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We study electrons in tight-binding lattice driven by DC electric field with their energy dissipated
through on-site fermionic thermostats. Due to the translational invariance in the transport direc-
tion, the problem can be block-diagonalized. We solve this time-dependent quadratic problem and
demonstrate that the problem has well-defined steady-state. The steady-state occupation number
shows that the Fermi surface shifts at small field by the drift velocity, in agreement with the Boltz-
mann transport theory, but it then deviates significantly at high fields due to strong nonlinear effect.
Despite the lack of momentum scattering, the conductivity takes the same form as the semi-classical
Ohmic expression from the relaxation-time approximation.

PACS numbers: 71.27.+a, 71.10.Fd, 71.45.Gm

I. INTRODUCTION

Nonequilibrium phenomena in lattice are the oldest
and most fundamental problems in solid state physics.
In conventional solids, acceleration due to external field
is relatively small compared to electronic energy, and
various scattering mechanisms make the transport dif-
fusive enough so that the small field approximation has
often been applicable. The quantum Boltzmann method
has been applied effectively1,2 and linear response limit
has been widely used in the solid-state literature. How-
ever, recent progress in nano-devices and optical lattice
systems has made rigorous high-field formalism neces-
sary to understand their non-perturbative effects such as
the Bloch oscillation. In such regime, understanding the
interplay of non-perturbative field-effect and the many-
body physics has emerged as one of the most pressing
problems in nano-science.
Combining the nonequilibrium and quantum many-

body effects is an extremely challenging task. Much ef-
fort has been exerted towards understanding strong cor-
relation physics in quantum dot physics, especially the
prototypical nonequilibrium Kondo problem. Analyti-
cal theories3–5 and many numerical methods have been
proposed along the time-dependent6–8, and steady-state
simulations10,11. In such systems with localized inter-
acting region, the important question of energy dissipa-
tion could have been side-stepped, and the existence of
steady-state has not been a major issue.
In the past few years, non-perturbative inclusion of

electric-field and many-body effects in lattice systems has
been one of the central issues in the field. Theories for
lattice nonequilibrium have been formulated12,13, mostly
based on the dynamical mean-field theory (DMFT) for
an s-orbital tight-binding (TB) lattice with on-site inter-
action14–17. Various attempts have been made to include
dissipation mechanism to the driven lattice by fermion
bath15 and bosonic baths18. This work corresponds to
the analytic solution of the non-interacting limit of the
models considered in Refs. 15,16. Although a long-held
belief in solid-state transport has been that, under a finite
electric-field, the Fermi sea is perturbatively shifted by

drift velocity, many calculations within the DMFT frame-
work have been performed for isolated systems where the
system approaches a steady-state with infinitely hot elec-
tron gas even for a small field. With inclusion of proper
dissipation mechanism, one expects the Boltzmann pic-
ture of displaced Fermi surface at small fields and a re-
covery of the Bloch oscillation in the high-field limit.
However, it has been unclear so far what approx-

imations, such as single-band approximation without
Landau-Zener tunneling or the nature of on-site inter-
action, are responsible for the rather peculiar long-time
states obtained from numerical theories. One of the goals
of this paper is that we provide exact solutions to one of
the simplest dissipation models with on-site fermion ther-
mostats and give analytic understanding of the problem,
and guide possible future modeling.
Due to the nature of the one-body reservoirs, the prob-

lem can be solved exactly (see Fig. 1). With identical
reservoirs on each site, the Hamiltonian can be block-
diagonalized according to the wave-vector of electrons
in the transport direction. The block-diagonal Hamil-
tonian can then be exactly solved by a time-dependent
perturbation theory19,20 using the nonequilibrium Green
function theory. The calculation of the wave-vector de-
pendent occupation number supports the semi-classical
Boltzmann transport theory despite the lack of momen-
tum scattering. DC electric current of this model is
shown analytically to recover the familiar semi-classical
Boltzmann equation result21. Based on these findings, we
conclude that the fermion thermostat model, despite its
crude modeling to realistic dissipation mechanism, can
serve as a minimal setup for the studies of strong cor-
relation effects in driven lattice models. Although the
model considered here is one-dimensional, the result can
be readily extended to any spatial dimensions since the
model is one-body and conserves momentum.

II. MODEL

We study a quadratic model of a one-dimensional s-
orbital tight-binding model connected to fermionic reser-
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FIG. 1: (Color online) One-dimensional tight-binding lattice
of orbital di under an electric field E. Each lattice site is
connected to an identical fermionic bath of {ciα} with the
continuum index α along the reservoir chain direction.

voirs (see Fig. 1) under a uniform electric field E. The
effect of the electric field is absorbed in the temporal
gauge as the Peierls phase ϕ(t) = (eEa)t to the hop-
ping integral12 γ. The time-dependent Hamiltonian then
reads

Ĥ(t) = −γ
∑

i

(eiϕ(t)d†i+1di +H.c.) +
∑

iα

ǫαc
†
iαciα

−g
∑

iα

(c†iαdi +H.c.), (1)

with d†i as the (spinless) electron operator on the tight-

binding chain on site i, c†iα with the reservoir fermion
states connected to the site i with the continuum index
α along each reservoir chain. Here we do not specify
the explicit connectivity of the reservoir chains, but each
chains are assumed to have an identical dispersion re-
lation ǫα. Notice that the electric field is applied only

on the tight-binding chain {d†i}. The coupling between
the TB site and the reservoir is given by the identical
tunneling parameter g. The Peierls phase ϕ(t) is given
as

ϕ(t) =

{

0, for t < 0
Ωt, for t > 0

(2)

Ω = eEa is the Bloch-oscillation frequency due to the
electric field.

We note that the whole system has discrete trans-
lational symmetry in the transport direction and the
Hamiltonian is readily block-diagonalized with respect

to the wave-vector k as d†k =
√

N−1
d

∑

j e
ikRjd†j and

c†kα =
√

N−1
d

∑

j e
ikRj c†jα (with lattice sites Rj = aj

and the number of sites along the TB chain Nd),

Ĥ(t) =
∑

k

[

−2γ cos(k + ϕ(t))d†kdk +
∑

α

ǫαc
†
kαckα

−g
∑

α

(c†kαdk +H.c.)

]

. (3)

Here ǫd(k) = −2γ cos(k) is the tight-binding dispersion
at zero E-field. Then each k-sector can be treated and
solved separately. So from now on, we suppress the k-
subscript until necessary with the following Hamiltonian,

Ĥk(t) = −2γ cos(k + ϕ(t))d†d+
∑

α

ǫαc
†
αcα

−g
∑

α

(c†αd+H.c.). (4)

It is important to note that the k-dependence enters the
problem as k + ϕ(t) for t > 0. This problem is simply
a resonant level model19 where the level is modulated
sinusoidally for t > 0.

III. SOLUTION FOR OCCUPATION NUMBER

AND CURRENT

The time-dependent Hamiltonian (4) can be exactly
solved by the nonequilibrium Keldysh Green function
method20. We write the Hamiltonian as Ĥk(t) =

Ĥ0 + V̂ (t) with the time-independent unperturbed part

Ĥ0 = Ĥk(0) and the time-dependent perturbation as

V̂ (t) = Ĥk(t)− Ĥk(0),

V̂ (t) = −2γ [cos(k + ϕ(t)) − cos(k)] d†d ≡ v(t)d†d. (5)

When the perturbation is one-body on discrete states the
lesser and greater part of the self-energy is zero, and the
lesser d-Green function G< is expressed only in terms of
the transient term, symbolically written in the matrix
form as20

G
< = [I +G

r
V]G<

0 [I +VG
a] (6)

and the retarded Green function G
r is given by the usual

Dyson’s equation

G
r = G

r
0 +G

r
0VG

r, (7)

where the matrix product denotes convolution-integrals
in time.
First with the retarded functions, the non-interacting

limit has the time-translational symmetry and

Gr
0(t− t′) = −iθ(t− t′)

∫ ∞

−∞

dǫ
Γ/π

ǫ2 + Γ2
e−iǫ(t−t′)

= −iθ(t− t′)e−iǫd(k)(t−t′)−Γ|t−t′|, (8)

where we we use a flat-band DOS for the reservoir in the
infinite-band limit with the hybridization broadening Γ =
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FIG. 2: (Color online) Expectation value of occupation num-
ber nk(t) of wave-vector k and the current Jk(t) for γ = 1,
Ω = 0.5, Γ = 0.1 and at k = π/2 + 0.1. After the initial time
of Γ−1, transient behavior dies out and the expectation values
reach steady oscillation.

πg2N(0) and the density of states of the fermion bath
N(0) =

∑

α δ(ǫα). Writing Gr(t, t′) = Gr
0(t − t′)gr(t, t′),

Eq. (7) becomes

gr(t, t′) = 1− i

∫ t

t′
ds v(s)gr(s, t′), (9)

which can be solved as

gr(t, t′) = exp

[

−i

∫ t

t′
v(s)ds

]

, (10)

and finally we have for the full retarded Green function

Gr(t, t′) = −iθ(t−t′)e−iǫd(k)(t−t′)−Γ|t−t′| exp

[

−i

∫ t

t′
v(s)ds

]

.

(11)
Using the similar procedure for G< in Eq. (6), we have

the Dyson’s equation

G<(t, t) = G<
0 (t, t)

+

∫ t

0

[

Gr(t, s)v(s)G<
0 (s, t) +G<

0 (t, s)v(s)G
a(s, t)

]

ds

+

∫ t

0

∫ t

0

Gr(t, s)v(s)G<
0 (s, s

′)v(s′)Ga(s′, t)dsds′.(12)

We set the initial lesser Green function with the half-filled
reservoir at zero temperature as

G<
0 (t, t

′) = i

∫ 0

−∞

dω
Γ/π

(ω − ǫd(k))2 + Γ2
e−iω(t−t′). (13)

After some straightforward steps, the occupation number

for the wave-vector k, nk(t) = −iG<(t, t), becomes

nk(t) =

∫ 0

−∞

dω
Γ/π

(ω − ǫd(k))2 + Γ2
× (14)

∣

∣

∣

∣

1− i

∫ t

0

ds v(s)ei(ω−ǫd(k)+iΓ)(t−s)−i
∫

t

s
v(s′)ds′

∣

∣

∣

∣

2

.

Fig. 2 shows the above nk(t) numerically evaluated for
γ = 1, Ω = 0.5, Γ = 0.1 and at k = π/2 + 0.1. Due to
the exponential factor e−Γ(t−s), the integral converges to
a steady-state oscillation state after time t ≈ Γ−1 and
the transient behavior dies out. Therefore, for long-time
behavior, the time-integral range [0, t] can be changed to
[−∞, t] for easier analytic treatment. After an integral-
by-parts and some straightforward steps, we have

nk(t) =
Γ

π

∫ 0

−∞

dω × (15)

∣

∣

∣

∣

∫ 0

−∞

ds e−i(ω+iΓ)s−i(2γ/Ω) sin(k+Ω(t+s))

∣

∣

∣

∣

2

.

An identity for Bessel functions Jn(x)

eix cos θ =

∞
∑

n=−∞

inJn(x)e
inθ (16)

can be used to perform the integrals as

nk(t) =
Γ

π

∑

nm

Jn(
2γ
Ω )Jm(2γΩ )ei(m−n)(k+Ωt)

−(m− n)Ω + 2iΓ
×

[

1

2
log

m2Ω2 + Γ2

n2Ω2 + Γ2
+ iχmn

]

(17)

with

χmn = π + tan−1 mΩ

Γ
+ tan−1 nΩ

Γ
. (18)

To interpret the k-occupation number, we should study
the quantities with respect to the physically meaningful
gauge-invariant (mechanical) wave-vector km = k + Ωt.
The occupation number can be easily evaluated by re-
placing k + Ωt by km in Eq. (17), as shown in FIG. 3
for the damping at Γ = 0.1. As the field Ω increases,
the k-occupation number to the Fermi-Dirac distribu-
tion shifted towards the field direction. Despite the lack
of momentum scattering in the system, the picture of
displaced Fermi sea remains valid for small field. The
fermion thermostats acting as particle reservoirs seem to
dephase the Peierls factor when an electron is absorbed
in the reservoir, hence leading to the similar effect as
the momentum scattering. In appendix A, it has been
shown analytically that the shift of the wave-vector at
small field is

δk =
Ω

Γ
∝ Eτ, (19)
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FIG. 3: (color online) Occupation number n(km) with respect
to the gauge-invariant mechanical wave-vector km = k + Ωt
from Eq. (17) at Γ = 0.1. At zero field (Ω = 0, dashed
line), n(km) is given by the Fermi-dirac distribution with the
smooth steps from the damping Γ. As the field increases, the
distribution shifts to higher wave-vector as predicted by the
Boltzmann theory. With higher field (Ω > Γ), the distribu-
tion develops strong nonlinear effect with increasing effective
temperature.

as expected in the Boltzmann transport picture. The
momentum shift δk, in the low-field limit, corresponds
to the drift velocity which is proportional to the electric
field E and the lifetime τ(∼ Γ−1) of the transport elec-
tron given by the reservoir. As the field increases the shift
of Fermi surface deviates from the linear relation. As the
field is further increased (Ω ≫ Γ), the distribution sig-
nificantly deviates from the sharp low-temperature dis-
tribution and all km gradually become equally occupied.
This increased effective temperature in the distribution
as a function of external field is consistent with the Joule
heating behavior expected in the Boltzmann transport.

Another gauge-invariant quantities are the local vari-
ables. For instance, by taking the k-summation of
Eq. (17), one obtains the local electron density. Due
to the term k + Ωt in the expression, the average over
k ∈ [−π/a, π/a] is equivalent to the time-average over
t ∈ [0, 2π/Ω], i.e., the local density becomes time-
independent for large time limit. Specifically, the k-
summation requires m = n and we have

n̄local(t) =
1

2

∞
∑

m=−∞

[

Jm

(

2γ

Ω

)]2

=
1

2
.

Now we turn to the calculation of electric current,

Jk(t) =
∂ǫd(k +Ωt)

∂k
nk(t) = 2γ sin(k +Ωt)nk(t). (20)

Due to the sine-function, the DC current has contribu-
tions only from m − n = ±1 in Eq. (17). After some
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FIG. 4: (color online) DC current as a function of the damping
Γ and electric field Ω = eEa. For small field, the current has
a linear dependence on the E-field showing an Ohm’s law-like
behavior. As E increases, the Bloch oscillation behavior takes
over and the DC current decreases. The dashed lines are the
simplified expression, Eq. (22).

manipulations, we have

J̄k =
2γΓ

π(Ω2 + 4Γ2)

∑

m

Jm

(

2γ

Ω

)

Jm−1

(

2γ

Ω

)

×
[

Γ log
m2Ω2 + Γ2

(m− 1)2Ω2 + Γ2
+Ωχm,m−1

]

. (21)

As in the case for nk(t), the DC limit of Jk(t) becomes
independent of k. The total current is shown in Figs. 4
and 5. Similar plot has been obtained in the interact-
ing model from numerical calculation of Hubbard model
connected to fermion bath16.
It is instructive to simplify the above expression in the

limit of Ω,Γ ≪ γ where the DC current is reduced to the
expression

J̄ ≈ 4γΓΩ

π(Ω2 + 4Γ2)
. (22)

Detailed derivation is provided in Appendix B. This ap-
proximate expression is shown as dashed lines in Fig. 4.
Despite that the formula has been derived for Ω,Γ ≪ γ,
it shows remarkable accuracy to the DC current for a
wide range of Γ and E.
FIG. 5 shows the DC current for the whole parame-

ter space of (E,Γ). It is also interesting to note that
a similar formula has been derived for a super-lattice
system with Ohmic scattering within the semi-classical
Boltzmann transport equation21. Although the current
has the same dependence on the damping and the elec-
tric field, it should be emphasized that the two models
have quite different scattering mechanism where in the
Boltzmann approach21 the momentum relaxation is ex-
plicitly built-in while in our case the lattice wave-vector
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FIG. 5: (Color online) Contour plot of DC current as a func-
tion of damping and electric field.

scattering does not happen and the dissipation coupling
has been exactly treated. In the low-field limit, the cur-
rent (22) recovers the form of the Drude conductivity per
electron,

J̄ ≈ γΩ

πΓ
∝ Eτ

m∗
, (23)

with γ ∼ 1/m∗ and Γ ∼ 1/τ . Eq. (22) can be interpreted
in the form of Eq. (23) and write

Γeff = (Ω2 + Γ2)/Γ = Γ + (eEa)2/Γ. (24)

As observed in FIG. 3, the (eEa)2/Γ term can be linked
to the broadening of the thermal distribution with the
electric-field and we interpret the temperature due to the
Joule heating as

TJoule = (eEa)2/Γ. (25)

The temperature of the fermion reservoirs is maintained
at zero temperature.

IV. CONCLUSIONS

Calculations on electron transport with fermion ther-
mostats confirm salient features of numerical results, and
map the model to the Boltzmann transport picture, such
as Fermi surface shift in the Brillouin zone by the drift
velocity and the Ohmic-like limit of electric current. In
particular, the electric current, Eq. (22), recovered the
semi-classical transport result even without any momen-
tum scattering. Explicit and exact calculations clarify
the steady-state nature of the model which might have
different scattering processes from the realistic solid-state
transport systems. Nevertheless, its phenomenological
similarity to the conventional semi-classical pictures has
been established. The findings lead us to conclude that
the fermion bath model, despite its drastic simplifications
in the one-particle coupling and the lack of momentum

scattering, can be considered as a rudimentary and min-
imal dissipation mechanism which will be invaluable in
further modeling strong correlation physics through dy-
namical mean-field theory.
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Appendix A: Momentum occupation number at

small field

In Eq. (15), we rewrite the expression by the gauge-
invariant wave-vector km = k + Ωt and the ω-integral
first to obtain

iΓ

π

∫ 0

−∞

ds

∫ 0

−∞

ds′
eΓ(s+s′)−i(2γ/Ω)[sin(km+Ωs)−sin(km+Ωs′)]

s− s′ + iη
.

(A1)
Since (s − s′ + iη)−1 = P(s − s′)−1 − iπδ(s − s′) with
the principal part evaluation P , the δ-function part yield
a simple contribution of 1

2 . Redefining the times by the

average time T = 1
2 (s + s′) and the relative time tr =

s− s′, we can express Eq. (15) as

1

2
+
iΓ

π

∫ 0

−∞

dT

∫ 2|T |

−2|T |

dtrP
e2ΓT−i(4γ/Ω) cos(km+ΩT ) sin(Ωtr/2)

tr
.

(A2)
We look at the mechanical wave-vector slightly away from
±π/2 and set km = π/2 + δk. We change variables as
y = −ΩT , x = Ωtr. Then we have the integral as

iΓ

πΩ

∫ ∞

0

dy

∫ 2y

−2y

dxP e−2(Γ/Ω)y+i(4γ/Ω) sin(δk−y) sin(x/2)

x
.

(A3)
For small field Ω ≪ Γ, the integral has main contribu-
tion from |x|, y ≤ Ω/Γ ≪ 1. Then the integral can be
approximately evaluated for |δk| ≤ Ω/Γ as

n(km) ≈ 1

2
+

2γΩ

πΓ2

(

1− Γ

Ω
δk

)

. (A4)

Appendix B: Derivation of current at small field

For both Γ,Ω ≪ γ, we expand Eq. (21) to the leading
order of m as,

J̄k ≈ 2γΓ

π(Ω2 + 4Γ2)

∑

m

Jm

(

2γ

Ω

)

Jm−1

(

2γ

Ω

)

×
[

2mΓΩ2

m2Ω2 + Γ2
+ 2Ω tan−1 mΩ

Γ

]

. (B1)
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Rearranging the summation and using the identity
x[Jm−1(x) + Jm+1(x)] = 2mJm(x), we write

J̄k ≈ 2γΓ

π(Ω2 + 4Γ2)

∑

m

Jm [Jm−1 + Jm+1]×
[

mΓΩ2

m2Ω2 + Γ2
+Ωtan−1 mΩ

Γ

]

(B2)

=
2ΓΩ

π(Ω2 + 4Γ2)

∑

m

mΩJ2
m

(

mΓΩ

m2Ω2 + Γ2
+ tan−1 mΩ

Γ

)

.

For Ω ≪ γ, we define x = mΩ in the regime m = x/Ω ≫
1, the summation becomes

∫ ∞

−∞

xJ x
Ω
(2γΩ )2

(

xΓ

x2 + Γ2
+ tan−1 x

Γ

)

dx

Ω
.

Using the asymptotic expression22 for x/Ω, γ/Ω → ∞,

[

J x
Ω
(2γΩ )

]2 ∼
{

Ω/2γ

π
√

1−(x/2γ)2
(|x| < 2γ)

0 (|x| > 2γ)
,

the integral simplifies to

∫ 2γ

−2γ

1

π
√

4γ2 − x2

(

x2Γ

x2 + Γ2
+ x tan−1 x

Γ

)

dx.

In the limit Γ ≪ γ, the second term in the parenthesis
dominates and we have

J̄ ≈ 2ΓΩ

π(Ω2 + 4Γ2)

∫ 2γ

0

xdx
√

4γ2 − x2
=

4γΓΩ

π(Ω2 + 4Γ2)
.

(B3)
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