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We study a two-species fermion mixture with different populations on a square lattice modeled by a Hubbard

Hamiltonian with on-site interspecies repulsive interaction. Such a model can be realized in a cold atom system

with fermionic atoms in two different hyperfine states loaded on an optical lattice and with tunable interspecies

interaction strength via external fields. For a two-dimensional square lattice, when at least one of the fermion

species is close to half-filling, the system is highly affected by lattice effects. With the majority species near

half-filling and varying densities for the minority species, we find that several correlated phases emerge as the

ground state, including a spin density wave state, a charge density wave state with stripe structure, and various

p-wave BCS pairing states for both species. We study this system using a functional renormalization group

method, determine its phase diagram at weak coupling, discuss the origin and characteristics of each phase, and

provide estimates for the critical temperatures.

PACS numbers: 71.10.Fd 67.85.Lm 05.30.Fk 05.10.Cc 71.10.Hf

Introduction - Experiments with ultra-cold atoms have re-

alized mixtures of two different species of fermionic atoms

with different densities, including mixtures of cold lithium

atoms (6Li) with different populations for two different hy-

perfine states1–6. Fermionic systems with imbalanced spin

populations have been studied in electronic materials, such as

magnetic-field-induced organic superconductors7,8. Mixtures

of different species of fermions with unequal populations have

also been considered in the study of quark matter9. With the

rapid experimental advances in the field of cold atom physics,

these systems have the advantage of a great degree of tun-

ability and control of inter-particle interactions, dimensional-

ity, confinement, as well as number of pseudo-spin species.

Imbalanced mixtures of cold fermionic atoms have attracted

great interest due to their possible rich phase diagram6. Sev-

eral phases have been observed experimentally5,6, such as

imbalanced superfluid phase, phase separation, and normal

Fermi liquid behavior. Also, Larkin-Ovchinnikov-Fulde-

Ferrel (LOFF) state10, which involves Cooper pairs with finite

center-of-mass momentum, and breached pair11,12 state with

zero center-of-mass momentum, could be possible phases in

special regions of the phase diagram13. In addition, there

are studies of p-wave triplet pairing, caused by effective at-

tractive intra-species interaction, proposed for strongly imbal-

anced cases in two14 and in three15,16 dimensions. In addition

to being cooled and trapped, fermionic atoms and mixtures

can now also be loaded onto optical lattices17,18 where the in-

teraction and the hopping strengths can be tuned, and effects

of their interplay with lattice geometry and dimensionality can

be probed.

We consider a two-component mixture of fermionic atoms

with imbalanced populations on a two-dimensional square lat-

tice at weak coupling region. It is well known that the pres-

ence of a lattice can provide interesting strong correlation ef-

fects, such as spin density wave (SDW) and charge density

wave (CDW) phases for fermions on a two-dimensional (2D)

square lattice at half-filling. Extensive studies can be found

in the literature for the case of balanced, SU(2) symmetric

fermions, such as the Hubbard model19 in various lattice ge-

ometries and fillings20–23,25. Due to nesting of the Fermi sur-

face (FS), SDW is the dominant instability for the repulsive

Hubbard model on a 2D square lattice at half-filling, followed

by dx2−y2 -wave superconductivity when the system is doped

away from half-filling22,23. When nesting is completely de-

stroyed by doping, the system becomes a normal Fermi liq-

uid, aside from Kohn-Luttinger instabilities26 at extremely

low temperatures. However, when the spin populations are

unequal and SU(2) symmetry is broken, both the SDW and

the singlet pairing will eventually be precluded due to the

mismatch of the FS for the up and down spin fermions at

strong population imbalance. As the Fermi surfaces become

increasingly mismatched, the system is expected to be dom-

inated by other instabilities or becomes a two species Fermi

liquid. If the interspecies interaction is initially repulsive,

one expects to find SDW phase near the balanced case30–32,

switching to other and potentially richer correlated behavior

as the polarization increases. Here we study this behavior us-

ing a weak-coupling functional renormalization group (fRG)

method21–24, which is able to treat different instabilities on an

equal footing. We obtain the phase diagram for this system,

focusing on the case where the majority species stays close

to half-filling and the density of the minority species is var-

ied. The phase diagram (Fig. 1) contains several new phases,

including a stripe-CDW phase and triplet pairing phases for

both species. From our fRG study, we also obtain estimates

for the critical temperature for the different instabilities.

For a microscopic interaction which is on-site, there is no

bare intra-species interaction due to Pauli exclusion princi-

ple, but an effective long-range interaction can be induced via

scattering between species. Previous studies14–16 have consid-

ered such mediated interactions for mixtures of fermion gases

(no lattice) with imbalanced populations, finding an attractive

effective intra-species pairing interaction, leading to p-wave

pairing of the majority species. In this study, we consider the

effects of the interplay of interaction, population imbalance,

and lattice effects. We show that lattice effects in particu-

lar, not only lead to a much richer phase diagram than that

of a imbalanced mixture of fermionic gases, but also with a

much higher transition temperature, even at weak interaction

couplings, therefore more easily accessible to experimental
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FIG. 1: (color on-line) Phase diagram of spin-imbalanced fermion

mixture with majority species exactly at half filling µ↑ = 0 (upper)

and slightly away from half-filling µ↑ = 0.0003t (lower). The sys-

tem goes from SDW (black) at near balance to a stripe-CDW (red)

as the imbalance increases. The insert shows the strong imbalance

region, where single species p-wave majority (magenta) or minority

(blue) pairing is the dominant instability.

observation. Unlike Bose-Fermi mixtures27–29, where differ-

ent pairing and density wave states for the fermions originate

from attractive interactions mediated by quantum fluctuations

of the boson condensate, in the fermion mixture considered

here, both species have screening effects from each other, and

the low energy physics depends on the interplay between ini-

tial interspecies interaction, induced intra-species interaction,

the FS geometry of each species, and their mismatch due to

imbalance.

1. The model and the fRG method. We consider a one-band

Hubbard model for each species (σ =↑, ↓) of fermion (with

creation operator c
†
kσ) on a 2D square lattice, with on-site in-

terspecies interaction U0. The Hamiltonian can be written as:

H =
∑

σk

ξσkc
†
kσckσ +

U0

V

∑

kk′q

c
†
k+q↑c

†
k′−q↓ck′↓ck↑ (1)

, where ξσk = −2tσ(cos kx + cos ky) + µσ and V is the

volume of the system (hereafter set to be equal to 1). The

different chemical potentials µσ determine the densities and
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FIG. 2: (a) Definition of interaction vertex, where ki is an auxiliary

index including momentum, frequency, and spin. (b)-(f) The one-

loop RG corrections to interaction vertices. Since initial intra-species

interaction is zero, only the bubble diagram (c) can mediate intra-

species vertices from two inter-species vertices.

the hopping amplitude tσ can be tuned by the optical lattices.

In this work, we only consider the case t↑ = t↓ = t, and weak

repulsive interspecies interaction (U0 > 0). Previous studies33

have considered the case of attractive interaction. We neglect

the confinement potential as a first approximation.

The fRG approach has been applied to the study of the

stability and instabilities of Fermi liquids21 and to a num-

ber of different lattice models22,23,25. Starting with a micro-

scopic model, the RG method provides an effective theory for

low energy scales by integrating out high energy degrees of

freedom, reducing the UV cut-off Λ. We perform a zero-

temperature one-loop renormalization-group calculation for

the interaction vertices Uσσ′(k1,k2,k3,k4), where k1 and

k2(k3 and k4) are the momenta of the incoming(outgoing)

fermions, and k1 + k2 = k3 + k4 , shown in Fig. 2(a).

Figs. 2(b)-(f) show all Feynman diagrams that contribute to

the renormalized four-leg vertices at one-loop. In order to

solve the RG equations, we discretize both FS (σ =↑, ↓) into

M patches and integrate the renormalization group equations

numerically. We set the cut-off to be Λl =6te−l, dl=0.1 for

an RG step, U0 = 2.5t and M = 28 in all calculations shown

here. Since the bare interaction has no dynamics initially,

we neglect self-energy corrections as justified for the one-

loop limit at weak coupling region21,23. After obtaining RG

flows of all marginal interaction vertices that involve states

near the Fermi surfaces, we extract vertex combinations that

define specific instability channels at each RG step. The pair-

ing channels are V
↑(↓)
BCS(k,q) = U↑↑(↓↓)(k,−k,q,−q), and

V
s,t0
BCS(k,q) =

1
4 (U↑↓(k,−k,q,−q)±U↓↑(k,−k,q,−q) +

U↑↓(−k,k,q,−q) ± U↓↑(−k,k,q,−q)), where the up-

per(lower) sign stands for singlet s (triplet t0) pairing.

Density wave channels from nesting interactions are given

by VSDWz,CDW (k,q) = 1
2 (U↑↑(k,q,k + Q,q + Q) +

U↓↓(k,q,k + Q,q + Q) ∓ U↑↓(k,q,k + Q,q + Q) ∓
U↓↑(k,q,k+Q,q+Q)) where the upper(lower) sign stands

for SDWz(CDW) channel, and Q = (±π,±π) is a nesting

vector. The pseudo-spin index σ refers to two different hyper-

fine states of the atoms, thus the term SDW is understood as

ordering of the pseudo-spin. Also, the cold atoms are neutral

particles and CDW refers to the number density (not electric

charge), but we keep the CDW terminology in analogy to elec-
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FIG. 3: (a) RG flow of SDWz (black) and CDW (red) channels

at different minority fillings, where µ↓ = 0 (solid), µ↓ = 0.001t
(dash), and µ↓ = 0.1t (dots) with majority species half-filled (µ↑ =
0). (b) One example of non-perfect nesting particle-hole process with

net momentum (2π, 0). (c) The symmetry of the order parameter of

majority CDW (yellow circle) and minority CDW (cyan square) for

the stripe-CDW phase (µ = 0.01t). A conventional s-wave form fac-

tor (black triangular) is also shown. Both species behave like stripe

density wave along the diagonal direction. The circles on the FS are

fRG patches.

tronic systems. At each RG step, we diagonalize these M×M

matrices as
∑

Va(k,q)φ
(n)
a (q) = λ

(n)
a φ

(n)
a (k). As the lead-

ing eigenvalue of a defined channel diverge, we identify it as

an instability of the system (the BCS pairing instability re-

quires a negative eigenvalue). The form of the corresponding

eigenvector determines the symmetry of the order parameter

of the instability. The scale Λc at which the divergence occurs

can be associated to a mean-field critical temperature23.

2. Nearly balanced. In order to maximize lattice effects,

we focus on the case where the majority species is at or close

to half-filling, µ↑ ∼ 0, and we vary µ↓. Phase diagrams are

shown in Fig. 1. When the system is balanced (µ↑=µ↓=0),

SDW is the dominant instability (RG flows shown in Fig.

3(a)). With increasing µ↓, the SDWz order persists for the

nearly balanced region (Fig. 1), but the critical temperature Tc

decreases. This result agrees with previous studies30 showing

that antiferromagnetic order is suppressed by increasing im-

balance (i.e. ∆µ).

3. Weak imbalance. As the minority density is further de-

creased away from half-filling, some interspecies vertices in-

volving nesting vectors, such as umklapp processes, are no

longer near the FS and are thus suppressed. However, there

are still some non-perfect nesting particle-hole processes with

net momentum equal to a reciprocal lattice vector, (2π, 0) or

(0, 2π), which are allowed even under imbalance. An exam-

ple of such a process, depicted in Fig. 3(b), is for a minority

fermion to scatter from q → q+Q2 − δ across two opposite

sides of its FS (say along the 45◦ direction), while a major-

ity fermion scatters from k → k + Q1 + δ across the other

two opposite sides of its FS (say along the 135◦ direction).

With Q1 = (π, π), Q2 = (−π, π), and δ = (δ, δ) account-

ing for the FS mismatch, the net momentum for this process

is (0, 2π) and therefore of umklapp-type and allowed by mo-

mentum conservation in spite of the imbalance. These vertices

can still renormalize significantly under RG flow, and more

importantly, they mediate intra-species nesting processes for

the majority fermions, which do have a perfectly nested FS, so

these mediated processes have the strongest flow. On the other

hand, the induced intra-species long-range attraction is max-

imum at diagonal directions. Due to the partial nesting and

intra-species long-range attraction, this leads to a crossover in

the RG flows from the SDWz to a stripe-CDW phase. From

a real space picture, with increasing imbalance, both species

also have more empty sites to move around to minimize free

energy. Fig. 3(a) shows the RG flow close to this crossover,

where SDWz and CDW channels are almost degenerate. The

CDW channel of both species is doubly degenerate. The order

parameters for ↑ and ↓ are non-zero on two-opposite sides of

the FS (second and fourth quadrants), and zero on the other

sides (first and third quadrants), with the situation reversed

for the other degenerate channel (Fig. 3(c) shows one of the

cases). These correspond to stripe charge order in the diagonal

direction34. This stripe-CDW phase originates from weaker

spin fluctuations caused by imbalance in addition to screened

intra-species long-range attraction. Since it involves both spin

and charge fluctuations, the size of this region and its critical

energy scale in phase diagram depend on the filling fraction

of both species, shown in Fig. 1.

4. Strong imbalance. As the imbalance becomes stronger,

the FS mismatch precludes all nesting processes as well as

zero-momentum singlet pairing. Since the induced intra-

species interactions are always attractive, the dominant RG

flows present another crossover, from CDW stripe phase to

triplet p-wave BCS pairing. The triplet pairing is for a single

fermion species but it is generated by the initial bare repul-

sive interspecies interaction, the lattice (FS shape), and the

imbalance (FS mismatch). Whether the dominant pairing is

for the majority or for the minority species depends on the in-

terplay of these factors. Fig. 4(a) shows RG flows for three

different minority chemical potentials. As µ↓ increases, the

minority pairing channel is dominant at first. This is because

the nearly half-filled majority FS provides a large phase space

in RG process to mediate and renormalize the minority intra-

species BCS vertex. The bubble diagram in Fig. 2(c), which

contains an internal fermion loop, gives a first nonzero correc-

tion to the intra-species vertex from two interspecies vertices,

of the form,

∂lU
(l)
σσ′(k1,k2,k3)=

[

1−
1

2
(1+X)δσσ′

]

βph{U1, U2}, (2)
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FIG. 4: (a) RG flow of majority (blue) and minority (magenta)

p-wave BCS channels at three different minority fillings, where

µ↓ = 0.5t (solid), µ↓ = 0.8t (dash), and µ↓ = 1.5t (dot) with

majority species half-filled (µ↑ = 0). In (b), µ↓ = 0.8t (blue), the

renormalized majority pairing channel U↑↑(k,−k,−k′,k′) couples

to its own nesting channel U↑↑(k,−k,−k + Q,k + Q). In (c),

µ↓ = 1.5t, the half-filled majority species can provide more phase

space to renormalize minority pairing channel (i.e. q can be any-

where on that FS branch).

where X denotes the operation XF (1, 2, 3, 4) = F (2, 1, 3, 4)
and βph{U1, U2} = Π{U1, U2} + T Π{U1, U2}, with

T F (1, 2, 3, 4) = F (3, 4, 1, 2) the time-reversal operator and

Π{U1,U2}=
∑

q,α

Bph(k1,k3,q)Uσα(k1,q,k3)Uσ′α(k4,q,k2) (3)

where Bph is an integral over an angular sector23. From Eq.

(3), the induced intra-species BCS vertex comes from inte-

grating out two interspecies interactions. For example, in Fig.

4(b), integrating pairs of solid and dash lines, which repre-

sent two interspecies vertices, results in an intra-species BCS

vertex, U↓↓(k,−k,k′,−k′). Because the FS of the majority

species is flat, there will be more renormalization corrections

to intra-species interaction between minority species at first.

As shown in Fig. 4(c), the momentum q at fixed magnitude

can be translated anywhere along that branch of the FS. Fig.

1 shows that the critical temperature(a.u.) for minority pair-

ing decreases monotonically with increasing polarization, be-

cause the phase space of induced minority intra-species pair-

ing becomes smaller. The same effect is observed for the ma-

jority p-wave pairing channel, which is the sub-leading chan-

nel. However, the induced BCS vertex of majority species

couples to its own nesting channel (k and k′, for example,

are connected by a nesting vector in Fig. 4(b)). Although

the initial mediated majority intra-species pairing interaction

is smaller than that for minority species, as discussed above,

eventually the strong RG flow through a nesting channel leads

to a majority pairing instability. We note that this majority

superfluid is not the same as proposed in previous studies

of fermion gases14–16, but is instead a lattice effect and has

a much larger energy scale and critical temperature. As the

density of minority species is further decreased, it starts to be-

have like a fermion gas, with a small, almost circular FS, as

shown for example in Fig. 4(c). When the density of minority

species becomes less than quarter filling, the induced majority

BCS vertices are no longer coupled to its own nesting vertices,

which causes a sudden drop of the critical temperature for the

majority pairing channel. Since the majority species is still

perfectly nested there is more phase space for the minority

pairing interactions to be mediated and renormalized. This

crossover of RG flows is shown in Fig. 4(a). The majority

pairing instability only exists in a small region of the phase

diagram for each different majority filling, as shown in Fig.

1. For large minority chemical potentials, the critical temper-

ature is much smaller, and eventually reaches our numerical

limit (Λl ∼ 10−5t). Before this limit is reached, the flow of

minority pairing is stronger than majority pairing and other

channels.

5. Conclusion. We have performed a weak-coupling fRG

study of a population imbalanced fermion system on a square

optical lattice in two dimensions. At the weak imbalance

region, the competition between spin fluctuations and intra-

species attractions leads to a stripe density wave phase, rather

than the usual uniform SDW phase. As the imbalance is fur-

ther increased, p-wave superfluid phases become dominant

due to the mismatch of the FS. Although the p-wave pairing

superfluid may be expected in dilute density limit, the com-

petition between majority and minority pairing is determined

by their FS topology and the mediated intra-species pairing

interaction which is renormalized from the initial bare inter-

species on-site repulsive interaction. Both the stripe density

wave phase and triplet superfluid phases are enhanced by nest-

ing of the majority FS, leading to much higher critical temper-

atures than that found for the imbalanced Fermi gas without

lattice14,15 at weak coupling limit. According to our calcula-

tion, the critical temperature for stripe density wave is roughly

ΛCDW
c (µ↑=0, µ↓=0.01t)≈0.18t and that for p-wave super-

fluid is Λ
BCS↓

c (µ↑=0.0003t, µ↓=0.03t)≈0.016t, where the

hopping amplitude t can be controlled experimentally. In a

recent experiment35, it is reported that temperatures around

6% of the Fermi temperature of a noninteracting trapped

gas has been achieved. The symmetry of the order parame-

ter of each instability can be probed by momentum-resolved

spectroscopy36,37. These techniques provide analogues of

angle-resolved photoemission spectroscopy (ARPES) used in

condensed matter systems, and can probe anisotropic systems,

such as the stripe CDW and the p-wave pairing that we predict

here.
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