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The material KNi2Se2 has recently been shown to posses a number of striking physical properties,
many of which are apparently related to the mixed valency of this system, in which there is on
average one quasi-localized electron per every two Ni sites. Remarkably, the material exhibits a
charge density wave (CDW) phase that disappears upon cooling, giving way to a low-temperature
coherent phase characterized by an enhanced electron mass, reduced resistivity, and an enlarged
unit cell free of structural distortion. Starting from an extended periodic Anderson model and
using the slave-boson formulation, we develop a model for this system and study its properties
within mean-field theory. We find a reentrant first-order transition from a CDW phase, in which
the localized moments form singlet dimers, to a heavy Fermi liquid phase as temperature is lowered.
The magnetic susceptibility is Pauli-like in both the high- and low-temperature regions, illustrating
the lack of a single-ion Kondo regime and free local moment behavior such as that usually found in
heavy-fermion materials.

Heavy-fermion materials exhibit a host of fascinating
collective quantum behaviors, which have made them a
major focus of ongoing research for over three decades1,2.
The “standard model” of heavy-fermion behavior, as de-
picted in the famed Doniach diagram3, features compe-
tition between a magnetic phase and the heavy Fermi
liquid. An intriguing possibility that has received com-
paratively little attention is the existence of charge or-
der, rather than the usual magnetic order, in proxim-
ity to the heavy-fermion state. Mixed-valency systems4,
which contain a variable number of localized electrons
per atomic site, are a natural place to look for such com-
peting effects. If the fractional filling takes a commen-
surate value, then Coulomb repulsion between electrons
on nearby sites may induce charge density wave (CDW)
ordering. Mixed valency has been studied recently in f -
electron materials exhibiting heavy-fermion behavior5–7,
as well as in the context of the related “charge Kondo
effect”8,9. However, in both of those cases the emphasis
has generally been on the single-site valency as hybridiza-
tion or interaction between electrons is increased, rather
than on the possibility of collective CDW formation and
competition of this charge order with the heavy fermion
phase.

The material KNi2Se2 has recently been shown to ex-
hibit several remarkable physical properties10, many of
which appear to be related to its mixed-valent nature.
(see also Refs.11,12 for recent work on related materi-
als.) At high temperatures the material has high resis-
tivity; the magnetic susceptibility is constant, indicating
Pauli paramagnetic response; and structural analysis re-
veals that the material has at least three distinct sub-
populations of Ni-Ni bond lengths. Upon cooling below
Tcoh ≈ 20K, the resistivity rapidly decreases, the struc-
tural distortions disappear, and the material enters a co-
herent heavy-fermion state with effective electron mass
m∗ ∼ 10m0, eventually giving way to superconductivity
below Tc ≈ 1 K. This material is also unusual in that

an applied magnetic field induces virtually no response
in the measured specific heat and magnetoresistivity, in-
dicating that the low-temperature coherent phase does
not arise from competition with local magnetic order as
in typical heavy-fermion materials. Rather, it was pro-
posed that the coherent state competes with a charge-
fluctuating state, facilitated by the mixed valency of the
Ni ions in KNi2Se2

10.

In this study, we present a theory that captures the key
ingredients that characterize this system. At high tem-
peratures, the quasi-localized electrons in our model form
a CDW and pair with one another into singlet dimers,
which explains the observed structural distortion and in-
sensitivity to applied magnetic field. As temperature is
lowered, the CDW dissolves in a first-order transition di-
rectly into a spatially uniform, correlated heavy-fermion
state, without the intermediate single-ion Kondo regime
that is usually observed in heavy-fermion materials. The
details of this model and the main results of the calcula-
tions are presented below.

KNi2Se2 has a quasi-two-dimensional, layered struc-
ture, with the Ni and Se ions alternating in checkerboard
fashion on a square lattice within each layer. Considera-
tion of the stoichiometry reveals that the effective valency
of Ni in this compound is “1.5+,” so that at low ener-
gies the effective degree of freedom is one quasi-localized
d-electron with spin 1/2 per every two Ni sites, with a
small amplitude for these electrons to hop to neighboring
Ni sites. Conduction electron bands are formed from the
other Ni and Se orbitals and have a significantly greater
bandwidth than the quasi-localized d-electrons.

With this picture in mind, the following Hamiltonian
describing the “extended periodic Anderson model” pro-
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vides a useful starting point:

HEA =− tc
∑
〈ij〉,σ

(c†iσcjσ +H.c.)− tf
∑
〈ij〉,σ

(d†iσdjσ +H.c.)

− εf
∑
i

ndi + V
∑
i,σ

(d†iσciσ +H.c.)

+ U
∑
i

ndi↑ndi↓ +
∑
i6=j

Wijndindj ,

(1)

where i, j denote Ni sites on a two-dimensional square
lattice. The first term in this equation describes hopping
of the conduction electrons. The second and third terms
describe the hopping and on-site energy of quasi-localized
electrons on neighboring Ni sites. The fourth term de-
scribes hybridization between the two types of electrons.
Finally, the last two terms describe Coulomb repulsion
of d-electrons occupying the same site and nearby sites,

where ndiσ = d†iσdiσ. The Hamiltonian is identical to
the well-known periodic Anderson model, with the addi-
tion of the W term describing intersite Coulomb repul-
sion. This term is typically neglected in describing heavy
fermion materials since such systems usually have exactly
one local moment per site, so such a Coulomb term ef-
fectively adds an overall constant to the total energy. It
is crucial for describing a system near one quarter filling,
however, since such systems are susceptible to Coulomb
repulsion-driven charge ordering.

In the limit of large on-site repulsion U , it is conve-
nient to enforce the constraint of no double occupancy
through the introduction of slave boson operators13–15.

In this formulation, we substitute diσ = b†ifiσ, where fiσ
describes a charge-neutral “spinon” that carries the spin
of the electron, and the slave boson operator bi describes
a spinless particle with positive charge. In terms of these
new operators, the Hamiltonian (1) becomes

H = Hc +Hfc +Hf +HW +Hλ +HJ (2)

Hc = −tc
∑
〈ij〉,σ

(c†iσcjσ +H.c.)

Hfc = V
∑
i,σ

(bif
†
iσciσ +H.c.)

Hf = −tf
∑
〈ij〉,σ

(bib
†
jf
†
iσfjσ +H.c.)− εf

∑
i

nfi

HW =
∑
i 6=j

Wijnfinfj

Hλ = i
∑
i

λi(nfi + b†i bi − 1)

HJ = J
∑
〈ij〉

Si · Sj

The first four terms in (2) are analogous to terms appear-
ing in (1), but rewritten in the slave boson description.
Hλ replaces the on-site repulsion term in (1) by enforcing

the constraint nfi + b†i bi = 1 via the Lagrange multiplier
field λi (within mean-field theory, this constraint is en-
forced only on average). The last term in (2) describes an
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FIG. 1. (a) T = 0 diagram of CDW phases minimizing the
term HW for various values of second- and third-neighbor
Coulomb repulsion. (b) Schematic illustration of the “pla-
quette” phase showing expected lattice distortion once the
coupling between electron and lattice degrees of freedom is
taken into account. Links connecting sites containing local-
ized electrons are shorter and are represented by thicker lines.
(c) Schematic illustration of a possible configuration in the
case where long-range CDW order is absent, but the singlet
nature of the state and distribution of bond lengths remain
similar to those shown in (b).

antiferromagnetic Heisenberg interaction driven by su-
perexchange between spins on neighboring sites, which
is present in the limit where U is large but not infi-
nite. The Hamiltonian (2) is identical to the “Anderson–
Heisenberg” model that has been studied recently16–18,
with the addition of the Coulomb term HW .

Figure 1(a) shows the phase diagram with the possi-
ble CDW phases for various values of first-, second-, and
third-nearest neighbor repulsion. We choose parameters
such that the “plaquette” CDW phase in the upper part
of Figure 1(a) is realized, since this phase naturally al-
lows for dimer formation between neighboring spinons.
When coupling between electronic and lattice degrees of
freedom is taken into account, such a picture can also
qualitatively explain the distinct peaks in the distribu-
tion of bond lengths observed at T > Tcoh via neutron
pair distribution function analysis10, since links contain-
ing a dimer can be expected to be shorter than other
links. It can be seen from Figure 1(b) that each unit
cell contains 2 short bonds, 2 long bonds, and 4 bonds of
medium length. This is consistent with the three peaks
in the distribution of bond lengths observed in experi-
ment, with the central peak larger than the others. While
there is no clear experimental evidence of long-range spa-
tial order such as that described here, we expect that
the key features of this model—spatially modulated elec-
tron density and dimer formation at high temperatures,
giving way to a spatially uniform coherent state at low
temperatures—will remain valid even in the absence of
long-range order, as illustrated schematically in Figure
1(c).

We proceed to study the Hamiltonian (2) within mean-
field theory. Denoting as sublattice A (B) the sites
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FIG. 2. Upper plots show the T = 0 phase diagrams for V
vs. W3 with J = 8tf (a), and for J vs. W3 with V = 3tf
(b). Lower plots show the reentrant transition to the charge-
ordered phase as a function of W3 with V = 3tf (c), and as
a function of V with W3 = 1.75tf (d), and with J = 8tf in
both plots. All transitions shown are first order.

shown as (un)occupied in the figure, the average occu-
pation number is taken to be 〈nfi〉 = nf + ζi

∆
2 , where

nf is the average density of spinons per site, ∆ is the
CDW order parameter, and ζi = ±1 on sublattice A
(B). At mean-field level, the nearest neighbor and second
neighbor Coulomb terms W1,2 merely shift the chemi-
cal potential for the spinons, so they will not be con-
sidered further here. The Lagrange multiplier field λi
and the slave boson field bi are also treated as stag-
gered mean fields: iλi = λ0 + ζiλ1 and bi = b0 − ζib1,
with λ0,1 and b0,1 real. The Heisenberg spins Si are ex-

pressed in terms of spinons: Sai = 1
2f
†
iασ

a
αβfiβ , where

σa are the Pauli matrices. We introduce the mean fields

χA,A′,B,AB =
〈
f†iσfjσ

〉
, with χAB defined on links be-

tween sites on different sublattices, χB on links between
two sites on sublattice B, and χA(A′) on links between
two sites on sublattice A in the x(y)-direction. It is found
that the free energy is always lowered in the CDW phase
by having only one of χA, χA′ nonzero, so that the four
spins on each plaquette form two dimers.

In solving the mean-field equations, we require that the
density of spinons is fixed to nf = 0.5 spinons per site in
the limit V = 0, which is accomplished by appropriately
setting the on-site energy of the spinons εf . The chemi-
cal potential is set to keep the total density of particles in
the system fixed at nc+nf = 1.3 per site, which remains
fixed even for V 6= 0. The results that follow are not par-
ticularly sensitive to the choice of nc, so long as nc > nf ,
so that there are enough conduction electrons to screen
all of the local moments in the coherent phase. The ratio
of hopping amplitudes for spinons and c-electrons has
been set to tf/tc = 0.2, which is substantially larger
than that found in typical heavy-fermion systems. This
is a reflection of the fact that the localized moments in
KNi2Se2 are d-electrons, which are less tightly bound to

their atomic cores than the f -electrons that constitute
the local moments in most other heavy-fermion systems.
This relatively large ratio of bandwidths is also the rea-
son for the rather modest effective mass enhancement of
m∗ ∼ 10m0

10, which is 10 ∼ 100 times smaller than that
typically found in f -electron heavy fermions.

The phase diagrams shown in Figure 2 illustrate the ex-
istence of a reentrant, first-order transition from a CDW
to a spatially uniform phase upon cooling. Since the
Mermin-Wagner theorem precludes true long-range or-
dered phases in two dimensions at finite temperature,
fluctuations will lead to a phase with CDW correlations
but no long-range order, consistent with experimental ob-
servations in KNi2Se2. The reentrant behavior is rather
unusual, as in most systems the phase that breaks trans-
lational symmetry is the ground state that is realized as
T → 0. While the reentrance occurs along the entire
critical line in Figure 2(a), it emerges along the critical
line in Figure 2(b) only for J & 3tf , growing in extent
as J is increased. These values of J are rather large to
be generated by superexchange alone, for which one ex-
pects J ∼ t2f/U . It has been suggested that additional
contributions might arise in similar contexts from other
superexchange processes in the CDW phase19, or from
RKKY interactions at low temperatures18,20. Reentrant
behavior reminiscent of that shown here has been seen
previously in a theory of simple checkerboard CDW or-
dering at 1/4 filling in layered molecular crystals21, al-
though in that case only a second-order transition was
found. The model presented here also exhibits a second-
order transition, but only at higher temperatures than
those shown in Figure 2. The mean field χA is nonzero
throughout the CDW phase shown in Figure 2, indicating
dimer formation between spinons.

For the parameters given above, there is a jump in
the average spinon occupation per site nf at the first-
order transition. At W3 = 1.75tf , the occupation jumps
from nf = 0.45 for T < Tcoh = 0.12tf to nf = 0.53 for
T > Tcoh. The increased valency in the CDW phase is
consistent with the lack of long-range CDW order ob-
served in experiment10, since a long-range ordered state
would be impossible at incommensurate filling. It would
be interesting to test whether the predicted jump in nf
at T = Tcoh could be observed experimentally using tech-
niques such as resonant inelastic X-ray scattering22.

The densities of states in the two phases are shown
in Figure 3. In the CDW phase, the well-defined peaks
above and below the Fermi level clearly show that the
spinon excitations are gapped. In contrast, the spinons
contribute to the hybridization peak at the Fermi level in
the low-temperature phase, as is typical in heavy-fermion
materials. The relative magnitude of the peak in this
case, however, is substantially smaller than that in f -
electron materials. Comparing the values of the densities
of states at the Fermi level in the two different phases, one
finds an enhancement of ≈ 3.0 in the normal phase rela-
tive to the CDW phase. This can be compared with mea-
surements on KNi2Se2, where an enhancement of ≈ 3.1
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FIG. 3. Densities of states for the CDW phase at T = 0.15tf
(a) and the coherent phase at T = 0.01tf (b), with W3 =
1.75tf , J = 8tf and V = 3tf . The Fermi level is at ε = 0.
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FIG. 4. Uniform magnetic susceptibility with W3 = 1.75tf
and J = 8tf . The light and dark dashed lines show χ(T ) in
the uniform phase (V = 4tf ) and in the CDW phase (V =
2tf ), respectively. The solid line shows χ(T ) for V = 3tf ,
which exhibits a phase transition at T = Tcoh = 0.12tf . All
plots are normalized to χ(0) for the solid curve.

was observed in the electronic specific heat coefficient γ
for T < Tcoh

10.
The uniform magnetic susceptibility can be calculated

as the derivative of magnetization with respect to ap-
plied magnetic field. Figure 4 shows the susceptibility
as a function of temperature, assuming that the Lande
g-factors for conduction electrons and spinons are equal.
The approximately constant susceptibility in the region
T < 0.12tf = Tcoh corresponds to the Pauli suscepti-
bility of the heavy Fermi liquid, in which the conduc-
tion electrons are hybridized with the localized spinons,
leading to an enhanced density of states near the Fermi
level. At Tcoh, there is a jump in the susceptibility to
a much smaller constant value, indicating that only the
conduction electrons contribute to the susceptibility at
T > Tcoh, while the spinons form singlet pairs. This
is in contrast to the Curie susceptibility χ ∼ 1/T that is
typically observed at high temperatures in heavy-fermion
materials.

Rather than exhibiting a sharp step, however, the ex-
perimentally measured χ(T ) remains approximately con-
stant through the CDW transition10. One possible expla-
nation for this discrepancy is the Van Vleck contribution
to χ(T ), which has not been included in our model. The
possibility of a large contribution of this type in heavy-
fermion materials has been considered previously23. Oth-
ers have since investigated the Van Vleck contribution to
the susceptibility and have found that, when multiple lo-
calized bands are approximately degenerate, one gener-
ally has χV ∼ χPauli

24–26. Thus if an unhybridized band
that was not included in our model has large spectral
weight near one of the peaks in Figure 3(a), an increased
χV could compensate for the decrease in χPauli at higher
temperatures, with the sum of the two terms remain-
ing roughly constant. Calculating the precise Van Vleck
contribution to the susceptibility would require a more
detailed knowledge of the band structure, however, and
so we leave this as an open question to be addressed in
future work.

In conclusion, we have provided a theoretical frame-
work for describing the key properties of the recently
discovered mixed-valency material KNi2Se2, most impor-
tantly the vanishing of the CDW phase upon cooling.
The formation of singlet dimers by the local moments in
the CDW phase explains the lack of common signatures
of single-ion Kondo behavior, such as a Curie suscepti-
bility at high temperatures. This mechanism may also
explain the lack of a resistivity peak in measurements on
KNi2Se2

10. Such a peak typically forms in heavy-fermion
materials at temperatures just above the coherence tem-
perature, where the Kondo screening clouds are not yet
coherent with one another and act as spin-flip scattering
centers. A direct transition from a singlet CDW phase
to a coherent low-temperature phase precludes this possi-
bility, however, and is consistent with the monotonically
decreasing resistivity observed in experiment as T is low-
ered. This material illustrates the potential of mixed-
valency systems for exhibiting a rich array of collective
quantum behaviors.
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