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In the theory of quantum spin liquid, gauge fluctuation is an emergent excitation at low energy.
The gauge magnetic field is proportional to the scalar spin chirality S1 · S2 × S3. It is therefore
highly desirable to measure the fluctuation spectrum of the scalar spin chirality. We show that in the
Kagome lattice with a Dzyaloshinskii-Moriya term, the fluctuation in Sz which is readily measured
by neutron scattering contains a piece which is proportional to the chirality fluctuation.

PACS numbers:

It has long been suspected that the spin 1/2 antiferromagnetic Heisenberg model on the Kagome lattice may support
a spin liquid ground state, i.e., a singlet ground state which has no Neel order due to quantum fluctuations.1,2 Several
years ago the compound ZnCu3(OH)6Cl2 (called Herbertsmithite) where the Cu2+ ions form S = 1/2 local moments
on a Kagome lattice was synthesized.3,4 Despite an exchange constant J estimated to be ∼ 200 K, no magnetic order
was detected down to 30 mK. Recent neutron scattering shows that the spin excitations are gapless and form a broad
continuum.5 Thus Herbertsmithite has emerged as a strong candidate for the spin liquid state. However, for reasons
described below, much remains unknown about this material and the connection with theory is tenuous at best. There
is thus a strong need for more experimental probes to help establish the nature of this state of matter.
Theoretically it has been proposed by Ran et al.6 based on projected fermionic wavefunctions that the ground

state is a U(1) spin liquid, with spinons which exhibit a gapless Dirac spectrum. On the other hand, recent DMRG
calculations on finite size cylinders show strong evidence that the ground state is a Z2 spin liquid, with a substantial
triplet gap.7 However, the nearest-neighbor Heisenberg model appears to be a very delicate point, because a small
ferromagnetic next-nearest neighbor exchange J2 ≈ −0.01J is sufficient to destabilize the Z2 state.8 Meanwhile,
more detailed projected wavefunction calculations show that the Dirac state is surprisingly stable. Furthermore, the
application of a couple of Lanczos steps produces an energy quite competitive with the energy of the Z2 state obtained
by DMRG.9 Thus while there is general agreement that this ground state is a spin liquid, the precise nature of the
spin liquid remains somewhat unsettled.
Experimentally it is known that about 15% of the Zn (S = 0) ions which are located between the Kagome planes

are replaced by S = 1/2 Cu ions. It has been argued that there is not much Zn substitution for Cu in the Kagome
planes,10 so that the disturbance of the Kagome structure may be minimal. However, much of the low energy
excitations measured by thermodynamic probes such as specific heat and spin susceptibility are dominated by the
local moments between planes. Furthermore, due to spin orbit coupling, we expect deviation from the Heisenberg
model. To first order in the spin orbit coupling constant λ, we expect Dzyaloshinskii-Moriya (DM) terms of the form

HDM =
∑

〈ij〉

Dij · Si × Sj (1)

where the DM vector Dij is located on bond 〈ij〉. Since Dij = −Dji, the Dij vectors depend on the convention of
the bond orientation.11–14 For a given convention the DM vectors are shown in Fig. 1. The out-of-plane DM term
(Dz) has been estimated to be about 8% of J . Due to the delicate nature of the ground state of the Heisenberg model
explained above, it is not at all clear that the nearest-neighbor Heisenberg result applies to the Herbertsmithite.
The defining character of a quantum spin liquid is the emergence of exotic particles such as spinons which carry

S = 1/2 and the associated gauge fields.15 In the U(1) spin liquid, the gauge field is gapless whereas in the Z2 spin
liquid the gauge field is gapped. The gauge field is defined by the phase aij of the spinon hopping matrix element
teiaij on link ij. It is a compact gauge field and the spin liquid corresponds to the deconfined phase of the gauge
field, so that the compactness may be ignored in the long wavelength limit and aij may be replaced by a continuum
field a(r). The gauge invariant quantities are the gauge field b = ∇ × a which is in the ẑ direction and the gauge
electric field e = −∇a0 +

da
dt which lies in the plane. The physical meaning of the magnetic flux has been extensively

discussed.16 If Φ is the flux through a plaquette, sinΦ is one half of the solid angle subtended by the spins along the
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FIG. 1: The DM vectors on the Kagome lattice for Herbertsmithite. The arrow specifies the order of the operator Si × Sj .
(adapted from Ref. 11) Dz is the z component while D

′ is the in-plane component.

plaquette. For a three site triangle, we have

sinΦ =
1

2
S1 · (S2 × S3) (2)

The quantity S1 ·S2 ×S3 is known as the scalar spin chirality. Thus the fluctuation spectrum of the gauge magnetic
field is proportional to the fluctuation of the spin chirality. It is highly desirable to measure this correlation function
because it gives information on the gauge fluctuation and can help to distinguish different spin liquids. However the
measurement of a correlation of a product of 3 spin operators is a daunting task. A method to measure the vector
chirality S1×S2 has been suggested by Maleev,17 but that does not apply to scalar chirality. Shastry and Shraiman18

have suggested measuring chirality fluctuations using Raman scattering, but that contains information only for very
small q. A proposal to measure this using resonant X-ray scattering has been made.19 However, the energy resolution
of this technique is currently limited to 20 meV or so, which is on the scale of J .
It turns out that in the Kagome lattice we can turn the DM term to our advantage and achieve a simpler mea-

surement of the chirality correlation. The hint comes from a recent paper by Savary and Balents,20 who pointed out
that in a certain pyrochore spin-ice material, the gauge field (in their case the electric field21) is proportional to Sz

and its fluctuation can be directly measured by neutron scattering.22 This system is treated in the strong spin-orbit
coupling where J rather than spin S is a good quantum number, but this work raises the possibility of finding the
same proportionality in the presence of weak spin-orbit coupling. We find that it is indeed the case for the Kagome
lattice with the DM vectors shown in Fig. 1. In the Kagome lattice each site is connected to two triangles. Let us
consider the site labeled 1. The total chirality through the two attached triangles is

χ1 = S1 · S2 × S3 + S1 · S4 × S5g (3)

We shall use χ1(r) to denote this operator at the lattice position r. Due to the DM term,

〈S2 × S3〉 = αD23

〈S4 × S5〉 = αD45 = −αD54 = αD23 (4)

where α is a constant and the last step is by inspection from Fig. 1. For |D23| ≪ J , we expect α ∼ 1
J . The important

point is the contributions from the two triangles add and we find a linear coupling between χ1 and S1 · D23. If we
average over corners of the triangle 123 and define χ̄ = 1

3
(χ1 + χ2 + χ3), it is clear that the in-plane component of

the D vectors cancel and a local fluctuation in Sz(r, t) induces a local fluctuation in χ̄(r, t) with a proportionality
constant of (2αDz

23). This suggests that a measurement of the 〈Sz(r, t)Sz(0, 0)〉 correlation function will contain a
piece which is proportional to the chirality correlation 〈χ̄(r, t)χ̄(0)〉. A more formal argument proceeds as follows. Let
|α〉 and E(α) denote the exact eigenstates and energies of the Hamiltonian H0 without the DM term and we perturb
in HDM. We are interested in a subset of the excited states, denoted by |αχ〉 which are connected to the ground
state |0〉 by the operator χ1, i.e., 〈αχ|χ1|0〉 6= 0. On the other hand, the operator Sz(r) has no matrix element to
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these states, i.e., 〈αχ|Sz(r)|0〉 = 0. The gauge magnetic field spectral function is proportional to the chirality spectral
function

Sχ(q, ω) =
∑

αχ

∫

dreiq·r〈0|χ1(r)|αx〉〈αx|χ1(0)|0〉δ(ω − E(αx)− E(0)) (5)

Now we turn on the Dirac terms. The neutron scattering cross-section is proportional to

S(q, ω) =
∑

f

∫

dreiq·r〈i|Sz(r)|f〉〈f |Sz(0)|i〉δ(ω − (Ef − Ei)) (6)

where |f〉, E(f) are the exact eigenstate and energy of the total Hamiltonian. We now compute the correction to the
matrix element 〈f |Sz|i〉 to first order in HDM for the state |fχ〉 which derives from the state |αχ〉, i.e.,

|fχ〉 = |αχ〉+
∑

α6=αχ

〈α|HDM|αχ〉

E(αχ)− E(α)
|α〉 (7)

and similarly for |i〉. Since the zeroth order term vanishes, we find

〈fχ|Sz(r)|i〉 =
∑

α

[

〈αχ|HDM|α〉〈α|Sz(r)|0〉

E(αχ)− E(α)
+

〈αχ|Sz(r)|α〉〈α|HDM|0〉

E(0)− E(α)

]

(8)

Since |0〉 and |αχ〉 are total spin singlets, we argue that by choosing a different spin quantization axis, Sz can
rotated to Sx in Eq.(8) and |α〉 are spin triplet states. If the spin triplets have a large gap ∆t we may replace
E(0) − E(α) in the second term by −∆t. If we are interested in low energy modes of the chirality fluctuations such
that ω = E(αχ) − E(0) ≪ E(α) − E(0) ≈ ∆t, we may likewise replace that energy denominator in the first term by
−∆t. Then the sum over |α〉 can be done and

〈fχ|Sz(r1)|i〉 = −
∑

jk

2Djk

∆t
〈αχ|Sz(r1)ẑ · S(rj)× S(rk)|0〉. (9)

Putting this into Eq.(6) and focusing on terms in Eq.(9) where j, k are connected to site 1 as corners of a triangle,
i.e., (j, k) = (2, 3) or (4, 5) in Fig.1, we see indeed that S(q, ω) has a piece which couples to the chirality fluctuation
Sχ(q, ω) given by Eq.(5) with a form factor given by

∑

〈jk〉 |2Dij/∆t|
2. The remaining terms couple to correlators of

the operator S1 ·Sj×Sk where 1, j, k do not form triangles. These are expected to contribute to a smooth background
rather than coherent spectra and will be ignored. Note that because |0〉 and |αχ〉 are eigenstates of the system without
HDM, what is being measured is the chirality correlation of the system without HDM. However, since we are working
to leading order in HDM, the modification of the full system due to the presence of HDM is small and the measured
property can be considered a good approximation of that of the full system itself.
We expect the coupling of S(q, ω) and the chirality correlation Sχ(q, ω) will continue to hold even if the assumption

of a large ∆t fails, as in the Dirac spin liquid case, but the form factor may acquire some quantitative differences and
perhaps some q and ω dependence. This will be the case if the contribution to the sum in Eq(8) from low energy (near
gapless) triplet excitations are reduced due to restricted phase space and we can approximately replace the energy
denominator by an average triplet excitation energy.
As an example, if the ground state is described by the U(1) Dirac spin liquid, the correlation of the gauge magnetic

field is expected to be (in the RPA approximation)23

〈|b(q, ω)|2〉 ∼
q2θ(ω − vq)

(ω2 − v2q2)1/2
(10)

where θ is the step function and v is spinon velocity. The neutron scattering intensity which couples to the Sz channel
is expected to have a piece given by Eq.(10), with the intensity reduced by (2αDz

ij)
2. If the ground state is a Z2

gapped spin liquid, the gauge fluctuation is gapped and one may expect to see a gapped mode instead of Eq.(10).
As pointed out by Savary and Balents,20 the q2 dependence in Eq.(10) implies that the gauge fluctuation structure
factor vanishes as q → 0, in contrast with the spin wave structure factor which diverges as 1/q in this limit. While
this helps identify the gauge fluctuation, it also makes its detection more difficult.
The linear relationship between chirality fluctuation and Sz fluctuation is rather special to the Kagome lattice.

Such a coupling does not exist for the square lattice, for instance, for slowly varying chirality fluctuations. Consider
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FIG. 2: The distortion of the Ir (solid) and oxygen (open) ions in the Ir-0 plane of Sr2IrO4. (adapted from Ref. 23)

magnetic ions on a square lattice each surrounded by corner sharing oxygen cages which rotate about the ẑ axis in a
staggered manner. (Sr2IrO4 is such an example24 shown in Fig.2.) In this case each magnetic ion is connected to 8
triangles whose opposite side is a nearest-neighbor bond with a DM vector in the ẑ direction. The gauge magnetic
flux through each square is given in terms of the scalar chirality of the triangles which split up the square.16 It is easy
to see that the contributions from the two triangles 123 and 134 which split up a square cancel each other and there
is no linear coupling between the gauge flux and Sz in this case.
In conclusion, we have shown that in the Kagome lattice, the DM term leads to a linear coupling between the Sz

fluctuation with the spin chirality fluctuation. It will be interesting to see if neutron scattering can give information
on the chirality fluctuation and shed light on the nature of the spin liquid in Herbertsmithite. While the size of the
signal (2αDz

ij)
2 is small (a few percent) compared with the main signal, in the Kagome, we are helped by the unusual

structure factor which greatly suppresses the latter in certain Brillouin zones. This was predicted theoretically25

based on a model of nearest neighbor singlets and is consistent with the experimental observation5. If the chirality
spectrum is coherent, they may show up in a careful search in these Brillouin zone where the background is small.
Two tests can help support this interpretation: the signal should appear only in the Sz − Sz channel, not Sx − Sx or
Sy − Sy and it should not split in a magnetic field because it is a singlet excitation.
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