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We show that for multi-orbital quantum impurity models the non-crossing approximation and one-crossing

approximation versions of the self-consistent hybridization expansions violate the sum rules relating the coeffi-

cients of the high-frequency expansion of the self energy and the product of the self energy and Green function

to thermodynamic expectation values. Comparison of non-crossing/one-crossing results to numerically exact

quantum Monte-Carlo calculations shows that the consistency with sum rules provides a useful estimate of the

reliability of the approximations. The sum rule violations are more pronounced, and therefore the quality of the

non-crossing/one-crossing approximation is poorer, in situations with multiple orbitals and away from particle-

hole symmetry but becomes less severe as the correlation strength increases. The one crossing approximation is

markedly superior to the non-crossing approximation.

PACS numbers:

I. INTRODUCTION

Electronic structure calculations of complex materials pose

a highly non-trivial task: the interplay between charge, spin,

orbital and lattice degrees of freedom can lead to striking

many-body correlations challenging common band-structure

approaches.1 An important step towards a successful theoreti-

cal description of materials with strong electronic correlations

was taken with the development of dynamical mean-field the-

ory (DMFT).2–4 DMFT provides a theoretical framework to

account for correlations resulting from strong local interac-

tions between electrons, by mapping the full problem onto a

quantum impurity model with a self-consistently determined

bath.

However, the solution of the quantum impurity model re-

quired in the DMFT method remains challenging. The state-

of-the-art methods to solve quantum impurity models make

use of a stochastic sampling of diagrams in an imaginary-

time expansion of the partition function.5–7 These “continu-

ous time quantum Monte Carlo” (CT-QMC) approaches are

numerically exact and are widely used as “impurity solvers”

for DMFT calculations. However, these methods are compu-

tationally intensive (so that surveys of wide ranges of param-

eter space are often prohibitively expensive), are formulated

on the Matsubara axis (so analytical continuation is required

for real-frequency spectral information), and in many physi-

cally relevant cases suffer from a severe “fermion sign prob-

lem”. This sign problem is severe if large clusters or many

orbitals are simulated and may occur even in the single-site

DMFT approximation, for multiorbital situations in which the

local Green function is “non-diagonal”, i.e. does not have a

frequency independent eigenbasis. The latter situation occurs

generically in situations of low point symmetry, for example

in the case of Co on Cu.8

In these situations, it is desirable to have a more economical

way to solve the quantum impurity model by using approxi-

mations which give reasonably accurate results while keep-

ing the computational cost at a minimum. Self-consistent re-

summations of diagrams in the hybridization expansion are

popular approximations because they are based on the solu-

tion of integral equations rather than quantum field theories

and the computational cost scales polynomially in the system

size.9 Among various schemes, the non-crossing (NCA) and

the one-crossing approximations (OCA) are frequently used

in DMFT calculations.10–16 These approaches may be for-

mulated on the imaginary15,17 or on the real frequency axis

using either Feynman’s perturbation theory in a slave-boson

representation with subsequent projection18,19 or a perturba-

tion theory based on contour integrals of ionic resolvents.9,20.

Keldysh-contour formulations also have been studied.16,21–23

The ability to formulate the problem directly on the real axis

or the Keldysh contour has the additional and very consider-

able advantage that analytical continuation is not necessary.

The NCA/OCA and related approximations are obtained

from summations of complete families of dressed skeleton

diagrams and are therefore conserving approximations (Φ-

derivable).9,10,24 This guarantees the equivalence of alterna-

tive representations of the partition function obtained by in-

tegrating thermodynamic derivatives – a property which as-

sures that thermodynamic relations are conserved within a

given approximation. On the other hand, it is known that Φ-

derivability does not guarantee that sum rules (which connect

frequency sums of dynamical quantities to equal-time correla-

tion functions) and Fermi liquid relations (which connect ther-

modynamic derivatives or zero-frequency correlation func-

tions and thermodynamic derivatives) are satisfied.9 These

have to be tested on a case-by-case basis.

In the present article, we investigate the degree to which

self-consistently resummed approximations such as the NCA

and OCA respect sum rules relating the high-frequency ex-

pansion of the impurity Green’s function G(iωn) [and self-

energy Σ(iωn)] to thermodynamic expectation values of com-

mutators of operators with the Hamiltonian and to sum rules

relating the Matsubara axis sum of the product of the Green
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function and self energy to the expectation value of the po-

tential energy. A comparison of NCA/OCA calculations to

the results of numerically exact quantum Monte Carlo calcu-

lations shows that the degree of sum rule violation offers a

straightforward and robust estimate of the quality of the ap-

proximation in the systems we tested. We also observe that

the sum rule violation means that it is not possible to use sum

rule techniques to estimate the high frequency tails needed

for Fourier transformation.25,26 Although this paper presents

explicit results only for the NCA and OCA we observe that

more involved conserving approximations19,20,27 can also be

discussed within the framework developed here.

The quality of the NCA and related approximations was

investigated previously but with a focus on the Fermi liq-

uid properties.28–32 It was found that although the NCA gives

qualitatively correct results for temperatures higher than the

Kondo temperature, it develops a spurious non-analyticity at

the Fermi energy at low temperatures.28,29 To recover the cor-

rect Fermi liquid behavior, a considerably larger class of di-

agrams must be considered, as is the case in the conserving

T -matrix approximation.30,31 However, the application to dy-

namical mean field theory changes the focus from the details

of the low frequency Fermi liquid behavior to the quality of

the approximation at generic frequencies. There is thus a

need for simple, robust estimators of the approximation qual-

ity. One of our aims in this paper is to show that sum rule

violations provide such an estimator.

The results of this paper are based on the imaginary-time

formulation of the NCA/OCA for quantum impurity models

with multiple orbitals. In Sec. II we first review the formalism

before we present in Sec. III the above mentioned sum rules

and discuss the degree to which they are respected in the NCA

and OCA. In Sec. IV, we directly benchmark the NCA/OCA

against CT-QMC. From these tests, we conclude in Sec. V that

the performance of the NCA/OCA is less satisfactory in situa-

tions with multiple orbitals and away from particle-hole sym-

metry. However, as expected, these approximations become

better in situations where the hybridization is small compared

to the interaction energy. Moreover, for the instances we have

studied, the OCA provides a substantial improvement over the

NCA.

II. FORMALISM

A. Overview

This section presents the formalism for the self-consistent

resummation of the hybridization expansion in imaginary

time, generalizing the scheme given in Ref. 17 to the multi-

orbital case. We use a matrix notation which makes the for-

malism independent of the details of the impurity model.

B. General impurity model

We study impurity models of the form

H = Himp +Hbath +Hhyb, (1)

where Himp describes the (interacting) impurity electrons,

Hbath the non-interacting bath electrons and Hhyb specifies

the hybridization between the impurity and bath degrees of

freedom. The mixing term has the general form

Hhyb =
∑

p,a

(
V a
p c

†
pda + h.c.

)
. (2)

Here, d
(†)
a denotes the annihilation (creation) operators for the

impurity electrons in spin-orbital a. c
(†)
p describe the bath de-

grees of freedom which follow

Hbath =
∑

p

εpc
†
pcp. (3)

In general, p is a combined index including both the momen-

tum and the internal quantum numbers such as spin.

We expect that Himp is of the general form

Himp =
∑

ab

Eabd
†
adb +Hint. (4)

At this stage in the discussion we will not need to specify the

interaction part Hint.

We shall be interested in the imaginary-time d-electron

Green function

Gab(τ) = −
〈

Tτda(τ)d
†
b(0)

〉

(5)

whose Fourier transform may be expressed in terms of the

hybridization function matrix ∆ and self energy matrix Σ as

G(iωn) = [iωn1− E −∆(iωn)− Σ(iωn)]
−1

. (6)

The matrix E specifies the single-particle levels of the impu-

rity and is given in Eq. (4).

The hybridization function

∆ab(τ) = −
1

Nbath

∑

p

V a
p

∗V b
p 〈Tτ cp(τ)c

†
p(0)〉. (7)

arises from integrating out the bath electrons. In terms of the

bath dispersion εp, it has the explicit representation7

∆ab(τ) =
1

Nbath

∑

p

V a
p

∗V b
p

eεpβ + 1
×

{

−e−εp(τ−β), 0 < τ < β;

e−εpτ , −β < τ < 0.

which has the property that its Fourier transform ∆(ω) van-

ishes as |ω| → ∞.

The self energy expresses the effect of the interaction terms

Hint on the d-electron dynamics.
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C. Hybridization expansion

The starting point for the approximations discussed in

this paper is the hybridization expansion of the partition

function.6,7,33 It uses the interaction representation with re-

spect to the hybridization Hhyb:

Z = Tr
[

e−βH0T e−
∫

β

0
dτV (τ)

]

=

∞∑

k=0

∫ β

0

τ1 . . .

∫ β

τk−1

dτkTr[e
−βH0eτkH0(−V )

. . . e−(τ2−τ1)H0(−V )e−τ1H0 ], (8)

where V = Hhyb and H0 = Himp +Hbath. Only even pow-

ers of this expansion with equal number of creation and an-

nihilation operators contribute. After separating the bath and

impurity operators one can integrate out the contribution from

the bath degrees of freedom. Using Wick’s theorem the con-

tributions of the bath electrons can be written in terms of the

hybridization function defined in Eq. 7.

Collecting terms of the same order in ∆ab(τ), the expan-

sion of the partition function takes the final form6,17

Z = Zbath

∑

k

y
dτ1 . . . dτ

′
k

∑

j1...jk

∑

j′1...j
′

k

Tr[Tτe
−βHimp

×djk(τk)d
†

j′
k

(τ ′k) . . . dj1(τ1)d
†

j′1
(τ ′1)]det ∆, (9)

where ∆ is a k×k matrix with entries ∆lm = ∆jljm(τl−τ ′m).
It is possible to use a Monte Carlo algorithm to evaluate the

series stochastically, thereby computing observables like the

Green’s function numerically exactly.6,7,33 It is also possi-

ble to provide an approximate evaluation by resumming par-

ticular subsets of terms in a self-consistent manner. Two

well-known examples are the non-crossing (NCA) and one-

crossing (OCA) approximations.

D. The non-crossing approximation (NCA)

The non-crossing approximation (NCA) is a resummation

of all the terms in Eq. (9) which have non-crossing hybridiza-

tion lines. It can be obtained by considering the k = 0, 1
terms in Eq. (9) but with a dressed propagator of the local

eigenstates, R(τ). R(τ) is a N × N -matrix, where N is the

dimension of the local Hilbert space. It fulfills the following

Dyson equation in imaginary time, see Fig. 1(a):

R(τ) = R0(τ)+

∫ τ

0

dτ2

∫ τ2

0

dτ1R(τ − τ2)S(τ2 − τ1)R0(τ1)(10)

Here, the bare propagator R0(τ) is given by

R0(τ) = e−τHimp . (11)

By construction, R(τ) is only defined for 0 < τ < β. The

N × N -matrix S(τ) corresponds to the “self-energy” of the

0 τ

R
=

R
+ S

0 τ 0 ττ1 τ2

R0 R0

(a)

(b)

=S(τ)

+

+ +

ττ1 τ20 ττ1 τ20

ττ1 τ20 ττ1 τ20

τ0 τ0

+

+

NCA

∆(τ) ∆(−τ)

OCA⎬
｜
｜

｜｜

⎫

⎭

｜

｜

R(τ) R(τ)

FIG. 1: (a) The Dyson equation for the self-consistent local propa-

gator R(τ). (b) The self-energy S(τ) of the local propagator in the

NCA and OCA.

local propagator R(τ). In the NCA, it is given by S(τ) =
S0(τ) where

S0(τ) =
∑

ab

[

daR(τ)d†b∆ba(−τ)− d†aR(τ)db∆ab(τ)
]

.

(12)

The creation and annihilation operators d
(†)
a in Eq. (12) should

be interpreted as their corresponding matrix representations in

the local Hilbert space. Equation (12) has the diagrammatic

representation shown in the first line of Fig. 1(b). It has to be

solved self-consistently together with Eq. (10), in practice this

is typically done by iteration.

Once a self-consistent solution is found, physical quantities

are calculated from R(τ). For example, the partition function

is given by

Z = Tr [R(β)] . (13)

Furthermore, static (thermodynamic) expectation values are

readily computed,

〈O〉NCA =
1

Z
Tr [R(β)O] , (14)

where O is an arbitrary local operator.

Dynamical (imaginary time) quantities are calculated in a

similar way. The most important dynamical quantity for the

following discussion is the physical single-particle Green’s

function of the impurity site:

Gab(τ2 − τ1) = −〈Tτda(τ2)d
†
b(τ1)〉. (15)

Within NCA, it is obtained as

Gab(τ) =







−Tr
[

R(β − τ)daR(τ)d†b

]

/Z, 0 < τ < β;

Tr
[

R(β + τ)d†bR(−τ)da

]

/Z, −β < τ < 0.

(16)

The non-crossing approximation is a conserving

approximation.9 In particular, there exists a Luttinger-

Ward functional Φ[R,∆] from which the local eigenstate
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self-energy S(τ) as well as the impurity Green’s function

G(τ) are obtained by a functional derivative:

Snm(τ) =
δΦ[R,∆]

δRmn(β − τ)
, (17)

Gab(τ) =
1

Z

δΦ[R,∆]

δ∆ba(β − τ)
. (18)

In the NCA, the Luttinger-Ward functional is Φ[R,∆] =
Φ0[R,∆] where19

Φ0[R,∆]=−
∑

a,b

∫ β

0

dτTr
[

R(β − τ)daR(τ)d†b

]

∆ba(β−τ).

(19)

Using Φ0[R,∆] in Eqs. (17) and (18) one recovers Eq. (12) for

the self-energy and Eq. (16) for the impurity Green’s function

in the NCA.

E. The one-crossing approximation (OCA)

The NCA was originally developed for the infinite-U
single-orbital Anderson model where the approximation

works well.9 For finite U , the NCA shows severe problems be-

cause it neglects exchange contributions.19,20 There are many

different schemes which improve on the NCA by including

diagrams with crossing hybridization lines.27 We will discuss

the simplest such generalization and will refer to it as the

one-crossing approximation (OCA).15,16 Other names used in

the literature for the same approximation include “enhanced

NCA” (ENCA),27,34,35 “finite U NCA” (UNCA),19 or “first-

order one-crossing approximation” (1st-order OCA).17

The OCA is obtained from the expansion Eq. (9) by addi-

tionally including the k = 2 terms with crossing hybridiza-

tion lines. Again, the approximation is made self-consistent

by taking a dressed propagator R(τ) which fulfills the Dyson

equation Eq. (10), in analogy to the NCA. However, as il-

lustrated in Fig. 1(b), the OCA includes additional exchange

diagrams for the self-energy, S(τ) = S0(τ) + S1(τ).

The OCA is also a conserving approximation. The Luttinger-Ward functional is obtained from the NCA functional by adding

an additional contribution, Φ[R,∆] = Φ0[R,∆] + Φ1[R,∆], where3

Φ1[R,∆] = −
∑

αβγδ

∫ β

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1Tr
[

R(β − τ3)d
†
δR(τ3 − τ2)dγR(τ2 − τ1)dβR(τ1)d

†
α

]

∆αγ(β − τ2)∆δβ(τ3 − τ1).

(20)

S1(τ) can now be obtained from Eq. (17) by replacing Φ[R,∆] by Φ1[R,∆]. The explicit expression for S1(τ) is given by

S1(τ) = −
∑

abcd

∫ τ

0

dτ2

∫ τ2

0

dτ1

[

d†dR(τ − τ2)d
†
cR(τ2 − τ1)dbR(τ1)da∆ca(τ2)∆db(τ − τ1)

+ddR(τ − τ2)d
†
cR(τ2 − τ1)d

†
bR(τ1)da∆ca(τ2)∆bd(β − τ + τ1)

+d†dR(τ − τ2)dcR(τ2 − τ1)dbR(τ1)d
†
a∆ac(β − τ2)∆db(τ − τ1)

+ddR(τ − τ2)dcR(τ2 − τ1)d
†
bR(τ1)d

†
a∆ac(β − τ2)∆bd(β − τ + τ1)

]

. (21)

Similarly, the impurity Green’s function G(τ) acquires an additional contribution to Eq. (16). The full expression is

Gab(τ) = −Tr[R(β − τ)daR(τ)d†b]/Z

−
∑

cd

∫ τ

0

dτ1

∫ β

τ

dτ2Tr
[

R(β − τ2)dcR(τ2 − τ)daR(τ − τ1)d
†
dR(τ1)d

†
b∆dc(β − τ2 + τ1)

]

/Z

−
∑

cd

∫ τ

0

dτ1

∫ β

τ

dτ2Tr
[

R(β − τ2)d
†
cR(τ2 − τ)daR(τ − τ1)ddR(τ1)d

†
b∆cd(τ2 − τ1)

]

/Z, (22)

which can be obtained from Φ[R,∆] by the functional derivative Eq. (18).

III. SUM RULES

A. Overview

In the following, we study the degree to which the

NCA/OCA respects sum rules. In Sec. III B we test the de-

gree to which the NCA and OCA respect the relations, known

from the exact theory, between the coefficients of the high-

frequency expansion of G(iωn) and independently known
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thermodynamic expectation values. In Sec. III C we investi-

gate the sum rule for the potential energy. We present general

arguments showing that neither the NCA nor the OCA fulfills

the sum rules. In Sec. III D, we present numerical results for

these sum rule violations.

B. High-frequency expansion

The high-frequency expansion of the impurity Green’s

function in Matsubara frequency space is given by (here we

omit the matrix indices of G etc for ease of writing)

G(iωn) =

∫ β

0

dτG(τ)eiωnτ =
∑

k≥1

ck
(iωn)k

. (23)

Note that (c1)ab = δab which insures that the single-particle

spectral function is normalized to 1. The self energy and hy-

bridization function have similar high-frequency expansions

Σ(iωn) =
∑

k≥0

Σk

(iωn)k
, (24)

and

∆(iωn) =
∑

k≥1

∆k

(iωn)k
. (25)

Note that the moments ∆k are known a priori and that the hy-

bridization function is defined so that ∆k=0 = 0. Σk=0 gives

the Hartree shift of the levels of the impurity model specified

by the matrix E. Use of the Kramers-Kronig relation implied

by the causality of the self energy implies

Σk=1 =

∫
dω

π
ImΣret(ω) (26)

so that Σk=1 contains information about the interaction-

induced dynamics.

Comparison of Eqs. (6) and (23) shows that

c2 = E +Σ0 (27)

c3 = (E +Σ0)
2
+∆1 +Σ1. (28)

A relation between the moments ck in the high-frequency

expansion of G and the discontinuities in the derivatives of the

Green function at τ = 0 follows from repeated integration by

parts of Eq. 5:

ck = (−1)k
[

G(k−1)(0+)−G(k−1)(0−)
]

(29)

(here G(k) denotes the kth derivative of G). The time deriva-

tives may also be obtained by expanding the Heisenberg equa-

tion of motion O(τ) = e−HτOeHτ for small times25,26

G
(k)
ab (0

+)−G
(k)
ab (0

−) = −
〈





[H, [H, . . . [H
︸ ︷︷ ︸

ktimes

, da] . . . ]], d
†
b







〉

.

(30)

Detailed expressions for the commutators for general models

are available in the literature (see, e.g. Ref. 36,37).

Equation (30) via Eqs. (29) and (23) provides an exact re-

lation between the moments in the high frequency expansion

to the equal-time expectation value of k-fold commutators of

the exact Hamiltonian with fermion operators. In an approxi-

mate solution of the impurity problem, the left and right side

of Eq. (30) are in general not equal. Therefore, comparing

both sides order by order provides a test for the quality of an

approximation. Within the NCA/OCA, we find that the rela-

tion (30) is in general violated for k > 1. Below we explicitly

discuss the first three terms in the high-frequency expansion.

1. k = 1:

To determine the zeroth order we compute the discontinuity

of the Green’s function at τ = 0. Within NCA/OCA, one

obtains

Gab(0
+) = −Tr

[

R(β)dad
†
b

]

/Z,

Gab(0
−) = Tr

[

R(β)d†bda

]

/Z

which results in
(

c
NCA/OCA
1

)

ab
= 〈{da, d†b}〉NCA/OCA = δab. (31)

Here, 〈. . . 〉NCA/OCA denotes the thermodynamic expectation

value within the NCA or OCA, as given by Eq. (14). Equa-

tion (31) is consistent with the relations Eq. (30) and guaran-

tees, e.g., that the single-particle spectral function is correctly

normalized.

2. k = 2:

For the next-higher term we first consider the NCA. Evalu-

ating the first derivative of Eq. (16) at τ = 0± we obtain

(
cNCA
2

)

ab
=

1

Z

{

Tr
[

R′(β)dad
†
b

]

− Tr
[

R′(β)d†bda

]

+ Tr
[

R(β)d†bR
′(0)da

]

− Tr
[

R(β)daR
′(0)d†b

]}

.

The above expression can be further simplified by using

R′(0) = −Himp and Eq. (10) to obtain R′(β). After some

algebra, one finds the following form

(
cNCA
2

)

ab
= −

〈{

[H, da] , d
†
b

}〉

NCA
+ ǫ0ab. (32)

where for consistency the commutator should be evaluated

within the NCA approximation as indicated by the subscript

NCA.

In deriving Eq. 32 we used the fact that for the impurity

model Eq. (1), the k = 1 anti-commutator is independent of

the hybridization and the bath degrees of freedom:

{

[Himp, da] , d
†
b

}

=
{

[H, da] , d
†
b

}

. (33)
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This allowed us to replace Himp by the full Hamiltonian H
in Eq. (32). The second term appearing in Eq. (32) is the

l = 0 member of a family of expressions given by the general

formula

ǫlab =
1

Z

∫ β

0

dτ
{

Tr
[

R(β − τ)Sl(τ)dad
†
b

]

− Tr
[

Sl(τ)R(β − τ)d†bda

]}

(34)

for S0,1(τ) given by Eq. (12) and Eq. (21). Comparison of

Eq. (32) to Eq. (30) makes it clear that a non-zero ǫ0ab indicates

that in the NCA the high-frequency tail of the Green function

is not given by the general commutator expression evaluated

within the same theory. Because ǫ0ab involves an integral over

S0(τ), it is proportional to V 2 for small V [see Eq. (12)].

We find that except for the particle-hole symmetric limit, ǫ0ab
is indeed non-zero, which reflects the fact that the impurity

Green function in the NCA is exact only in zeroth order in the

hybridization strength.

A similar evaluation for the OCA Green’s function

[Eq. (22)] yields an analogous result

(
cOCA
2

)

ab
= −

〈{

[H, da] , d
†
b

}〉

OCA
+ ǫ1ab. (35)

with the error ǫ1ab now given by Eq. (34) with l = 1. ǫ1ab
involves an integral over the exchange contributions S1(τ)
of the self-energy which is proportional to V 4 for small V
[see Eq. (21)] instead of V 2 in the NCA. The inconsistency in

the OCA is therefore considerably smaller than in the NCA at

small V (i.e. large U ).

3. k = 3:

The k = 3 term in the high-frequency expansion of the

impurity Green function is given by

(c3)ab =
〈{

[H, [H, da]] , d
†
b

}〉

. (36)

Similar algebra as for the k = 2 term, but too lengthy to repro-

duce here, shows that the k = 3 and all the higher frequency

moments of the Green function suffer from similar sum rule

violations as the k = 2 term.

The failure of the NCA/OCA to reproduce the relation be-

tween the high frequency tails of the Green function and the

commutators means that the relations between the high fre-

quency components of the self energy and expectations val-

ues of commutators are similarly in error. This is in particular

true for the first two moments, the Hartree shift Σ0 and the

1/ωn term Σ1 which can be obtained from Eqs. (27) and (28).

By comparing the NCA/OCA to numerically exact CT-QMC

data, we will later argue (see Secs. III D 3 and IV as well as

Figs. 7,8,10 and 11) that the sum rule violation for Σ1 is a

good diagnostic for the quality of the approximation at gen-

eral frequencies.

C. Potential energy sum rule

A related error appears in the sum rule for the potential en-

ergy. On the one hand, the NCA/OCA allows to directly com-

pute the static expectation value

Ẽstat
pot = 〈Hint〉 (37)

where Hint = Himp − ∑

ab Eabd
†
adb denotes the local inter-

action Hamiltonian. On the other hand, the potential energy

can also be obtained from a sum rule if the impurity Green’s

function and the self-energy are known by evaluating the fol-

lowing expression:2,38

Ẽsum
pot =

1

2β

∑

n

Tr [Σ(iωn)G(iωn)] e
iωn0

+

. (38)

Here, Tr denotes the trace over the spin and orbital degrees of

freedom. We find that within NCA/OCA, Ẽstat
pot 6= Ẽsum

pot in

general. As we show in the following, the difference between

the two expressions has a similar origin as the inconsistency in

the high-frequency expansion. Indeed, the basis for Eq. (37)

is the relation

Re
{
Tr

[
G′(0−)

]}
= −1

2

∑

a

(
〈[H, d†a]da〉+ 〈d†a[da, H]〉

)

= −〈Hhyb〉 − Tr[Eρ]− 2〈Hint〉. (39)

In the last line we introduced ρab = 〈d†adb〉. Equation (39)

is an exact relation which can be derived from the defini-

tion of the imaginary-time Green’s function (or the equation

of motion), similar to Eq. (30). Writing the left-hand side

in frequency space, using the Dyson Eq. (6) for the impurity

Green’s function and the relations

ρab = 〈d†adb〉 =
1

β

∑

n

Gab(iωn)e
iωn0

+

, (40)

Ehyb = 〈Hhyb〉 = Tr
1

β

∑

n

∆(iωn)G(iωn)e
iωn0

+

,(41)

one can solve Eq. (39) for 〈Hint〉 which yields the expression

Eq. (37). As we have shown in the previous section, the first

derivative of G(τ) at τ = 0± is not simply obtained from ther-

modynamic expectation values within NCA/OCA. Hence, the

relation Eq. (39) is in general (except for vanishing hybridiza-

tion) not satisfied within these approximations and therefore

also Ẽstat
pot 6= Ẽsum

pot .

Because the NCA and OCA preserve particle-hole symme-

try, it is convenient to bring the expressions Eqs. (37) and (38)

into a form which respects this symmetry (if present). For

simplicity, we assume Eab = −µδab and define

Estat
pot = Ẽstat

pot − µ0n, (42)

Esum
pot = Ẽsum

pot − 1

4
TrΣ0 −

µ0n

2
. (43)

Here, µ0 is the value of µ for which the impurity is half filled.

If the impurity model is particle-hole symmetric, the above
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expressions respect this symmetry as well. It is then natural to

quantify the sum rule violation by the ratio

∣
∣
∣
∣

∆Epot

µ0

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

Ẽstat
pot − Ẽsum

pot + 1
4Tr ǫ

l

µ0

∣
∣
∣
∣
∣
. (44)

where ∆Epot = Estat
pot −Esum

pot and ǫl with l = 0 (NCA) or l =
1 (OCA) is given in Eq. (34). If the NCA/OCA works well,

one expects |∆Epot/µ0| ≪ 1 which we indeed observed by

direct comparison with numerically exact CT-QMC data, see

Sec. IV. From the examples studied, we found that one can use

Eq. (44) as a tool to estimate the quality of the approximation.

D. Numerical results

1. Two level quantum dot model

The numerical results presented in the following sections

are obtained for a model for a two level quantum dot (impu-

rity with two orbitals) with asymmetric coupling to two leads

(bath degrees of freedom). The model has been studied in

Ref. 39 in view of potential quantum critical points related to

the occupancy switching of the two levels. Here, we use it

to illustrate the internal inconsistencies one can encounter in

the NCA/OCA and to benchmark our NCA/OCA calculations

against the CT-QMC results of Ref. 39.

The two orbitals are labeled with the index α = n,w, dis-

tinguishing between narrow (n) and wide (w) level. We study

both spinless and spinful impurity electrons interacting via

an interorbital repulsion U and coupled to the bath via or-

bital dependent parameters Vα (note that in neither case is an

intra-orbital interaction included). The spinless version of the

model takes the form

Hsl = Unnnw − µ
∑

α

nα +
∑

p,α

Vα

(
c†pdα + d†αcp

)
+Hbath

(45)

with nα = d†αdα and µ the chemical potential. The spinful

version is the same but with spin indices added:

Hsf = Unnnw−µ
∑

α

nα+
∑

p,α,σ

Vα

(
c†pσdασ + d†ασcpσ

)
+Hbath

(46)

where σ =↑, ↓ labels the spin and nα now =
∑

σ d
†
ασdασ .

We assume that the bath degrees of freedom are described

by a broad and featureless band with a semi-circular density

of states of width W = 4t:

ρ(ε) =

√
4t2 − ε2

2t2π
. (47)

The coupling Vα of the two quantum dot levels to the leads

introduces a broadening of the levels. In the non-interacting

limit for dots with energy levels close to the center of the band

and weak hybridization (as compared to W ), the broadening

of the two levels is given by

Γn = π|Vn|2ρ(0) and Γw = π|Vw|2ρ(0). (48)
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FIG. 2: (Color online) High-frequency behavior of the self-energy

in the NCA for the spinless model for (a) the narrow level and (b)

the wide level. The (blue) solid line represents the Hartree shift ex-

pected from the sum rule. The (green) dashed line represents the

high-frequency limit obtained from the NCA equations with U = 12,

µ = 4.8 and β = 25.

Throughout this article we assume Γn = 0.04t and Γw =
0.25t which is much smaller than the band width W = 4t of

the bath electrons. The width of the broader level is chosen

as the unit of energy, i.e. Γw = 1. In these units, the level

broadening of the narrow level is Γn = 0.16 and the band

width is W = 16.

Performing the commutators shows that for these models

the coefficient cα2 controlling the 1/ω2
n decay of the Green

function for orbital α is (ᾱ denotes the other orbital)

cα2 = U 〈n̂ᾱ〉 − µ = Unᾱ − µ (49)

from which we obtain

Σα
0 = Unᾱ. (50)

for the Hartree shift. The coefficient Σα
1 giving the 1/ωn term

in the self energy is

Σα
1 = U2

(〈
n̂2
ᾱ

〉
− (〈n̂ᾱ〉)2

)

. (51)

In the spinless model n̂2
ᾱ = n̂ᾱ so the expression reduces to

Σα
1,sl = U2

(
nᾱ − n2

ᾱ

)
(52)

but in the spinful model the expectation value of n̂2
α enters.

2. Numerical results for Hartree shift Σ0

In the following we present numerical results for the

Hartree shift Σ0. Particle-hole symmetry protects the value

Σ0 = µ0 where µ0,sl = U/2 for the spinless and µ0,sf = U
for the spinful model. This symmetry protection is respected

by the NCA and OCA so we focus on results away from the

particle-hole symmetric limit.

We first consider the spinless model Eq. (45). Figures 2 and

3 show the real part of the self-energy for the narrow (α = n)

and the wide (α = w) level as obtained in the NCA and OCA,

respectively. For these calculations, we have used a large in-

terorbital interaction U = 12 and have fixed µ = 4.8 and
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FIG. 3: (Color online) High-frequency behavior of the self-energy

in the OCA for the spinless model for (a) the narrow level and (b)

the wide level. The (blue) solid line represents the Hartree shift ex-

pected from the sum rule. The (green) dashed line represents the

high-frequency limit obtained from the OCA equations which is in-

distinguishable from the Hartree shift within the resolution of the

graph. The following parameters have been used: U = 12, µ = 4.8
and β = 25.

β = 25. For these parameters, the total filling n = nn + nw

is slightly below half-filling, n = 1, and the broader level is

preferably occupied, nw > nn. In the NCA (Fig. 2), the dif-

ference between the value for Hartree shift expected from the

sum rule, Eq. (50), and the actual high-frequency limit of the

NCA self-energy is noticeable. The discrepancy is clearly vis-

ible for the narrow level but quite small for the wide level. In

the OCA (Fig. 3), a distinction is not resolved within numeri-

cal precision.

We next consider the spinful model Eq. (46). Again, we

compare the value from Eq. (50) to the high-frequency limit

of the real part of the self-energy in the NCA/OCA, see Figs. 4

and 5. For a given orbital, the self-energy is identical for the

two spin components and we show only one. The parameters

were chosen as U = 2, µ = 0.4 and β = 25. We note that the

discrepancy between the value of the Hartree shift from the

sum rule and the actual high-frequency limit is now manifest

in both approximations. Moreover, Fig. 4(b) shows that also

negative (unphysical) values for the high-frequency limit are

possible in the NCA/OCA.

In Fig. 6 we finally show the dependence of the sum-rule

violation term ǫlασ,ασ [Eq. (34)] on the electronic density n

for the spinful model. As mentioned earlier, ǫlασ,ασ vanishes

at particle-hole symmetry (n = 2) and also approaches zero

in the limits n → 0 and n → 4. Notice the clear improvement

of the OCA over the NCA.

3. Numerical results for Σ1

The next higher moment in the high-frequency expansion of

the self-energy is given by the coefficient Σ1 determining the

asymptotic 1/ωn behavior. The sum rule for Σ1 is generally

violated even at particle-hole symmetry and in the following

we present results for this case.

Figure 7 compares ωnImΣα(iωn) to the asymptotic value

expected from Eq. (52) for the spinless model with large in-

teractions U = 12. In the NCA, we find that the sum rule for
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FIG. 4: (Color online) Real part of the self-energy for the spinful

two-orbital model within the NCA for (a) the narrow and (b) the

wide level with spin σ. The (blue) solid line represents the Hartree

shift expected from the sum rule. The (green) dashed line represents

the high-frequency limit obtained from the NCA equations.
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FIG. 5: (Color online) Real part of the self-energy for the spinful

two-orbital model within the OCA for (a) the narrow and (b) the

wide level with spin σ. The (blue) solid line represents the Hartree

shift expected from the sum rule. The (green) dashed line represents

the high-frequency limit obtained from the OCA equations.

the wide level is satisfied within a few percent while for the

narrow level it is roughly 10-15%. In the OCA, the sum rule

is satisfied within the precision of the graph.

Figure 8 shows the same analysis for the spinful model at

moderately strong interactions U = 2.4. While the sum rule

violation in the NCA is rather striking, the OCA clearly im-

proves leading to an overall agreement of 10-15%.

4. Numerical results for the potential energy

We now preset numerical results for the potential energy

sum rule Eq. (43). Because we expect the biggest discrep-

ancy for the spinful model, we restrict our discussion to this

case. Figure 9(a) shows the (particle-hole symmetric) poten-

tial energy [Eqs. (42) and (43)] as function of the total electron

density on the impurity. We have normalized the curves with

respect to µ0, the chemical potential at half filling (µ0 = U
for the spinful model). Note that the value for Esum

pot , which is

obtained from the Matsubara sum of G(iωn)Σ(iωn), changes

markedly between NCA and OCA while the thermodynamic

expectation value of the potential energy Estat
pot changes only

by a few percent. We therefore conclude that Estat
pot is more

accurate, in accordance with the result of a perturbative ex-

pansion in the hybridization strength.
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FIG. 6: (Color online) The term ǫlασ,ασ [Eq. (34)] which quantifies

the sum rule violation in the Hartree shift as function of the electron

density n for U = 2.4 and β = 5 as obtained from the NCA and

OCA in the spinful model. Note the clear improvement of the OCA

as compared to the NCA.
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FIG. 7: (Color online) Comparison between ωnImΣα(iωn) and the

asymptotic value if the sum rule for the coefficient Σ1 [Eq. (52)]

was fulfilled (dashed line). Results are obtained within NCA (left

panel) and OCA (right panel) for the spinless model at particle-hole

symmetry with U = 12, µ = 4.5 and β = 25. For these parameters,

a direct comparison between NCA/OCA and CT-QMC is provided

in Fig. 10.

Figure 9(b) shows the ratio |∆Epot/µ0| for the same data

as in (a). The sum rule violation is biggest around n = 1 and

n = 3 but is smaller at half-filling and vanishes in the empty

(n = 0) or filled (n = 4) limit.

IV. BENCHMARKING

We now turn to a direct comparison of the NCA/OCA with

continuous time quantum Monte Carlo (CT-QMC) data39 for

the two-orbital quantum dot model introduced in Sec. III D 1.

This allows us to directly address the accuracy of the

NCA/OCA self-energy. The calculations were performed at

particle-hole symmetry where the sum rule for the Hartree

shift is exact within NCA/OCA for the parameters of Figs. 7

and Figs. 11. We find that the degree to which the sum rule for

Σ1 is violated gives a good estimate of the overall accuracy of
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FIG. 8: (Color online) Comparison between ωnImΣασ(iωn) and

the asymptotic value if the sum rule for the coefficient Σ1 was ful-

filled (dashed line for the narrow level α = n and dashed-dotted line

for the wide level α = w). Results are obtained within NCA (left

panel) and OCA (right panel) for the spinful model at particle-hole

symmetry with U = 2.4, µ = 2.4 and β = 50. For these parameters,

a direct comparison between NCA/OCA and CT-QMC is provided in

Fig. 11.
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FIG. 9: (Color online) (a) The potential energy obtained from the two

expressions Eqs. (42) and (43) as a function of the impurity electron

density n. (b) The ratio |∆Epot/µ0| quantifying the sum rule viola-

tion for the same data as in (a).
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FIG. 10: (Color online) Low-frequency behavior of the imagi-

nary part of the self-energy in the NCA and OCA for the spinless

model compared with continuous time quantum Monte Carlo results

[Ref. 39] for the parameters specified in the plot. The sum rule vio-

lation for Σ1 is shown in Fig. 7.
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FIG. 11: (Color online) Low-frequency behavior of the imagi-

nary part of the self-energy in the NCA and OCA for the spinful

model compared with continuous time quantum Monte Carlo results

[Ref. 39] for the parameters specified in the plot. The sum rule vio-

lation for Σ1 is shown in Fig. 8.

the approximate self-energy.

Figure 10 shows the imaginary part of the self-energy as

function of ωn for the spinless model at particle-hole sym-

metry for an interaction U = 12. For this large value of

the interaction, the NCA prediction for the self-energy of the

wide orbital is relatively close to the exact result. However,

the NCA overestimates the self-energy for the narrow orbital

by about a factor of two. The NCA thus fails to even quali-

tatively reproduce the subtle distinction between the two in-

equivalent orbitals arising from the orbital asymmetry of the

hybridization. The inclusion of the one-crossing approxima-

tion substantially improves the results. These observations are

in agreement with the results for the sum rule violation of the

coefficient Σ1 presented in Fig. 7.

For the spinful model, we find that the agreement is less

quantitative. Figure 11 shows the imaginary part of the

impurity-self energy at particle-hole symmetry for an inter-

orbital interaction U = 2.4. As compared to the exact result,

both NCA and OCA predict a more insulting behavior for the

narrow orbital. By extrapolating ωnImΣn(iωn) to ωn → 0
we find that OCA gives a gap for the narrow level which is

almost twice the value found in CT-QMC. On the other hand,

the self-energy for the broader level has metallic characteris-

tics in the NCA/OCA while it is weakly insulating in the CT-

QMC. The cause for these errors can be attributed to the fact

the metal-insulator transition line is inaccurately predicted by

NCA/OCA. Again, the overall accuracy is consistent with the

degree the sum rule for Σ1 is violated, as shown in Fig. 8.

V. CONCLUSIONS

In summary, we reviewed the self-consistent hybridization

expansions for multi-orbital quantum impurity models in the

NCA and the OCA. We tested the degree to which these ap-

proximations respect several sum rules which hold in the exact

theory. We focused on three examples. The first two were ob-

tained from the analysis of the high-frequency expansion of

the impurity self-energy. We found that already the static con-

tribution (Hartree shift) can not be obtained from the thermo-

dynamic expectation which fixes it in the exact theory. Sim-

ilarly, the sum rule for the coefficient of the 1/ωn term is vi-

olated. The third example which we have studied is a sum

rule which relates the potential energy to the Matsubara sum

of G(iωn)Σ(iωn).
We note here that the observed sum rule violations are not

incompatible with the fact that the NCA and OCA are Φ-

derivable conserving approximations. Φ-derivability ensures

that various equivalent representations of the partition func-

tion based on integration of thermodynamic (static) quantities

remain equivalent in the approximate treatment. However, Φ-

derivability does not ensure that sum rules, which relate dy-

namic to static properties, are satisfied.

In addition to the investigation of the above mentioned

sums rules, we also benchmarked the NCA/OCA against ex-

act CT-QMC results for a two-level quantum dot model with

asymmetric coupling to two leads. From these different tests,

we conclude that the NCA/OCA performs less satisfactory for

weak interactions, away from particle-hole symmetry and in

situations with multiple (potentially inequivalent) orbitals. In

situations where exact results are not available, all three test,

i.e. the Hartree shift and the 1/ω term of the self-energy as

well as the potential energy sum rule, all provide simple tools

to estimate the quality of the NCA/OCA. In our experience,

the 1/ω term is particularly informative and we suggest to use

its relative error as a rule of thumb to address the accuracy of

the approximation.

The error in the Hartree approximation has implications for

the use of the NCA or OCA as impurity solvers for dynami-

cal mean field theory. A crucial aspect of the “DFT+DMFT”

method3,40–42 which adds correlations to band theory is the

“double counting correction” which is introduced to correctly

place the energy of the correlated level relative to other or-

bitals in the material42–45. The Hartree shift enters the com-
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putation of the double counting correction in an essential way,

and if it is not reliably estimated then the physics is likely not

to be correctly represented.

Both NCA and OCA are designed for the strong correlation

limit and their accuracy is essentially controlled by the ratio

of the hybridization to the local interaction. For the models

we studied, we found that the NCA gives poor results for the

self-energy even if the interaction is large compared to the hy-

bridization. For example, the NCA self-energy does not repro-

duce the orbital asymmetry in a qualitative way. On the other

hand, we found that the OCA clearly improves over the NCA

giving in particular a much improved account of the orbital

asymmetries and a much smaller error in the sum rules. How-

ever, for moderate correlations it wrongly locates the transi-

tion point at which a gap opens in the spectrum and this can

lead to qualitative errors in the low frequency portions of the

spectrum. The probable magnitude of these errors can be esti-

mated from the errors in the sum rule relating the coefficient of

1/ω in the self energy to an expectation value. If this sum rule

is reasonably well (. 15%) obeyed, the small computational

cost (relative to quantum Monte Carlo) of the OCA makes this

an attractive choice for study of the strongly interacting limit

in a semi-quantitative way.

An interesting application of the NCA/OCA involves

nonequilibrium studies such as interaction quenches or

switching on of an electric field.16,21–23 In these nonequilib-

rium systems, the imaginary time expansion is replaced by a

unitary propagation on the Keldysh contour. By comparison

with exact CT-QMC, it was found that the NCA/OCA works

reasonably well for short enough time scales (as compared

to the inverse of the hybridization strength).22 Other quanti-

ties, e.g. the relaxation to the steady state in the long-time

limit, are markedly different from QMC results. We surmise

that similar internal consistency checks exist also for real-time

propagation which may be used for assessing the quality of

nonequilibrium simulations.
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