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We study an unconventional two-dimensional, two-component classical plasma on a sphere, with
emphasis on detecting signatures of melting transitions. This system is relevant to Ising-type quan-
tum Hall states, and is unconventional in the sense that it features particles interacting via two dif-
ferent two-dimensional Coulomb interactions. One species of particles in the plasma carries charge
of both types (Q1, Q2), while the other species carries only charge of the second type (0,−Q2).
We find signatures of a freezing transition at Q2

1 ' 140. This means that the species with charge
of both types will form a Wigner crystal, whereas the species with charge of the second type also
shows signatures of being a Wigner crystal, due to the attractive inter-component interaction of the
second type. Moreover, there is also a Berezinskii-Kosterlitz-Thouless phase transition at Q2

2 ' 4,
at which the two species of particles bind to form molecules that are neutral with respect to the
second Coulomb interaction. These two transitions appear to be independent of each other, giving a
rectangular phase diagram. As a special case, Q2 = 0 describes the (conventional) two-dimensional
one-component plasma. Our study is consistent with previous studies of this plasma, and sheds new
light on the freezing transition of this system.

PACS numbers: 73.43.Cd, 74.20.De, 74.25.Uv

I. INTRODUCTION

Multi-component quantum condensates with novel
types of inter-component interactions are of consider-
able interest in contemporary physics. For example,
they are relevant to widely disparate systems, including
low-dimensional spin-1/2 quantum antiferromagnets1–5,
Bose-Einstein condensates6–8, multi-component/multi-
band superconductors9–11, and non-Abelian quantum
Hall states and topological superconductors12. These
systems have the remarkable property of possessing a
mapping to a classical multi-component plasma system
with highly unusual intra- and inter-component inter-
actions. The statistical properties of these unconven-
tional plasmas – especially their phase diagrams – have
important ramifications for the physics of their corre-
sponding fractional quantum Hall systems12. The sta-
tistical physics of such systems has only recently begun
to be explored. In a previous paper, we investigated the
metal-insulator transition in a particular version of such
a plasma13. In this paper, we will extend these investi-
gations to a study of the freezing of such a plasma from
a liquid to a Wigner crystal.

The canonical partition function of the unconven-
tional two-component plasma that we investigate is given
by12,13

Z =

∫ ( N∏
i=1

d2zi

)(
N∏
a=1

d2wa

)
e−V , (1)

where the potential energy

V = −Q2
2

N∑
a<b=1

ln |wa −wb|+Q2
2

N∑
a,i=1

ln |zi −wa|

− (Q2
1 +Q2

2)

N∑
i<j=1

ln |zi − zj |+ Vz,BG (2)

describes two species (components) of particles inter-
acting via two different types of two-dimensional (2D)
Coulomb interactions, which are logarithmic. Here, the
zi are coordinate vectors for theN particles of component
z, which carry charge Q1 of the first interaction (type 1)
and charge Q2 of the second interaction (type 2). The wa

are coordinate vectors for the N particles of component
w, which carry no charge of type 1 and charge −Q2 of
type 2. The term Vz,BG describes the interaction of the z-
particles with a uniform density neutralizing background
charge. Note that the form given in Eq. (1) implies that
the temperature T = 1.

This plasma is related12 to inner products of quantum-
mechanical trial wave functions of Ising-type quan-
tum Hall states, such as the Moore-Read Pfaffian14,
anti-Pfaffian15,16, and Bonderson-Slingerland hierarchy
states17. For the charge values relevant to these states,
the plasma was shown to be in its metallic liquid phase13,
which allows for the calculation of the braiding statistics
of quasiparticle excitations of these states12, confirming
their conjectured non-Abelian statistics. This plasma
is also related to rotating two-component Bose-Einstein
condensates (BECs) in two dimensions13.



2

While Ref. 13 focused on the cases Q1 = 0, 2, which are
particularly relevant for Ising-type quantum Hall states,
here we will investigate the plasma for large values of Q1.
In the limit in which Q2 = 0, the w-particles do not in-
teract, and the plasma thus reduces to the standard 2D
one-component Coulomb plasma (OCP). It is generally
believed that, at high values of Q1, the OCP will be in
a 2D solid state in which the charges form a triangu-
lar lattice with quasi-long-range translational and long-
range orientational order18, as found in the simulations
in Refs. 19–22. However, some studies have claimed that
there is no low-temperature (high-Q1) crystalline state
in the OCP, due to the proliferation of screened disclina-
tions23–26.

If we assume that the generally-held view is correct
(and we present evidence supporting this view), so that
there is a low-temperature crystalline state, then the
melting of this crystal can occur according to either of
two possible scenarios. One possibility is the Kosterlitz-
Thouless-Halperin-Nelson-Young theory (KTHNY)27–30,
according to which dislocation pairs unbind via a vector-
defects version of the BKT transition at a Berezinskii-
Kosterlitz-Thouless (BKT) like transition. The system
then enters a hexatic liquid phase in which there is no
translational order, but there is quasi-long-range hexatic
order. Then, there is a second BKT transition at which
disclination pairs unbind, hexatic order is lost, and the
system enters an isotropic liquid phase. The other possi-
bility is a direct first-order melting transition at a lower
temperature than the KTHNY-theory predicts28. There
have been considerable efforts to investigate 2D melting,
both experimentally and by numerical simulations. Some
studies have found KTHNY transitions while others have
found a weakly first-order melting transition31–38. It ap-
pears that the nature of 2D melting depends on details of
the interatomic potential. In the case of logarithmic in-
teractions, most numerical simulations find a first-order
transition19–22.

Before proceeding to a description of our simulations,
we mention that, in principle, there is one other possibil-
ity: a Lifshitz transition from the liquid to a striped or
“microemulsion” phase and then later to a Wigner crys-
tal, as discussed by Kivelson and Spivak39. Such a sce-
nario must be considered when there is a linear coupling
between the order parameter and the uniform density
(i.e., between the order parameter at wavevector q and
the density at wavevector −q) or, equivalently, when the
first derivative of the energy with respect to the density
is discontinuous at the transition. However, in our case,
the order parameter is the density at non-zero wavevec-
tor, so no such linear coupling can occur. Furthermore,
the order parameter vanishes on both sides of the tran-
sition since the crystalline phase is only quasi-long-range
ordered, so there would be no discontinuity even if there
were a linear coupling. However, even in systems to
which the Kivelson-Spivak39 argument applies, there are
two possible scenarios, similar to the ones that we con-
sider: a direct first-order phase transition (which is per-

mitted for the case of logarithmic interactions) and a con-
tinuous transition via one or more intermediate phases.

II. MODEL AND SIMULATION

The system described in Eqs. (1) and (2) is studied by
means of large-scale Monte Carlo simulations on a sphere
of radius R. In this geometry, the distance between two
points r1 and r2 is taken to be the chord length

|r1 − r2| =
√

2R (1− r̂1 · r̂2)
1
2 , (3)

and the term Vz,BG is simply a uniform constant that
can be disregarded. Hence, the model in Eq. (2) may be
written in the form (up to constant terms)13,20,40,41

V =
1

2

[
Q2

2

N∑
a,i=1

ln(1− ẑi · ŵa)−Q2
2

N∑
a<b=1

ln(1− ŵa · ŵb)

− (Q2
1 +Q2

2)

N∑
i<j=1

ln(1− ẑi · ẑj)
]
. (4)

Here, ŵa, ẑi are the positions of the particles on the sur-
face of the unit sphere. Details of the derivation, as well
as on the technicalities of the Monte Carlo simulations,
are presented in Ref. 13. Moreover, to improve sampling
at high values of Q1, we used the parallel tempering al-
gorithm42,43, where the set of couplings was found by
measuring first-passage-times as described in Ref. 44.

In addition to the logarithmic interactions, we regu-
larize the attractive interactions by adding a short-range
hard-core repulsion such that particles are not permitted
to be closer than the particle diameter d. Hence, there
is a nonzero dimensionless density η = 2Ns/A where
s = πd2/4 and A is the area of the system.

III. RESULTS FOR THE ONE-COMPONENT
PLASMA

First, we consider the case in which Q2 = 0. This is
motivated by the fact that previous studies of the OCP
on the surface of a sphere are not consistent. In Ref. 20, a
freezing transition at Q2

1 ' 140 was found by comparing
the free energy of the solid and liquid state. However,
in Ref. 25, the absence of a finite-temperature crystalline
state was claimed and numerical evidence supporting this
was provided, essentially by showing that the correlation
length for crystalline order was non-divergent, ξ ∝ Q1

for all Q−11 > 0. We will return to this below.
The structure function is given by

S(q) ≡ 1

N

∫ ∫
dr dr′eiq·(r−r

′)〈n(r)n(r′)〉

= 1 +
1

N

∑
i6=j

〈eiq·(ri−rj)〉. (5)
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Figure 1: (Color online) Correlation length ξ as a function of
Q1 for 8 different system sizes in the range 100 ≤ N ≤ 4800.
The inset is a plot of S(q) for the specific case when N = 3200
and Q1 =

√
120.

Here, 〈n(r)n(r′)〉 is the density-density function, where
n(r) =

∑
j δ(r − rj) is the local density, and 〈. . . 〉 de-

notes a statistical average. Furthermore, {rj} denotes
the positions of the point particles in the problem and
q is the Fourier space vector. In this work, we measure
the azimuthal average of S(q) modified for a spherical
geometry, given by20,25,45

S(q) = 1 + 2πnR2

∫ π

0

dθ [g(Rθ)− 1] sin θJ0(qRθ), (6)

where n is the number density, R is the radius of the
sphere on which the particles live, g(Rθ) is the pair dis-
tribution function with θ as the chord angle, J0(x) is a
zeroth order Bessel function, and q is the magnitude of
q.

The inset of Fig. 1 shows a plot of S(q). We assume
that the correlation length ξ is inversely proportional to
the width of the first peak in S(q), and may thus be de-
termined by a Lorentzian fit. The procedure is identical
to that used in Ref. 25, and the result is given in Fig. 1.
For small values of Q1 our results are similar to Fig. 2
in Ref. 25. However, when Q1 ≈ 12, a value that cor-
responds well with the critical coupling of the freezing
transition, we find a kink developing with increasing N ,
that clearly violates ξ ∝ Q1. This kink is not seen in
Fig. 2 of Ref. 25. However, we note that the markers
of that figure exhibits large scattering. Moreover, the
authors did not consider larger values of Q1.

A hallmark of a 2D solid is that translational correla-
tions have a power-law decay, 〈eiG(r−r′)〉 ∼ |r − r′|−ηG ,
where G is the reciprocal lattice vector, r, r′ are lattice
points in the 2D solid and ηG is a temperature dependent
exponent29,46. Consequently, the first-order Bragg peak
in S(q) will, as seen by Eq. (5), scale as S(G) ∼ L2−ηG ,
where L ∝ N1/2 is the spatial linear extent of the sys-
tem. Now, by integrating over the Bragg peak of a 2D

solid47, the finite-size scaling of the azimuthally averaged
first peak in S(q), is given by

S(G) ∼ L1−ηG ∼ N (1−ηG)/2. (7)

Fig. 2 shows the results for the maximum value of the first
peak in S(q) for a wide range of system sizes and for dif-
ferent values of Q2

1. As for ξ, we find that the peak value
also exhibits a kink at Q2

1 ≈ 140 that should be associ-
ated with an abrupt change in the translational correla-
tions in the plasma. Indeed, when studying the finite-size
behavior more closely in the lower panel of Fig. 2, the re-
sults show that when Q2

1 ≤ 130, S(G) ∼ const. when
N increases. This is the behavior expected in the liquid
phase, with exponentially decaying translational correla-
tions where S(G) ∼ ξ2. However, when Q2

1 ≥ 150, the
results clearly show that there is a positive slope that
develops with increasing N , thus confirming the finite-
size behavior of the 2D solid given in Eq. (7). When
Q2

1 = 140, it is difficult to determine whether the system
is in the solid phase or not, suggesting that Q2

1 = 140 is
close to the melting point of the OCP. Note that in Fig. 2,
the height of the first-order peak in S(q), S(G) ≈ 5 when
Q2

1 = 140. This is consistent with the 2D freezing cri-
terion for a crystal with long-range interactions (charac-
terized by a divergent bulk modulus18)20,48.

A key prediction of the KTHNY theory is that ηG ≤
1/3 in the solid phase, where the limiting value of 1/3 is
reached at the critical point of melting from a triangular
lattice to the hexatic phase18,22,29. As a result, in this
scenario, S(G) grows more rapidly with N than N1/3 for
all Q2

1 greater than the critical value; S(G) grows as N1/3

at the transition point; and S(G) saturates in the liquid
phase. Meanwhile, if the transition were first-order, the
limiting value of ηG would be smaller than 1/3, so that
S(G) would grow more rapidly than N1/3 at the tran-
sition point, i.e., the slowest possible growth of S(G) in
the crystalline phase would be faster than N1/3. Conse-
quently, we expect the slope of lnS(G) vs. lnN to be
steeper than 1/3 for all Q2

1 in the crystalline phase or,
by the results above, for all Q2

1 > 140. By determining
the slope of lnS(G) vs. lnN at Q2

1 ≈ 140, we could then
determine if the transition is of KTHNY type or is first-
order. However, as may be seen in Fig. 2, the slopes
of lnS(G) vs. lnN in the putative crystalline phase
are not steeper than 1/3 in our simulations. However,
the slopes steepen with increasing N , possibly converg-
ing towards the expected behavior in the thermodynamic
limit. Therefore, we are unable to determine which type
of transition occurs, nor whether melting proceeds via an
intermediate hexatic phase (see below).

It is worth emphasizing that for Q2
1 < 140, S(G) ap-

pears to saturate to a finite value, as expected in a liquid,
while, for Q2

1 > 140, S(G) does not appear to saturate, as
expected in a crystal (although, as noted above, it does
not grow as rapidly as expected). Therefore, the lower
panel of Fig. 2 is also qualitatively consistent with a crys-
talline phase of the 2D OCP, which melts at Q2

1 ≈ 140.
Taken together with Fig. 1 and the upper panel of Fig. 2,
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Figure 2: (Color online) Finite-size behavior of the peak value
of the structure factor, S(G), as a function of coupling Q2

1 and
size N . The upper panel shows S(G) as a function of Q2

1 for
eight different sizes in the range 100 ≤ N ≤ 4800. The lower
panel is a log-log plot of S(G) as a function of N for seven
fixed values of Q2

1. The dashed line is a reference line that
yields the expected finite-size behavior at the melting point
according to KTHNY theory. Lines are guide to the eyes.

this provides clear evidence for the existence of a low-
temperature crystalline state of the OCP on a sphere, in
agreement with previous studies19–22. Our results con-
tradict the claims made in Ref. 25 for the non-existence
of a crystalline phase. The present work considers larger
values of Q1 and provides considerably better statistics
than Ref. 25.

The transition from the hexatic to the isotropic liq-
uid phase is governed by fluctuations in the orientational
order parameter. These can be computed by the bond-
orientational susceptibility which exhibits a peak at this
transition. When this peak is obtained at a different
point than the onset of quasi-long-range translational or-
der, it indicates the existence of an intermediate hex-
atic phase in between the crystalline and isotropic liq-
uid phase49,50. On a sphere, we compute the bond-

orientational susceptibility

χ6 = N

(〈
|Ψ2

6|
〉
−
〈√
|Ψ2

6|
〉2
)
. (8)

Here, we have

Ψ2
6 =

1

N2

N∑
i,j=1

ei6(θj|i−θi|j)ψ̃∗6,iψ̃6,j . (9)

Furthermore, the quantity

ψ̃6,i =
1

ni

ni∑
a=1

ei6φia (10)

may be thought of as the local bond-orientational order
parameter of particle i, where all bond angles φia are
measured with respect to the closest nearest neighbor in
the tangential plane of particle i. The sum is over all ni
nearest neighbors as determined by Voronoi construction.
In Eq. (9), the angle θi|j is the bond angle of the bond to
the closest nearest neighbor of particle i, measured with
respect to the i, j chord in the tangential plane of parti-
cle i. Thus, the chord line combining the two particles
for every term in the sum of Eq. (9), serves as a line of
reference for bond-orientational order51,52.

In Fig. 3, the results for χ6 are given. When the system
size is large (N ≥ 800), a peak is found. However, the
value of Q1 at which the peak occurs, appears to converge
towards Q2

1 ≈ 140. Thus, with the resolution available,
we cannot confirm the existence of a hexatic phase since
the position of the peak in χ6 does not appear to converge
to a coupling significantly different from Q2

1 ≈ 140. Our
findings are consistent with earlier works, which also have
found no traces of an intermediate hexatic phase in these
systems19–22.

IV. RESULTS FOR AN UNCONVENTIONAL
TWO-COMPONENT PLASMA

We now turn our attention to the full model in Eq. (2),
i.e., when both Q1 and Q2 are nonzero. In particular, we
consider how the translational ordering of both w and
z particles is affected as we increase the coupling con-
stant in the second interaction-channel, Q2. As for the
OCP, we study translational correlations by measuring
the structure factors Sw(q), Sz(q) defined by Eq. (6) with
S(q), g(Rθ) → Sw/z(q), gw/z(Rθ). In addition, we also
measure the inverse dielectric constant for charges with
interaction of type 2, given by

ε−122 = 1− πQ2
2R

2

A

〈(
N∑
i=1

ẑi −
N∑
a=1

ŵa

)2〉
. (11)

This quantity measures the screening properties for
charges interacting with Q2, and it signals a charge-
unbinding transition involving z- and w-particles13.
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Figure 3: (Color online) Bond-orientational susceptibility χ6

as a function of Q1 for 7 different system sizes in the range
100 ≤ N ≤ 3200. The position of the peak appears to con-
verge to Q2

1 ≈ 140.

In Fig. 4, results are given for the height of the first-
order peak in the structure factor for component z and
w, for the case when Q2

2 = 1. Apart from the fact that
the height of the peak in the structure factor is much
larger for the z particles than the w-particles, the size-
and Q2

1-dependence of the peaks are qualitatively very
similar for the two components. In particular, they both
exhibit a kink at Q2

1 ≈ 140, which should be associated
with melting of a 2D solid, similar to the OCP case in
the upper panel of Fig. 2. Specifically, when we extract
the finite-size behavior in the log-log plots in Fig. 5, we
find that both components exhibit S(G) ∼ const., con-
sistent with being in the liquid phase, when Q2

1 ≤ 130.
When Q2

1 ≥ 150, the results clearly show that there is a
power-law dependence on N , consistent with the finite-
size behavior of a 2D solid. These results are consistent
with the phase diagram in Fig. 6.

The inverse dielectric constant ε−122 is measured to be
zero to the left of the red line in Fig. 6. Thus, the w and z
particles are in a metallic state regardless of the change
in the structural properties when Q2

1 ≈ 140. This is
most salient with respect to the second type of Coulomb
interaction (which has an effective strength that is de-
termined by ε−122 ). In the liquid phase, it is clear that w
and z particles are in a metallic state. In the crystalline
phase, there are interstitials and vacancies in the crystal,
so that a finite fraction of w and z particles should be
considered as unbound particles that are able to screen
test particles interacting with charges of type 2, thereby
leading to ε−122 = 0. At larger values of Q2

2, there is
a transition at which w and z particles are bound into
molecules. For Q2

2 above this transition point, which is at
Q2

2,c ≈ 4, ε−122 has a non-zero value, as found in Ref. 13.
Although the w particles are able to screen the type 2
interaction when z particles form a Wigner crystal, their
translational correlations exhibit signatures of a 2D solid
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Figure 4: (Color online) Results from the Monte Carlo sim-
ulations when Q2

2 = 1 and η = 10−3. Panel (a) shows the
height of the first-order peak in the structure factor for the
z particles, Sz(G), as a function of the coupling Q2

1 for seven
different sizes in the range 100 ≤ N ≤ 3200. Panel (b) shows
the height of the first-order peak in the structure factor for
the w particles, Sw(G), as a function of the coupling Q2

1 for
seven different sizes in the range 100 ≤ N ≤ 3200. In order
to give an impression on how a typical structure factor looks
like, the insets of panel (a) and (b) show plots of Sz(q) and
Sw(q) for the specific case when N = 800, Q2

1 = 180 and
Q2

2 = 1.

(as seen in Fig 4), attributed to a higher probability of
the w particles to be co-centered with z particles due
to the attractive inter-component interactions of type 2.
On average, a finite fraction of the w particles should
be considered as bound to the z particles, thus adapt-
ing to the 2D crystalline structure that is created by the
strong repulsive interactions among the z particles, when
Q2

1 > 140. The signatures of freezing of the w-particles
is thus an effect which is induced by the freezing of the
z-particles.

Hence, we can summarize the situation as follows, as
depicted in Fig. 6. In Phase I, the w and z particles are
unbound and are separately in a liquid state. In Phase II,
the w and z particles are bound into molecules that are
neutral with respect to the second type of Coulomb inter-
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Figure 5: (Color online) Log-log plots of the results in panel
(a) and (b) in Fig. 4. Both panels show the height of the
first-order peak in the structure factor as a function of size
N . In the lower panel, S′w(G) is the height of the peak of
Sw(G) when we have subtracted the regular part in order to
properly extract the singular finite-size behavior of Sw(q) in a
log-log plot. The solid lines are reference lines that yield the
expected finite-size behavior at the melting point according
to KTHNY theory. Lines are guide to the eyes.

action, and these molecules form a liquid. In Phase III,
the w and z particles are unbound; the z particles form a
Wigner crystal while the w particles form a liquid, albeit
one with modulated density due to its interaction with
the Wigner crystal. In Phase IV, the w and z particles
are bound into molecules forming a Wigner crystal. In
Appendix A, we explain the details of how the transition
lines were obtained.

We consider phase III to be a 2D counterpart of the
situation that was reported for a three-dimensional sys-
tem in Ref. 8. This work considered a two-component
rotating BEC with a negative dissipationless Andreev-
Bashkin drag53. It was found that in this mixture, a
situation may arise where the component with the small-
est stiffness will be a modulated vortex liquid. That is, the
soft component breaks translational symmetry while ex-
hibiting an unbroken symmetry in order parameter space.

Melting
Charge unbinding

IVIII

III

Q2
2

Q
2 1

6543210
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Figure 6: (Color online) The phase diagram as a function
of Q2

1 and Q2
2. The dashed red line is the charge unbinding

transition, at which z and w particles become bound together
for at Q2

2 above this line. The dotted blue line is the melting
line of the Wigner crystal. In Phases I and II, the z particles
are in a liquid state; in Phases III and IV, the z particles
form a Wigner crystal. In Phases I and III, the w and z
particles are unbound; in Phases II and IV, they are bound
into molecules comprised of one z and one w particle. See the
text for details.

The vortices of the soft component are likely to be co-
centered with the vortices of the stiffest component, and
will thus adapt to the spatial structure of the latter. As
shown in Ref. 13, the MR plasma corresponds to a 2D
two-component rotating BEC with negative drag, where
the z component is stiffer than the w component when
Q2

1 > 0.

V. SUMMARY AND CONCLUSIONS

In summary, we have considered the melting of an
unconventional 2D two-component plasma on a sphere
with particles interacting in two different channels, which
may be viewed as an analogous plasma describing a non-
Abelian Ising-type quantum Hall state or a realization
of a two-component two-dimensional Bose-Einstein con-
densate with inter-component non-dissipative drag. In
the limiting case where there are no interactions of type
2 (Q2 = 0), the system is a standard 2D one-component
plasma. Both for the one-component plasma and the
unconventional two-component plasma, we find that the
system freezes on a sphere for large enough inter-particle
interactions. For the two-component plasma, the w-
particles do not have strong intra-component interac-
tions, but still show signatures of forming a 2D solid.
This is attributed to the attractive inter-component in-
teractions with the z-particles that leads to a higher
probability of the w-particles to be co-centered with z-
particles. The w-particles nonetheless form a metallic
state. We have also examined the possible existence of an
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intermediate hexatic phase in the one-component plasma.
Our results show that the value of Q1 where diclinations
unbind and orientational order is lost, cannot be distin-
guished from the value of Q1 where dislocations unbind
and quasi-long-range translational order is lost.
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Appendix A: Determination of the transition lines

We now discuss the determination of the phase transi-
tion lines in Fig. 6 in more detail.

First, consider the line (red in Fig. 6) at which the z
and w particles unbind. In this work, we find the critical
point of the BKT transition by curve-fitting the inverse
dielectric constant to a logarithmic finite-size scaling rela-
tion with one free parameter (see Appendix C in Ref. 13).
This means that we assume that the transition is a BKT
transition as we use the BKT value of the universal jump
in the finite-size scaling relation. Thus, it is a slightly less
self-consistent approach than what was used in Ref. 13,
but still, one can regard this as a verification of the BKT
nature, as one should not expect a good fit to the scaling
relation if the transition is of a different nature.54

The curve-fitting was performed according to the de-
scription in Appendix C in Ref. 13 for sizes N = 70, 100,
150, 200, 300, and 500, for Q2

1 = 20, 100, and 160 and
for densities η = 0.001, 0.0004, and 0.0001. In Fig. 7,
the results for the transition point Q2

2,c as a function of η

and Q2
1 are given. We have also included the results for

Q2
2 = 0 and 2 from Ref. 13. In order to obtain a crude

estimate of the transition temperature in the low density
limit, we extrapolate to η = 0 by fitting the results for

finite η to a power law Q2
2,c(η) = Q2

2,c + aηb, where Q2
2,c,

Q2
1 = 160

Q2
1 = 100
Q2

1 = 20
Q2

1 = 2
Q2

1 = 0

η

Q
2 2

0.0010.00050

4.4

4.2

4

Figure 7: (Color online) The transition point is determined
for η → 0 by extrapolating the Q2

2,c values obtained for non-
zero η, assuming a power-law dependence. Lines are guide to
the eyes.

a, and b are free parameters. The estimates we find are:

Q2
2,c = 4.016± 0.002 for Q2

1 = 0
Q2

2,c = 4.015± 0.004 for Q2
1 = 2

Q2
2,c = 4.013± 0.101 for Q2

1 = 20
Q2

2,c = 4.012± 0.060 for Q2
1 = 100

Q2
2,c = 3.963± 0.070 for Q2

1 = 160

(A1)

These values are plotted in the phase diagram in Fig. 6,
and we take the phase boundary to be the best fit straight
line running through them.

We now consider the Wigner crystal melting transi-
tion, depicted by the blue line in Fig. 6. This transition
is found by measuring the value of Q2

1 at which Sz(G)
attains its maximum second-derivative. (See Fig. 2 and
Fig. 4 in the paper for example.) In Fig. 8, we show
the estimates of the transition point Q2

1,c as a function

of inverse system size N−1 for Q2
2 = 0, 1, 3, and 5. The

transition points are estimated by averaging the results
for N ≥ 800, with errors determined by a bootstrap anal-
ysis. The estimates we find are:

Q2
1,c = 140.6± 1.5 for Q2

2 = 0
Q2

1,c = 140.3± 2.0 for Q2
2 = 1

Q2
1,c = 144.4± 4.9 for Q2

2 = 3
Q2

1,c = 142.6± 8.2 for Q2
2 = 5

(A2)

The phase diagram in Fig. 6 is obtained by using these
values, and we take the phase boundary to be the best
fit straight line running through them.
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