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An electronic state with zero-differential conductance is found in nonlinear response to an electric
field E applied to two dimensional Corbino discs of highly mobile carriers placed in quantizing
magnetic fields. The state occurs above a critical electric field E > Eth at low temperatures and
is accompanied by an abrupt dip in the differential conductance. The proposed model considers
a local instability of the electric field E as the origin of the observed phenomenon. Comparison
between the observed electronic state and the state with zero differential resistance, occurring in
Hall bar geometry, indicates that the nonlinear response of edge states and/or skipping orbits is not
essential in the studied samples. The result confirms that quantal heating is the dominant nonlinear
mechanism leading to electronic states with both zero differential resistance and conductance.

PACS numbers: 72.20.My, 73.43.Qt, 73.50.Jt, 73.63.Hs

The recent interest in a comprehensive study of the
nonlinear magnetotransport in two dimensional (2D)
electron systems was stimulated by an observation of the
Zener tunneling of highly mobile 2D electrons between
Landau levels, which is induced by Hall electric field in
GaAs/AlGaAs heterojunctions1. The effect was origi-
nally found in Hall bar geometry and appeared as oscilla-
tions of magnetoresistance rxx(B) induced by dc electric
current Idc. Positions of the oscillations in magnetic field
B obeyed the following relation: γRceEH = lh̄ωc, where
γ ≈ 2, l is an integer, ωc is the cyclotron frequency, Rc is
the cyclotron radius and EH is Hall electric field. Later,
the Zener oscillations of the magnetoresistance rxx were
found in highly doped GaAs quantum wells2, in double
quantum wells3 and in hole gas4. Very recently the Zener
oscillations are detected in the differential conductance of
Corbino discs, where the Hall electric field EH is absent5.

Another intriguing nonlinear phenomenon that is ob-
served in 2D electron systems placed in crossed electric
and quantizing magnetic fields, is the electronic state
with zero differential resistance(ZDR state)6. The ex-
perimental data have demonstrated, that in the Hall bar
geometry the initial decrease of the longitudinal differen-
tial resistance rxx with applied dc current Idc terminates
at Idc = Ith corresponding to rxx = 0. At Idc > Ith
the differential resistance stays at zero value in a broad
range of electric currents Idc > Ith, significantly exceed-
ing the threshold value Ith. The initial drop of the resis-
tance is associated with a quantal heating induced by the
spectral diffusion of 2D electrons in crossed electric and
magnetic fields7–10. The transition into the ZDR state is
attributed to the local instability of the electric current
at Idc > Ith

11.The local instability is considered to be
the origin of another spectacular phenomenon - the zero
resistance state observed in highly mobile 2D electron
systems under a microwave irradiation12–14. We note

that an uncertainty of the microwave field distribution
in studied samples limits the quantitative comparison of
the nonlinear response with theories. Presented below
data are obtained in low frequency domain, where the
distribution of the electric field is considered to be quite
well determined.

Recently a strong nonlinear response of two dimen-
sional electrons was observed in a geometry in which a
nonlocal electron transport, associated with the propaga-
tion of the edge states or/and skipping orbits16–23, plays
the dominant role15. The observation of the nonlocal
nonlinear response has raised a question regarding a pos-
sibility of the significant contribution of the edge states
and/or skipping orbits to the nonlinear transport of 2D
electrons observed in the Hall bar geometry24–35 and,
thus, the applicability of the currently accepted theoret-
ical approach7 to the observed nonlinearity. We should
note that in the Hall bar geometry a separation between
the local and the nonlocal contributions to the electron
conductance is a challenging problem.

A convenient geometry in which the nonlocal contri-
butions of the edge states and/or skipping orbits to the
electron conductance can be significantly suppressed is
the Corbino geometry. In this geometry the edge states
are localized near the edges of the inner and outer con-
tacts and do not propagate through the Corbino ring.
Thus experiments in the Corbino geometry provide the
information on the bulk nonlinear response. A compar-
ison of the nonlinear response of Corbino discs with the
response of Hall bar samples may shed a light on the
amount of the nonlocal contributions to the nonlinear re-
sistance in the Hall bar geometry. Below we investigate
the nonlinear response of Corbino discs and compare it
with experiments on Hall bar samples.

The paper presents a study of nonlinear transport
properties of 2D electron Corbino discs with inner radius
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FIG. 1: (Color online.) Dependence of conductance g12 of
2D electron Corbino disc on magnetic field at temperature
T=1.6K at different dc electric fields as labeled. Insert shows
the electric scheme for measurements of differential conduc-
tance g12.
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FIG. 2: Dependence of conductance g12 of 2D electron
Corbino disc on magnetic field at temperature T=1.6K at
different dc electric fields as labeled. Arrows indicate the po-
sitions of the maximum Bl at l=1 in different electric fields.
Insert presents the dependence of B2

1 on dc electric field Edc.
The solid line corresponds to relation γeEdcRc = h̄ωc. At
γ =2 the electron effective mass me ≈0.070, which is in ac-
cord with other experiment38.

r1 =0.9 mm and outer radius r2 =1 mm. The Corbino
discs were fabricated from selectively doped heterojunc-
tion GaAs/AlAs. The heterojunction was a single GaAs
quantum well sandwiched between AlAs/GaAs superlat-
tice barriers36. The width of the quantum well was 13
nm. The structure was grown by molecular beam epi-
taxy on (100) GaAs substrate. AuGe eutectic was used
to provide electric contacts to the 2D electron gas. The
contacts were made by thermal diffusion after the AuGe
deposition and photo-lithography. Differential conduc-
tance g12 = Iac/Vac were measured using ac current Iac
with frequency from 10 Hz to 1KHz. An ac voltage Vac

was applied between contacts 1 and 2, shown on the in-
sert to Fig.1. The amplitude of the voltage was kept fixed
and was below 1 mV during experiments. The measure-
ments were taken at temperatures T=1.6K and T=4.2K
in magnetic fields B < 1T. Three samples with electron
density n=8·1015 m−2 and mobility µ =150 m2/Vs at
T=4.2K were studied and have demonstrated the same
results. The paper presents data for one of these samples.

Figures 1 and 2 present dependence of the differential
conductance g12(B) of 2D electrons in the Corbino disc
on the magnetic field B taken at T=1.6K at different elec-
tric fields as labeled. For the studied samples the width
of the conducting o-ring was much less than the aver-
aged radius of the o-ring : ∆r = r2 − r1 ≪ (r2 + r1)/2.
Due to this property the dc electric field between con-
tacts was nearly independent of the radius r and equal
to Edc = V12/∆r. At Edc=0 the magnetoconductance
g12(B) demonstrates Shubnikov de Haas (SdH) oscilla-
tions in magnetic fields exceeding 0.3 T as shown in Fig.1.
An application of the electric field Edc =250 V/m de-
creases the amplitude of the quantum oscillations signif-
icantly and at strong magnetic fields the conductance of
the structure approaches values that are very close to
zero. Shown in Fig. 2, further increase of the dc electric
field produces additional peaks in the dependence g12(B),
which are labeled by arrows. As shown recently, these
maximums result from Zener tunneling between Landau
levels, which is induced by applied electric field Edc

5.
Positions of the maximums obey the following relation:
γRceEdc = lh̄ωc, shown in the insert to Fig.2.

Figure 3a presents dependencies of g12(Edc) for dif-
ferent magnetic fields as labeled and the temperature
T=1.6K. At magnetic field B=0.261T the initial drop
of the differential conductance with the Edc is due to the
intra-level quantal heating7,10. The increase of the dif-
ferential conductance at higher electric field is related to
inter-level electron transitions1,37. In Fig.3(a) the max-
imum marked by the arrow corresponds to Zener tun-
neling between Landau levels at l=1. At higher mag-
netic field B=0.847T the differential conductance demon-
strates similar behavior at small electric fields but at
higher dc biases the conductance retains values near
zero g12 ≈0 in a broad range of the electric fields Edc.
This is the Zero Differential Conductance State (ZDCS).
Fig.4(a) reveals that the transition into the ZDC state is
associated with one or few sharp ”spikes” of the differen-
tial conductance into the region with negative values. As
shown in the figure the state with g12=0 does not occur
at T=4.2K.

Figure 3(b) presents V − I dependencies of the 2D
Corbino disc at temperature T=1.6K for two differ-
ent magnetic fields as labeled. The figure shows that
when the 2D electron systems enters the state with zero
differential conductance, the electric current Idc satu-
rates and becomes independent of the electric field Edc.
A comparison between the dependencies g12(Edc) and
Idc(Vdc) taken at temperature T=1.6K and magnetic field
B=0.847T indicates that the electric current Idc reaches
a saturation value Is at electric field Edc > Eth.

Similar to the case of the Hall bar geometry6 we con-
sider that in the studied Corbino discs, the g12 =0 state
occurs due to a local instability of the electric field Edc

11.
The dominant nonlinear mechanism, leading to the insta-
bility, is a peculiar Joule heating (quantal heating), which
occurs in systems with a discrete spectrum7,10. The in-
stability develops at the conditions of a negative differ-
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FIG. 3: (a) Dependence of differential conductance g12 on dc
electric field Edc at different magnetic fields as labeled. Arrow
indicates maximum corresponding to Zener transition at l =1.
T=1.6K; (b) Dependence of electric current Idc on dc voltage
Vdc at temperature T=1.6K in different magnetic fields as
labeled. Placed in the upper left corner insert shows suggested
N-shaped dependence Jdc(Edc) indicating two electric fields
E1 and E2 corresponding to the same value Jdc. Placed in
the lower right corner insert shows possible distribution of
the electric field corresponding to the electron state with zero
differential conductance in a 2D Corbino disc.

ential conductivity corresponding to the negative slope
of the N-shaped V-I dependence shown in the insert to
Fig.3(b). Shown in Fig.4(a) regions with the negative dif-
ferential resistance further supports this interpretation.
In the case of the N-shaped V-I dependence, a spatially
uniform distribution of the electric field is not stable and
typically should evolve into a structure containing do-
mains of a weak E1 and a strong E2 as shown in the
insert to Fig.3(b)39. At these conditions both moving
and static domains may occur. In the first case in a con-
ductor with a fixed voltage applied there are oscillations
of the electric current. This is known as Gunn effect40.
In the case of static domains the constant electric current
saturates with the applied voltage41. There is a similar-
ity between nonlinear transport in Gunn diodes40 and in
the 2D electron systems presented in this paper. We note
however that despite the similarity the nonlinear mecha-
nisms leading to the local instability of the electric field
Edc are different in these two systems.

The presented nonlinear response of Corbino discs is
obtained in the regime where the edge states and/or skip-
ping orbits are localized near the contacts and do not
participate in the electron transport through the sys-
tems. It is important to compare the obtained results
with the nonlinear response of Hall bar samples, where
the electron transport near the edge may provide signif-
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FIG. 4: Color online. (a) Dependence of differential conduc-
tance g12 on electric field Edc in magnetic field B=0.847T
at different temperatures as labeled. (b) Dependence of the
differential resistance rxx on dc bias Idc in Hall bar sample
fabricated from the same quantum well as in Fig.4(a). The
dependence is taken at magnetic field B=0.841T at different
temperatures as labeled.

icant contributions15. Below we compare the threshold
electric field Eth = 96 V/m corresponding to the tran-
sition into the state with zero differential conductance
shown in Fig.4a with the Hall electric field correspond-
ing to the transition into the state with zero differential
resistance (ZDRS) in a Hall bar sample fabricated from
the same quantum well. Figure 4(b) presents the depen-
dence of the differential resistance of the Hall bar sample
on the applied dc bias Idc taken at the same experimen-
tal conditions. The transition to the ZDR state occurs at
Hall electric field EH

th
= 118 V/m, corresponding to the

threshold dc bias Idc = 9.3µA. The comparison demon-
strates quite similar values of the electric fields, at which
both ZDRS and ZDCS transitions occur. Furthermore we
note that samples with comparable physical parameters
demonstrate comparable threshold fields. In particular
shown in Fig.2a of ref.(6) the threshold electric current
Ith = 6.7 µA corresponds to the ZDRS transition ob-
tained at B=0.784T, T=1.94K on sample N1 with elec-
tron density n=8.2·1015 m−2 and mobility µ =85 m2/Vs.
Taking into account that the Hall resistance of the sam-
ple N1 at B=0.784T is RH = B/ne=597 Ohm, one can
evaluate the Hall electric field EH corresponding to the
current Ith: E

H

th
= RH · Ith/W= 80 V/m, where W = 50

µm is the width of the sample N1. The sample demon-
strates similar value of the threshold electric field. Thus
in the studied Hall bar samples the edge states and/or
skipping orbits do not provide a considerable contribu-
tion to the nonlinear response and, thus, the accepted
model of the nonlinearity7,10 holds for these systems.
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In summary the paper presents experimental study
of the effect of dc electric field on the conductance of
Corbino discs of highly mobile two dimensional electrons
placed in crossed electric and quantizing magnetic fields.
Experimental data shows that at low temperature the
differential conductance of the Corbino discs reaches zero
value in a broad range of applied dc voltages. It indicates
the presence of the zero differential conductance state in
which the electric current does not depend on the volt-
age. The results are in accord with the data obtained
in the Hall bar geometry indicating that the nonlinear-
ity leading to the ZDC and ZDR states occurs inside 2D

electron systems. It provides significant support for the
model of the local nonlinearity based on the quantal Joule
heating in systems with discrete or modulated spectrum.
Finally both the zero differential conductance and zero
differential resistance states are observed in systems with
a modest electron mobility broadening significantly the
class of electron systems in which the quantal heating is
essential.
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