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 We consider the first appearance of vortices in a two-dimensional (2-D) superconducting 

film exposed to a non-uniform magnetic field, Ba, produced by a nearby coil. The film has 

“infinite” radius, Rf, and thickness t about equal to the coherence length, ξ. The coil is 

approximated as a point dipole. We find that the first vortex-bearing state to appear has both a 

vortex and an antivortex. The Gibbs free energy of this state is lower than the vortex-free state 

when the maximum applied perpendicular field, i.e., the applied field, 0B , at the origin, exceeds 

the external critical field: 
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critical field in 2-D, 22 / tλΛ ≡  is the 2-D penetration depth introduced by Pearl, and λ is the 

bulk penetration depth. The prefactor, 4 2 RΛ , is calculated in the strong-screening regime, 

1RΛ � . R is the radial distance at which the applied perpendicular field, ( ),a zB ρ , changes sign. 

In the lab, the onset of vortex effects generally occurs at a field much higher than 0
1cB , indicating 

that vortices are inhibited by the vortex-antivortex unbinding barrier, or by pinning. 

 

PACS Nos.:  Superconducting films, 74.78.-w 

                      critical fields, 74.25.Op 

                      magnetic properties, 74.25.Ha 

                      critical currents, 74.25.Sv 
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I. INTRODUCTION 

This paper presents a calculation of the external thermodynamic critical field, 0
1cB , for an 

infinite radius, 2-D superconductor in a non-uniform applied magnetic field. A novel result is 

that the first vortex-bearing state to appear has both a vortex, near the origin, and an antivortex, 

far from the origin but not at infinity. Implicit in the calculation is the notion that vortices arise 

from thermally excited, bound vortex-antivortex (V-aV) pairs that break into independent 

vortices by overcoming the free-energy barrier that binds them. When they unbind, vortices 

move toward the center of the film while antivortices move away until the long-range V-aV 

attraction stops them. In the lab, vortex physics often occurs at a much larger field than we 

calculate here, so our various simplifications are accurate enough for the purpose of the paper. 

 

 
 

 

 

 

 

 This paper is motivated by our interest in knowing the smallest applied magnetic field at 

which vortices might first appear in a two-coil experiment [e.g., Refs. 1-7] for measuring 

superfluid density. In a two-coil experiment, a drive coil is located just below the center of a 

superconducting film, Fig.1. A current in the coil produces a non-uniform magnetic field whose 

z-component, ( ),a zB ρ , often is largest at the center of the film and reverses sign at a radial 

distance, R , that is much smaller than the radius, fR , of the film. Experimentally, dissipation 

Fig. 1. Diagram illustrating: the film (square), field lines from the 
drive coil, the drive coil located 2R  below the film, a circle of 

radius R (dotted) at which ( ),a zB ρ  changes sign, a vortex at the 

origin (up arrowhead) and an antivortex (down arrowhead). 
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due to vortices arises when the applied field exceeds a certain well-defined threshold.5-7 In the 

following, a “vortex” has its magnetic field parallel to the applied field at the origin; an 

“antivortex” has the opposite orientation. 

 This paper complements theoretical work [e.g., Refs. 8-10] on the converse problem of a 

finite-radius, 2-D superconducting film in the uniform perpendicular magnetic field of a 

surrounding coil. Applying the macroscopic concept of demagnetization,11 Fetter and 

Hohenberg9 proposed that the “external” lower critical field, 0
1cB , in this geometry should be the 

intrinsic 3-D critical field, ( ) ( )3 2
1 0 4D

cB lnπλ λ ξ= Φ , (λ = penetration depth and ξ = coherence 

length) reduced by a factor 2 fD t Rπ≈ .  In a later paper,10 Fetter used a Ginzburg-Landau 

approach to obtain a more accurate result for 0
1cB . This latter theory includes the interaction 

between a vortex and the perimeter of the film.  

 Mawatari and Clem12 (MC) consider vortices created in infinite-radius films by an 

inhomogeneous applied field, but their films are thick enough to sustain a vortex parallel to the 

film. They calculate a critical field by assuming that vortices and antivortices first appear when 

the magnetic field parallel to the film is large enough to create a vortex that arcs into the film. 

When the middle of the vortex pops through the back of the film, the two ends of the vortex 

remain in the film, forming a vortex-antivortex pair. We believe that MC calculate the applied 

field at which the free-energy barrier for creation of a vortex-antivortex pair vanishes, (e.g., a 

Bean-Livingston type barrier13). We find a much lower critical field. 

 Experimental work on nonlinear effects in two-coil experiments traces back through 

Claassen and collaborators5,6 to that of Scharnhorst.7 The latter found that nonlinear effects 

appear in quench-condensed Sn and In films when the Meissner screening supercurrent density is 

near the depairing current density, ( )cJ T . Since ( )cJ T  is inversely proportional to ξ and Λ, this 

finding offers the possibility that a combination of linear and nonlinear measurements can be 

used to determine ξ in novel superconducting materials. 

 

II. CALCULATION   

In this section we calculate the Helmholtz free energy of vortices and the work done by 

the drive coil’s current supply when a vortex appears. From these we construct the Gibbs free 

energy difference, GΔ , between the vortex-free Meissner state and a state with a single V-aV 
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pair. Since the applied field is non-uniform, we define 0
1cB  as the value of the maximum applied 

perpendicular field, 0B , at the point where 0GΔ <  and the V-aV configuration is stable, i.e., GΔ  

is a minimum as a function of the separation between vortex and antivortex.  

 

A. Applied magnetic field and Meissner screening supercurrent density 

 The perpendicular component of the magnetic field from a point dipole located 2R

below the film is (Fig. 2): 

 

€ 

Ba,z (ρ) = B0
1− ρ2 /R2

(1+ 2ρ2 /R2)5 / 2       (1) 

  

The maximum applied perpendicular field is 0B , at the origin; the maximum applied parallel field 

is 0.4 0B , at 2 2Rρ = . 

 
 

 

 

 

 

Fig. 2. Applied magnetic field, , 0( )a zB Bρ ,  (solid curve) from a 

point dipole placed 2R  below the film, and normalized Meissner 

supercurrent densities, ( )MK ρ , for the strong-screening [dashed, Eq. 

(2)] and weak-screening [dotted, Eq. (3)] limits.  
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The superconductor responds to the applied field with a Meissner supercurrent density,

( )M ρJ , that is uniform through the film thickness when t << λ. The sheet supercurrent density 

is: ( ) ( ) 02M ρ μ= − ΛK Aρ , where ( )ρA  is the vector potential and 21 2t λΛ ≡ is proportional 

to the areal superfluid density. Λ is the 2-D penetration depth identified by Pearl.8 In the strong-

screening regime, 1RΛ � , ( )M ρK  has the same dependence on ρ as the parallel component of 

the applied field at the film surface [in square brackets in Eq. (2)]: 

    

  0
2 2 5/2

0

32 /ˆ( )
(1 2 / )2M

BXR R
R

ρρ
μ ρ

⎡ ⎤
= − ⎢ ⎥Λ +⎣ ⎦

K θ .   ( )1RΛ �    (2) 

 

This result follows from 0= μ∇× B J  and the fact that in the strong-screening regime B  on the 

backside of the film is much smaller than the applied field. The former implies that J  in the film 

is proportional to the discontinuity in parallel field, i.e., to the applied parallel field. In the weak-

screening regime, the field produced by supercurrents is much smaller than the applied field, so

( )M ρK  is essentially proportional to the vector potential of the point dipole drive coil:  

  

0
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XB R R
R

ρρ
μ ρ

= −
Λ +

K θ .   ( )1RΛ �   (3) 

 

In Eqs. (2) and (3), 0XB  is the net field at the center of the film, i.e., the applied field plus 

the field from screening supercurrents. Self-consistency finds:  

 

1
1

X
R R

Λ= ≈
+ Λ

,  ( )1RΛ �     (4) 

 

a result obtained analytically by Gilchrist and Brandt.14 In the weak-screening regime, 1RΛ > , 

X approaches unity from below: 1 2 2X R≈ − Λ .   

 

B. Free energy of an isolated vortex 
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 There are several contributions to the free energy of a vortex: kinetic energy, magnetic 

field energy, and energy of its normal core. The kinetic free energy, KE, of vortices comes from 

integrating the term proportional to 2
SJ   in the G-L free-energy density: 

 

 ( )
2

20

2 SKE dV Jμ λ= ∫ r   

        ( ) ( )2 20
, , , ,2
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∑ ∑ ∑∫ ρ ρi iK K K K ,  (5) 

 

with the acknowledgement that ( ) ( ) ,S M V i= +∑K ρ K ρ K   is the total supercurrent density at 

point ρ, and ,V i∑K  is the sum of vortex currents at ρ. The 2nd, 3rd, and 4th terms in the integral 

represent the kinetic energy of isolated vortices, the interaction of vortices with screening 

supercurrent and with each other. 

Not too close to the film perimeter, the sheet supercurrent density, ( )V ρK , of a vortex at 

the origin is:  
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This approximation is asymptotically correct for small and large ρ (ξ ρ Λ� �  and 

fRρΛ� � , respectively), and is within 10% for ρ ≈ Λ .8,9 0 / 2h eΦ ≡  is the flux quantum.  

The corresponding vector potential and magnetic field in the plane of the film are: 
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( ),V zB ρ  integrates to a net flux through the film of Φ0, despite its mild divergence as 0ρ → . 

Within the volume at least several Λ ’s away from the film ( fz RΛ� � ) and not too far from 

the z-axis ( fRρ � ), the vortex field is that of a magnetic monopole at the origin, e.g.: 
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� .     (9) 

 

( ), ,V zB zρ Λ�  integrates to a net flux of Φ0 through any “plane” parallel to the film, as long as 

the plane’s radius is much greater than |z| but much less than Rf, and the plane is centered on the 

z-axis. 

The kinetic free energy of one vortex, VKE , is the 2nd term on the rhs of Eq. (5). Using 

Eq. (6) and integrating yields: 
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The self-magnetic-field energy of a vortex is: 2
0, 2 2V m Vag V VU dV B dAμ≡ =∫ ∫ iK A , where the 

second equality comes from writing 2
VB  as V V∇×iB A  and integrating by parts. Using Eqs. (6) 

and (7), we find: 2
, 0 02V magU πμΦ≈ Λ . The vortex core free energy is: 

( ) 2 2 2 2
, 0 0 02 8V core cU t B μ π μξ≈ = Φ Λ , where   

0 2 2cB πλξ= Φ  is the thermodynamic critical 

field. Thus, the isolated-vortex free energy is:  

 
2 2
0 0

0 0

1
2 4 2VU ln ln
πμ πμξ π ξ

⎡ ⎤Φ ⎛ ⎞ Φ ⎛ ⎞Λ Λ≈ + ≈⎢ ⎥⎜ ⎟ ⎜ ⎟Λ Λ⎝ ⎠ ⎝ ⎠⎣ ⎦
 .   (11) 

 

There is considerable uncertainty in the constant, “1 4π ”, in Eq. (11). Since ( ) ln ξΛ  typically 

ranges from 5 to 8 for very thin films, this constant is usually neglected. If we keep it, then we 
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find in Sec. C the reasonable result that the net energy of a V-aV pair separated by ξ is just the 

energy of two vortex cores. 

       

C. Interaction of vortices with screening supercurrent, applied field, and each other 

 The net interaction of vortices with the Meissner screening supercurrent vanishes due to a 

cancellation. The kinetic interaction energy is the 3rd term in the integral in Eq. (5). For example, 

for a vortex at the origin this energy is: 

 

0 0 0

0

2( 0) ( ) ( )
2VM V V M

BU dAμρ ρ ρ
μ

Λ Φ Λ= = ≈ −∫ K Ki  .  ( )1RΛ �   (12) 

 

The overlap field energy is the cross term in the integral, ( )2
02M VdV μ+∫ B B , where ( )MB r  

is the applied field plus the field from the Meissner supercurrent when no vortices are present, 

and ( )VB r  is the field of a vortex. Writing 0V MdV μ∫ B Bi  as ( ) 0V MdV μ∇×∫ B Ai , using 

Maxwell’s equation, 0 V Vμ∇× =B J , and integrating by parts yields: 

 0ovrlp V M V MU dV dAμ≡ =∫ ∫B B K Ai i .    (13) 

 

Replacing AM  with 0 2Mμ− ΛK  shows that Uovrlp cancels UVM. 

The interaction energy  between a vortex and an antivortex separated by 112 2ρ ≡ −ρ ρ  

has two contributions. One is the 4th term in the integral for kinetic energy, Eq. (5). This term 

diverges as ( )12ln ρΛ  for small separation, and it falls of as 2
121 ρ  at large separation. The other 

is the overlap magnetic field energy: ( ) ( )12 0
B B

V aVV dV μ≡ ∫ B r B ri i . Because vortex fields are 

those of monopoles over a significant volume, the integrand ( ) ( )V aVB r B ri is significant out to z 

comparable to the spacing between vortices. Thus, 12
B BV i falls off slowly, as 121 ρ , as is seen by 

evaluation of the equivalent areal integral: 
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As Pearl8 first showed, the sum of these terms is: 

  

 
2
0

12
0 12

ln 1V
πμ ρ

⎛ ⎞Φ Λ≈ − +⎜ ⎟Λ ⎝ ⎠
,       (15) 

 

which displays the logarithmic increase of kinetic energy at 12ρ Λ�  and the 121 ρ falloff of the 

field energy at 12ρ Λ� .  

As mentioned above, Eqs. (11) and (15) show that when a vortex and antivortex are close 

together, their Helmholtz free energy, ( ) ( )12 12 122V aV VF U Vρ ρ− = + , is just that of two vortex 

cores: ( )1
2 2
0 02 4V aVF π μρ ξ− ≈ ≈ Φ Λ , since their supercurrents and magnetic fields essentially 

cancel everywhere.  

 

D. Work done by the external current supply when a vortex appears 

 If a vortex appears at a distance ρ from the origin, the flux through the drive coil at 
2z R= −  changes by: ( )2

, , 2V za B z Rφ π ρΔ = = − . In the strong-screening limit we have: 

( )3/22 2 2
0 2a R Rφ ρΔ ≈ Φ + , where “a” is the radius of the drive coil. The net work done to keep 

the current in the drive coil constant is: dI φΔ , where 3 2
0 02dI B R aμ=  is the current in the 

drive coil necessary to produce field 0B . Thus: 
 

( )
( )

0 0
3/22 2

0

1
2 1 2

B RW
R

ρ
μ ρ

Φ=
+

.  ( )1RΛ �   (16) 

We see that -W(ρ) is a potential well that attracts vortices and repels antivortices, so that when a 

V-aV pair unbinds, the vortex moves toward the origin, and the antivortex moves away until the 

long-range V-aV attraction stops it. 

 

E. Critical external perpendicular field 0
1cB  
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 The defining condition for the external critical field is that the work done by the external 

current supply when the first vortex and antivortex appear, Eq. (16), equals the Helmholtz free 

energy of the vortex and antivortex. We therefore define the Gibbs free energy GΔ  as the extra 

Helmholtz free energy of a vortex at Vρ  and an antivortex at aVρ , minus the work done in their 

creation. Assuming both vortices lie on the same ray from the origin, and defining: 

12 aV Vρ ρ ρ≡ − , we can write: 
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where 0
1cB  is: 

 

 
 

2
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1

04 2
4c lB

R
n
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Equation (17) applies in the strong-screening limit. Note that 
 
0

24
ln

ξπ
Φ ⎛ Λ ⎞

⎜ ⎟Λ ⎝ ⎠
 in Eq. (18) is the 2-D 

intrinsic critical field, 2
1
D

cB , defined as in 3-D, but with λ replaced by Λ.  

It is easily seen from Eq. (17) that 0GΔ =  when: 1) 0
0 1cB B= ; 2) the vortex is at the 

origin; and 3) the antivortex is at infinity. Because the V-aV interaction is long-ranged, the actual 

equilibrium position, eq
aVρ , of the antivortex is not at infinity but rather at: 

1/2

eq
aV lRR nρ

ξ
⎛ ⎞
⎜ ⎟
⎝

⎡ ⎤Λ≈ ⎢ ⎥Λ⎣ ⎦⎠
, 

which means 10eq
aV Rρ ≈  for typical sample parameters. This means that ( )0

10, ,aV cG BρΔ  is 

actually slightly negative and a minimum at eq
aV aVρ ρ≈ , and the external critical field is therefore 
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a tiny bit smaller than 0
1cB  given in Eq. 18. The prefactor, 4 2 RΛ , in Eq. (18) captures the 

effect of demagnetization.11  

From the foregoing, we see that film’s radius is effectively infinite only if it is much 

larger than both Λ and eq
aVρ . Also, we note that there is entropy associated with the angular 

position of the antivortex, ( )ln 2 eq
aV B aVS k πρ ξ≈ , and we have neglected its contribution, aVTS− , 

to GΔ . As 0B   increases beyond 0
1cB , vortices accumulate near the film center, and the belt of 

corresponding antivortices moves closer in, e.g., when the equilibrium state has six vortices, the 

six antivortices are only half as far away as the first antivortex. 

The critical field that we calculate for the conventional geometry of a circular film in a 

uniform external perpendicular field agrees well with Fetter’s.10 In this geometry the first vortex-

bearing state has a single vortex at the origin. Since the applied field is uniform, the work done 

when that vortex appears can be calculated from:15  ( )0 zW B dAtM= ∫ ρ , where the 

magnetization is: ( ) ( ) ½ z VtM ≡ ×ρ ρ K ρ . ρ  is a 2-D displacement vector, and ( )VK ρ is the 

vortex sheet current density. Using a numerical calculation of ( )VK ρ  that captures the increase 

in ( )VK ρ  near the film perimeter, we find that the work done by the current supply is: 

0 0 01.25 fW B R μ≈ Φ , and therefore the external critical field is: 

 

0 0
1 24

1.6
c

f

B ln
R π ξ

Φ ⎛ ⎞Λ Λ≈ ⎜ ⎟Λ ⎝ ⎠
. (uniform external field)  (19) 

 

This field is only about 60% higher than Fetter’s10 numerical result in the large-radius, strongly 

screening film limit (see Fig. 5 and associated text in Ref. 10), the difference being due to 

different treatments of  the increase in ( )VK ρ  near the film perimeter.  

In seeming contradiction to our result, Mawatari and Clem12 (MC) find that vortices first 

enter a large-radius, “thick”, film ( )tξ λ� �  in a non-uniform applied field (from a straight 

wire parallel to the film) when the maximum parallel field at the sample surface reaches: 

|| 0
1 2

2 2
c

tB ln
t πξπ

Φ ⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

,16-18 for a strongly screening film without vortex pinning. For comparison 
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with the present paper, MC’s conclusion can be rephrased as: vortices first appear when the 

maximum applied perpendicular field is: 0
0 2

2
2

tB ln
t ξπ π

Φ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. For quasi-2D films, i.e., a few 

coherence lengths thick, this is orders of magnitude larger than our external critical field. We 

propose that MC’s critical field is the field at which the barrier for creating vortex-antivortex 

pairs vanishes.  

 

III. SUMMARY 

 Motivated by a desire to understand nonlinear effects in two-coil measurements, we 

calculate the external lower critical field 0
1cB  when a non-uniform magnetic field is applied to an 

infinite-radius thin superconducting film. The first vortex-bearing state has both a vortex and an 

antivortex, the former near the origin and the latter far from the origin, but not at infinity, due to 

the long-range V-aV attraction. The effective external force acting on vortices comes from the 

work done by the drive-coil’s current supply when vortices move. The radial distance, R, where 

the non-uniform field changes sign emerges in the same role that the film radius, fR , plays in the 

uniform-field configuration. In the lab, strong nonlinearities usually appear at applied fields 

much larger than calculated here, indicating that the appearance of vortices is inhibited by vortex 

pinning and/or the free energy barrier for breaking nascent V-aV pairs. 
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