1 + δ)(µ − ε0), δ ≪ 1, the left-hand
side, leading to negativeS. Importantly, Seebeck coefficients vanish at the middle of a symmetric transmission spectrum due to
electron-hole symmetry, so it is nearly zero at the middle ofa transmission peak provided that thermal smearing is less than the
peak width. Therefore, a side peak will introduce an oscillation in S as a function of AC frequency. In fact, thek-photon-assisted
will have major contributions toT (ε) or current whenk~ω = |ε0 − µ|, orω = (1/~)|ε0 − µ|/k. There are dense photon-assisted
tunneling peaks whenω is very small. Side peaks inT (ε) generally have lower peak heights and overlap with each other,
resulting in tiny changes ofS. This is the reason whySc,s are rather flat whenω is small. When~ω > |ε0 − µ|, which means the
energy of a single photon is larger than the difference between the QD level position and the chemical potential, there is hardly
any photon-assisted tunneling; And as a consequence, oscillation ofS disappears.

There are also oscillations inZcT andZsT as shown in Fig. 7(b). The zeros ofZc/sT is the same as those inSc/s, originating
from the relations shown in Eqs. (26) and (27). An oscillation in Sc/s generally corresponds to two peaks ofZc/sT because
Zc/sT ∝ S2

c/s. It is also shown that a largerSc/s is better for a largerZT. From Fig. 7(b), it is clear that the single-photon-assisted
tunneling is of most significance forZc/sT.

The behaviors of Seebeck coefficients and figures of merit versus the QD energy level position (ε0) and AC frequency (ω) are
summarized in the contour plot of Fig. 8. Whenε0 is close to the chemical potential, applying an AC bias lowers the major peak
in the transmission spectrum, yielding a suppression of Seebeck coefficient. As shown in Fig. 8(a), there are pairs of peaks and
valleys around each line ofε0 = k~ω. The region whereω < 6 GHz is rather flat as we have addressed before.Sc in Fig. 8(b)
has smoother variation thanSs. What’s more, the opposite signs and trends ofSc andSs can be seen clearly from the two panels
(peaks and valleys ofSc andSs are out of phase). Note thatSc andSs are of the same order. Spin and charge figures of merit
are plotted in Fig. 8(c) and (d). Compared to the Seebeck coefficients, the photon-assisted resonance features are more clearly
standing-out. For the regionω < 2.5 GHz≈ 10 µeV= Γ andε0 < Γ, bothZsT andZcT are almost zero because the changes
caused by the AC field immerse in the original main resonance peak.

It is intriguing and important to point out that the photon-assistedZc,sT peaks - i.e., those due to photon side peaks in the
transmission coefficients, have the same order of values as those due to the main resonance peak ofT (ε), as shown in Figs. 8(c)
and (d). Although the photon-assisted peaks inT (ε) are much lower than the main resonance peak inT (ε) as depicted in Figs. 3
and 4, transmission peak heights have little influence on themaximum ofZc,sT. Combining with the Mott’s relation, we can
conclude that a general scaling on the transmission has almost no effect onSc,s and onZc,sT whenκe dominates the thermal
conductance.

Finally, we have also investigated other non-collinearityangles. For APC,Ss is always zero whileSc oscillates with the
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θ. The normalizing factors areSm = 58.6 µV/K, Gm = 0.172× (2e2/h),κe,m = 4.97×10−6 nW/K, andZTm = 0.146. Here, the QD level position
is supposed to beε0 = −115µeV. The other parameters areΓ = 10µeV, T = 0.03 K,ω = 25 GHz,e∆/~ω = 1, andp = 0.6.
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FIG. 10. (color online) Normalized thermoelectric quantities |S| (red line),G (blue line),κe (magenta line), andZT (green line) as functions
of leads’ polarization. The normalizing factors areSm = 58.6 µV/K, Gm = 0.189× (2e2/h),κe,m = 5.13× 10−6 nW/K, andZTm = 0.146. The
other parameters areΓ = 10µeV, T = 0.03 K,ω = 25 GHz,e∆/~ω = 1, θ = 0, andε0 = −115µeV.

AC frequency, similar to what is reported above. In general,oscillations ofSc,s andZc,sT onω are commonly found in other
non-collinear angles.

C. Thermoelectric Properties

In this subsection we investigate the normal thermoelectric effects where there is no spin accumulation in the FM leads. In this
situation, the total transmission due to both spin channelsis employed to calculate the thermoelectric quantities. Asaddressed
before, the angular and polarization dependencies are quite different between the total transmission and the individual spin
channels.

As shown in Fig. 9, we fix the QD level position atε0 = −115µeV, which is in the vicinity of the first photon-assisted peakof
Seebeck coefficient under an 25 GHz AC bias (25 GHz≈ 103µeV). Two major features can be seen from this figure. First, all
quantities monotonically vary withθ. |S| andZT have their maximum values at APC and the minima at PC, which are totally
different from the spin-dependent case discussed in the last subsection. On the other hand, the electrical conductanceG and
electronic thermal conductanceκe have similar variations, and both have the maximum values atPC. When the temperature
is low enough,κe has essentially the same behavior asG, which is consistent with known literature.51 Second, the calculated
magneto-thermopower, defined as MTP≡ (SAP − SP)/SP, is about 16% which is qualitatively consistent with experiments.3,5

We may therefore conclude that the APC is best for enhancing the normal thermoelectric properties.
As for the variation of polarization, we plot the normalizedthermoelectric properties in Fig. 10 at PC. The changes inG and
κe due to polarizationp are small because the summation over the two spin channels largely averages out the effect of p. On the
other hand,|S| andZT decrease fast as polarizationp increases, hence non-polarized leads are better for higherZT values.
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FIG. 11. (color online) Thermoelectric properties in spin-valve where no spin accumulates in the leads. Contour plots of (a) Seebeck coefficient,
(b) electric conductance, (c) thermal conductance, and (d)figure of meritZT, as functions of AC frequencyω, and the quantum dot level
position,ε0. Other parameters are chosen asθ = 0, Γ = 10µeV, p = 0.6, e∆/~ = 25 GHz.

TABLE I. The calculated DC values of parallel and antiparallel Seebeck coefficients (with no spin-accumulation) for a QD spin-valve having
a spin-degenerated energy level. The experimental values are quoted from Ref. 22. The parameters are chosen to beΓ = 10µeV, T = 0.03 K,
andp = 0.6.

TMR SP(µV/K) SAP(µV/K)

This work 76% 44.4 54.5
Ref. 22 76% 22 53

Finally, the frequency dependence of the physical quantitiesG, κe, S, andZT are plotted in Fig. 11, for parallel spin-valve
(θ = 0) with p = 0.6. The impressive radial pattern is also observed resembling those of the spin-dependent case (see Fig. 8).
However, the AC-induced variations inG andκe are much weaker here than the spin case, which also results inthe similarity of
S andZT.

So far we have focused on varying model parameters to establish a general physical picture for the transport properties of the
FM/QD/FM spin-valve under external AC fields. To make better comparison with experiments, we choose linewidth parameter
Γ = 10µeV, which is a typical experimental value for QD devices,30,39 p = 0.6, which is the polarization for FM alloy CoFeB,52

ω about tens of GHz - the range of frequency in and beyond microwaves, andT = 0.03 K (or kBT ≈ 4.3 µeV). Although a
lower temperature usually means a lowerZT, here we are interested in the low temperature fine structures of quantum origin
such as photon-assisted resonant tunneling in the temperature scale ofkBT ≪ Γ, ω. Using these realistic parameter values in
Eq. (25), the calculated normal Seebeck coefficients are found to be quite close to those measured in experiments,22 as shown in
Table III C. Given the substantial differences in device structures and materials, the quantitative consistency is quite reasonable.

IV. SUMMARY

In summary, we have carried out a theoretical analysis of thermal-spin and thermoelectric properties of non-collinearspin-
valves driven by a high frequency AC voltage bias. A general and exact formulation for the time-averaged physical properties of
the spin-valve model is derived by the nonequilibrium Green’s function theory in the linear response regime under the wide-band
limit, and the analytic formulation provides a starting point for further numerical calculations of these properties.We find that
non-collinear FM/QD/FM spin-valves under harmonic AC bias have very interestingthermal-spin and thermoelectric properties
which can be tuned by several control parameters. It is shownthat photon-assisted tunneling processes manifest clearly in the
transmission spectra, and strongly depend on the magnetic polarization and magnetic configuration.

For thermal-spin effects, both spin-dependent and charge Seebeck coefficientsSs andSc generally achieve their maximum
absolute values at parallel magnetic configuration, and thedomination of minority-spin Seebeck coefficient leads to opposite
signs and opposite variations ofSs andSc. On the other hand, for normal thermoelectric effects,S andZT achieve the maxima
at anti-parallel configuration of the spin-valve. For both thermal-spin and normal thermoelectric effects, when an AC bias with
a moderate frequency is applied,S andZT oscillate around their DC value as the AC frequency is increased due to photon-
assisted tunneling. At higher frequency, these quantitiesgo back to their DC values. The microscopic details behind these
behaviors are discussed based on the transmission coefficients. It is found that the area under the transmission spectrum is a
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constant even under the AC bias, which provides a constrainton the variation of the thermoelectric properties. Finally, we note
that the oscillation behavior of the thermoelectric properties of the spin-valve driven by an AC bias offers a “knob” to tune the
thermoelectric behaviors of magnetic tunneling junction.

Finally, we note that the electron-electron and electron-phonon interactions are not considered in our device model. The former
gives rise to interesting phenomena of the Coulomb blockadeand Kondo resonance in QD systems while the latter is needed
for exactly determining the lattice thermal conductivity at high temperature. Adding these terms to the device Hamiltonian will
make the analysis significantly more complicated but these effects clearly warrant further investigations. Since our numerical
results of the device model showed very reasonable consistency with the experimental results, the general formalism ofSec. II
may be extended further to better explore the AC thermoelectric properties in magnetic tunneling junctions.
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Appendix A: spin-polarized current

Some of the derivation details of Section II are organized inseveral appendices below. We first derive expressions for the
spin-polarized current. As defined in Eq. (1), the Hamiltonian is

H = HL + HC + HR + HT .

To calculate the electric current, we consider the change ofthe number of electronsNL/R in the leads as

N̂L/R =
∑

ks,α∈L/R

C†kαsCkαs, (A1)

JL = −e

〈

dN̂L

dt

〉

= ie
〈[

N̂L,H
]〉

= ie
〈[

N̂L,HT

]〉

= ie
∑

ksnσ,α∈L

[

tkαs,nσ

〈

C†kαsdnσ

〉

− t∗kαs,nσ

〈

d†nσCkαs

〉]

= e
∑

ksnσ,α∈L

[

tkαs,nσG
<
nσ,kαs (t, t) − t∗kαs,nσG

<
kαs,nσ(t, t)

]

= 2eRe
∑

ksnσ,α∈L

tkαs,nσG
<
nσ,kαs (t, t), (A2)

where the lesser Green’s functions are defined as

G<nσ,kαs

(

t, t′
)

=
1
i

〈

Tt

(

dnσ (t) C†kαs

(

t′
)

)〉

= i
〈

C†kαs

(

t′
)

dnσ (t)
〉

(A3)

G<kαs,nσ

(

t, t′
)

=
1
i

〈

Tt

(

Ckαs (t) d†nσ
(

t′
)

)〉

= i
〈

d†nσ
(

t′
)

Ckαs (t)
〉

, (A4)

and have the relation
[

G<nσ,kαs (t, t)
]†
= −G<kαs,nσ(t, t).

Regarding the expression of total current in Eq. (A2), it is natural to introduce a spin-resolved current as

JL,sσ ≡ 2eRe
∑

n,k,α∈L

tkαs,nσG
<
nσ,kαs (t, t), (A5)

which accounts for the contribution from the spin-s electrons in lead L tunneling to the QD as spin-σ. Then the spin-s current
and the total current areJL,s =

∑

σ
JL,sσ andJL =

∑

s,σ
JL,sσ, respectively.
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Using Eq. (A5) , we shall express the current in terms of bandwidth functions in the following. First, from the Dyson equation,
we have

Gnσ,kαs
(

t, t′
)

=
∑

n′ ,σ′

∫

dτ1Gnσ,n′σ′ (t, τ1) tn′σ′ ,kαsgkαs
(

τ1, t
′)

=
∑

n′ ,σ′

∫

dτ1Gnσ,n′σ′ (t, τ1) t∗kαs,n′σ′gkαs
(

τ1, t
′) .

Applying the Lengreth theorem, we obtain

G<nσ,kαs (t, t) =
∑

n′ ,σ′

∫

dτ1G
r
nσ,n′σ′ (t, τ1) t∗kαs,n′σ′g

<
kαs (τ1, t)

+
∑

n′,σ′

∫

dτ1G
<
nσ,n′σ′ (t, τ1) t∗kαs,n′σ′g

a
kαs (τ1, t) .

(A6)

For noninteracting and isolated leads, the Green’s functions are34

g<kαs (τ1, t) = i f
(

ε0kαs

)

e−iε0kαs(τ1−t)e−i
∫ τ1
t
∆α(τ)dτ,

ga
kαs (τ1, t) = iθ (t − τ1) e−iε0kαs(τ1−t)e−i

∫ τ1
t
∆α(τ)dτ. (A7)

Substitute Eq. (A7) into Eq. (A6) and replace the summation overk,
∑

k
, by integration over energy,

∫

dερ (ε), we have

∑

k,α∈L

tkαs,nσG
<
nσ,kαs (t, t)

=i
∑

α∈L

∫

dεραs (ε)tαs,nσ (ε)
∑

n′σ′

∫ t

−∞

dτ1G
r
nσ,n′σ′ (t, τ1)

· t∗αs,n′σ′ (ε) · fα (ε) e−iε(τ1−t)e−i
∫ τ1
t
∆α(τ)dτ

+ i
∑

α∈L

∫

dεραs (ε)tαs,nσ (ε)
∑

n′σ′

∫ t

−∞

dτ1G
<
nσ,n′σ′ (t, τ1)

· t∗αs,n′σ′ (ε) · e
−iε(τ1−t)e−i

∫ τ1
t
∆α(τ)dτ

=i
∫

dε
2π

∑

n′σ′
ΓLs;n′σ′ ,nσ (ε)

∫ t

−∞

dτ1e−iε(τ1−t)e−i
∫ τ1
t
∆α(τ)dτ

·
[

Gr
nσ,n′σ′ (t, τ1) · fα (ε) +G<nσ,n′σ′ (t, τ1)

]

,

where the spin-sbandwidth functionΓLs is defined as

ΓLs;n′σ′ ,nσ (ε) ≡ 2π
∑

α∈L

ραs (ε) tαs,nσ (ε) t∗αs,n′σ′ (ε). (A8)

Under WBL, which neglects the energy dependence of bandwidth functions, the integration involvingG< can be carried out:

JL,sσ = −2eIm Tr















∫

dε
2π

∑

σ′

ΓLs;σ′σ

·

∫ t

−∞

dτ1G
r
σ,σ′ (t, τ1) · fL (ε) e−iε(τ1−t)e−i

∫ τ1
t
∆L(τ)dτ

}

− eIm Tr
∑

σ′

ΓLs;σ′σG
<
σ,σ′ (t, t) ,

(A9)

where the trace goes over orbital degrees of freedom, and

JL,s = −
2e
~

∫ t

−∞

dτ1

∫

dε
2π

fL (ε) Im Tr {

e−iε(τ1−t)e−i
∫ τ1
t
∆L(τ)dτ

ΓL,sG
r (t, τ1)

}

−
e
~

Im TrΓL,sG
< (t, t) ,

(A10)

tracing over both spin and orbital degrees of freedom.
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Appendix B: Retarded Green’s function of the QD

For further calculation, we need to calculate the retarded Green’s function of the central region. By Dyson equation, wehave

Gr (t, t′
)

= Gr
0
(

t, t′
)

+

"
Gr

0 (t, t1)Σr (t1, t2) Gr (t2, t
′)dt1dt2, (B1)

whereGr
0 is the retarded Green’s function of the isolated QD (i.e. no electrodes), and the retarded self-energy under WBL can

be written as34

Σr (t1, t2) = −
i
2
Γδ (t1 − t2) . (B2)

The time-dependent retarded Green’s function of the isolated QD can be obtained by

Gr
0
(

t, t′
)

= Gr
0
(

t − t′
)

=

∫

dE
2π

Gr
0 (E) e−iE(t−t′), (B3)

Gr
0 (E) =

[

E + iη − H0
]−1 , (B4)

whereH0 is the Hamiltonian of the isolated QD.
In virtue of Eqs. (B2) and (B3), Eq. (B1) can be rewritten as

Gr (t, t′
)

= Gr
0
(

t − t′
)

+

∫

Gr
0 (t − t1) (−

i
2
Γ)Gr (t1, t

′) dt1.

To get an analytic form, we carry out the double-Fourier transform:

Gr (E,E′
)

=

"
Gr (t, t′

)

eiEte−iE′ t′dtdt′

= 2πGr
0 (E) δ

(

E − E′
)

−

i
2

$
Gr

0 (t − t1) eiE(t−t1)e−iE′ t′eiEt1ΓGr (t1, t
′)dt1dtdt′

= 2πGr
0 (E) δ

(

E − E′
)

−
i
2

Gr
0 (E)ΓGr (E,E′

)

= 2πδ
(

E − E′
)

+∞
∑

n=0

(

−
i
2

Gr
0 (E)Γ

)n

Gr
0 (E)

≡ 2πδ
(

E − E′
)

Gr (E) ,

where we have definedGr (E) as

Gr (E) ≡
+∞
∑

n=0

(

−
i
2

Gr
0 (E)Γ

)n

Gr
0 (E) =

+∞
∑

n=0

Gr
0 (E)

(

−
i
2
ΓGr

0 (E)
)n

= Gr
0 (E) +Gr

0 (E)
(

−
i
2
Γ

)

Gr (E) .

It shows thatGr (E) andGr
0(E) have a Dyson-equation-type connection.

SinceGr
0(E) can be obtained by Eq. (B4),Gr (E) defined above can be obtained similarly by

Gr (E) =
[

E + iη − H0 − Σ
r ]−1
=

[

E + iη − H0 +
i
2
Γ

]−1

. (B5)

There are two auxiliaries that we shall use afterwards.

(1) Gr (t, t′) is now expressed in terms ofGr (E) as

Gr (t, t′
)

=

∫

dE
2π

∫

dE′

2π
Gr (E,E′

)

e−iEteiE′ t′

=

∫

dE
2π

∫

dE′

2π
2πδ

(

E − E′
)

Gr (E) e−iEteiE′ t′

=

∫

dE
2π

Gr (E) e−iE(t−t′). (B6)
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(2)

Gr (E) −Ga (E) = −iGr (E)ΓGa (E) . (B7)

Using Eq. (B5), we have
[

Gr (E)
]−1
−

[

Ga (E)
]−1
= iΓ.

Multiplying the above equation on both sides byGr (E) from the left andGa(E) from the right, we obtain Eq. (B7), which is
actually an identity relation without assuming the WBL.

Appendix C: 〈J〉

To facilitate the calculation of time averaged current, we shall deduce an explicit expression for currents in a multi-level QD
under harmonic modulation. First, the Keldysh equation gives

G< (t, t) =
"

Gr (t, t1)Σ< (t1, t2) Ga (t2, t) dt2dt1,

where the lesser self-energy from definition is

Σ< (t1, t2) = V† (t1) g< (t1, t2) V (t2) .

Substitute Eq. (A7) to the above equation, we obtain the lesser self-energy as

Σ<mσ,nσ′ (t1, t2)

=
∑

α=L,R

∫

dε
2π

i fα (ε) e−iε(t1−t2)e
−i

∫ t1
t2
∆α(τ)dτ

Γα;mσ,nσ′ (C1)

with Γα;mσ,nσ′ =
∑

sΓαs;mσ,nσ′ , whereΓαs is defined in Eq. (A8).
Accordingly, the lesser Green’s function can be simplified as

G< (t, t) =
"

Gr (t, t1)
∑

α=L,R

∫

dε
2π

i fα (ε) e−iε(t1−t2)e
−i

∫ t1
t2
∆α(τ)dτ

· ΓαG
a (t2, t) dt2dt1

=
∑

α=L,R

i
∫

dε
2π

fα (ε) Aα (ε, t)ΓαA
†
α (ε, t) , (C2)

where the spectral functionAα(ε, t) is defined as34

Aα (ε, t) ≡
∫ +∞

−∞

dt1G
r (t, t1) e−iε(t1−t)e−i

∫ t1
t
∆α(τ)dτ, (C3)

and

Aα (ε, t)ΓαA
†
α (ε, t) =

∫ +∞

−∞

dt1G
r (t, t1) e−iε(t1−t)e−i

∫ t1
t
∆α(τ)dτ

· Γα

∫ +∞

−∞

dt2G
a (t2, t) eiε(t2−t)ei

∫ t2
t
∆α(τ)dτ

=

∫ +∞

−∞

dt2

∫ +∞

−∞

dt1G
r (t, t1)Γα

·Ga (t2, t) e−iε(t1−t2)e
−i

∫ t1
t2
∆α(τ)dτ. (C4)

With Eqs. (C2) and (C3), the time dependent spin-polarized current can be written in terms ofAα(ε, t):

JL,σ (t) = −e
∑

α=L,R

∫

dε
2π

fα (ε) Tr[ΓL,σAα (ε, t)ΓαA†α (ε, t)]

− 2e
∫

dε
2π

fL (ε) Im Tr
[

ΓL,σAL (ε, t)
]

.

(C5)
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Noting thatΓα is a real and symmetric matrix, the quantity Tr(AαΓαA
†
α) is real.

Using the expression forGr in Eq. (B6), the spectral function is actually

Aα (ε, t) ≡
∫ +∞

−∞

dt1G
r (t, t1) e−iε(t1−t)eie∆α

∫ t1
t

cosωτdτ

=

∫ +∞

−∞

dt1

∫

dE
2π

Gr (E) e−iE(t−t1)e−iε(t1−t)ei e∆α
ω

(sinωt1−sinωt)

= e−i e∆α
ω

sinωt
∫

dE
2π

eit(ε−E)Gr (E)

·

∫ +∞

−∞

dt1eit1(E−ε)
+∞
∑

k=−∞

Jk

(

e∆α
ω

)

eikωt1

=

+∞
∑

k=−∞

Jk

(

e∆α
ω

)

eit(ε−E)e−i e∆α
ω

sinωt

·

∫

dE
2π

Gr (E) 2πδ (E − ε + kω)

=

+∞
∑

k=−∞

Jk

(

e∆α
ω

)

eikωte−i e∆α
ω

sinωtGr (ε − kω) ,

where we have adopted an identity expansion relation for thefirst kind Bessel function that exp(izsinωt) =
∑

k Jk(z) exp(ikωt).
Performing time-averaging, we have

〈Aα (ε, t)〉 =
∑

k

J2
k

(

e∆α
ω

)

Gr (ε − kω) ,

Im 〈Aα (ε, t)〉 =
∑

k

J2
k

(

e∆α
ω

)

ImGr (ε − kω)

= −
1
2

∑

k

J2
k

(

e∆α
ω

)

Gr (ε − kω)ΓGa (ε − kω).

(C6)

Note that in the last equation, Eq. (B7) has been utilized.

Similarly,

Aα (ε, t)ΓαA†α (ε, t)

=
∑

k

Jk

(

e∆α
ω

)

eikωte−i e∆α
ω

sinωtGr (ε − kω)

· Γα

∑

k′
Jk′

(

e∆α
ω

)

e−ik′ωtei e∆α
ω

sinωtGa (ε − kω)

=
∑

k,k′
Jk

(

e∆α
ω

)

Jk′

(

e∆α
ω

)

ei(k−k′)ωtGr (ε − kω) · ΓαGa (ε − kω)

〈

Aα (ε, t)ΓαA†α (ε, t)
〉

=
∑

k

J2
k

(

e∆α
ω

)

Gr (ε − kω) · ΓαGa (ε − kω) . (C7)
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Then the time-averaged current is found to be

JL,σ ≡
〈

JL,σ (t)
〉

= −e
∑

α=L,R

∫

dε
2π

fα (ε)
∑

k

J2
k

(

e∆α
ω

)

· Tr[ΓL,σG
r (ε − kω) · ΓαG

a (ε − kω)]

+ e
∫

dε
2π

fL (ε)
∑

k

J2
k

(

e∆L

ω

)

· Tr
[

ΓL,σG
r (ε − kω)ΓGa (ε − kω)

]

= e
∫

dε
2π

∑

k

[

fL (ε) J2
k

(

e∆L

ω

)

− fR (ε) J2
k

(

e∆R

ω

)]

· Tr
[

ΓL,σG
r (ε − kω)ΓRGa (ε − kω)

]

. (C8)

In particular, when∆L = ∆R ≡ ∆, we obtain

JL,σ = e
∫

dε
2π

[

fL (ε) − fR (ε)
]

∑

k

J2
k

(

e∆
ω

)

· Tr
[

ΓL,σG
r (ε − kω)ΓRGa (ε − kω)

]

.

(C9)

Appendix D: Area Under the Transmission Curve

As shown in Eq. (18) above, the transmission spectrum for general cases is

Tσ (ε) =
∑

k

J2
k

(

e∆
ω

)

Tr
[

ΓL,σG
r (ε − kω)ΓRGa (ε − kω)

]

.

The pre-factorJk is independent of energy, so the integration over energy ofTσ (ε) becomes

AAC =

∫

Tσ (ε) dε

=
∑

k

J2
k

(

e∆
ω

) ∫

dεTr
[

ΓL,σG
r (ε − kω)ΓRGa (ε − kω)

]

=
∑

k

[

J2
k

(

e∆
ω

)] ∫

dεTr
[

ΓL,σG
r (ε)ΓRGa (ε)

]

=

∫

dεTr
[

ΓL,σG
r (ε)ΓRGa (ε)

]

= ADC,

where
∑

k J2
k(z) ≡ 1.47 Therefore, the total area under the transmission spectrum is independent of the AC frequency and equal

to that of the DC case under WBL.
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