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Perfect quantum transport in arbitrary spin networks

Ashok Ajoy and Paola Cappellaro∗

Department of Nuclear Science and Engineering and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, MA, USA

Spin chains have been proposed as wires to transport information between distributed registers
in a quantum information processor. Unfortunately, the challenges in manufacturing linear chains
with engineered couplings has hindered experimental implementations. Here we present strategies
to achieve perfect quantum information transport in arbitrary spin networks. Our proposal is based
on the weak coupling limit for pure state transport, where information is transferred between two
end-spins that are only weakly coupled to the rest of the network. This regime allows disregarding
the complex, internal dynamics of the bulk network and relying on virtual transitions or on the
coupling to a single bulk eigenmode. We further introduce control methods capable of tuning the
transport process and achieve perfect fidelity with limited resources, involving only manipulation of
the end-qubits. These strategies could be thus applied not only to engineered systems with relaxed
fabrication precision, but also to naturally occurring networks; specifically, we discuss the practical
implementation of quantum state transfer between two separated nitrogen vacancy (NV) centers
through a network of nitrogen substitutional impurities.

PACS numbers: 03.67.Ac, 03.67.Hk

I. INTRODUCTION

Transport of quantum information between distant
qubits is an essential task for quantum communication1

and quantum computation2. Linear spin chains have
been proposed3 as quantum wires to connect distant
computational units of a distributed quantum processor.
This architecture would overcome the lack of local ad-
dressability of naturally occurring spin networks by sep-
arating in space the computational qubit registers while
relying on free evolution of the spin wires to transmit
information among them. Engineering the coupling be-
tween spins can improve the transport fidelity4, even al-
lowing for perfect quantum state transport (QST), but
it is difficult to achieve in experimental systems. Re-
markable work5,6 found relaxed coupling engineering re-
quirements – however, even these proposals still required
linear chains with nearest-neighbor couplings7,8 or net-
works will all equal couplings9. These requirements re-
main too restrictive to allow an experimental implemen-
tation, since manufacturing highly regular networks is
challenging with current technology10–13.

Here we describe strategies for achieving QST between
separated “end”-spins in an arbitrary network topology.
This allows the use of natural spin networks (e.g. in
crystals) with almost no fabrication requirements. In
large networks, the end-spins are intrinsincally weakly
coupled to the bulk network, allowing the use of a per-
turbative approach to describe the transport dynamics in
this weak-coupling regime5–9,14. We identify two differ-
ent scenarios for engineering perfect transport: the end-
spins could be set far off-resonance from the rest of the
network – transport is then driven by a second-order pro-
cess and hence is slow, but it requires no active control.
Alternately, faster transport is achievable by bringing the
end-spins in resonance with a mode of the bulk of the
network, effectively creating a Λ-type network15, whose
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FIG. 1. Example of spin network, consisting of NV centers
(blue spheres) and P1 centers (red) in a diamond lattice. The
network is given by randomly positioned P1 centers in the
diamond lattice with a concentration of 0.2 ppm and a 5%
conversion efficiency to NV. The proposed strategies enable
perfect quantum state transfer between the two NV spins in
this naturally occurring topology of P1 centers20,21.

dynamics and bandwidth we characterize completely. We
further introduce a simple control sequence that ensures
perfect QST by properly balancing the coupling of the
end-spins to the common bulk mode, thus allowing per-
fect and fast state transfer. Finally, we investigate the
scaling of QST in various types of networks and discuss
practical implementations for QST between separated ni-
trogen vacancy (NV) centers in diamond16,17 via ran-
domly positioned electronic Nitrogen impurities18–21.
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II. SPIN NETWORK

The system (Fig. 1) is an N -spin network, whose
nodes represent spins- 1

2 and whose edges Hij are the
Hamiltonian coupling spins i and j. We consider the
isotropic XY Hamiltonian, Hij = (S+

i S
−
j + S−i S

+
j ), with

S±j = 1
2 (Sxj ± iSyj ), which has been widely studied for

quantum transport3,15,22,23. We further assume that two
nodes, labeled 1 and N , can be partially controlled and
read out, independently from the bulk of the network:
we will consider QST between these end spins. For
perfect transport, an excitation created at the location
of spin 1 should be transmitted without distortion to
the position of spin N upon evolution under H. We
characterize the efficiency of transport by the fidelity,
F (t) = | 〈N | e−iHt |1〉 |2, where |j〉 represents a single ex-
citation |1〉 at spin j, while all other spins are in the
ground state |0〉.

III. WEAK-COUPLING REGIME

The system Hamiltonian can be subdivided into a part,
HB , that describes the couplings in the bulk network, and
a part, He, that contains the couplings of the end-spins
to the bulk. While optimal fidelity has been obtained
for specific, engineered networks (mainly 1D, nearest-
neighbor chains), here we consider a completely arbitrary
bulk network HB . To ensure perfect transport, we work
in the weak-coupling regime for the end-spin couplingHe.
We set the total Hamiltonian to

H = βHB + εHe, (1)

where we impose ε‖He‖ � β‖HB‖, by engineering ap-
propriate weights ε,β. (Here ‖ · ‖ is a suitable matrix
norm24).

Intuitively, we expect the weak coupling regime to
achieve perfect transfer since it imposes two rates to the
spin dynamics: the bulk spins evolve on a “fast” time
scale while the end-spin dynamics is “slow”. The end
spins inject information into the network bulk, which
evolves so quickly that information spreads everywhere at
a rate much faster than new information is fed in, allow-
ing an adiabatic elimination28 of the information quan-
tum walk in the bulk network15. Although high fidelity
can be reached, this off-resonance transport is slow.

A different strategy for information transport, and a
faster rate, is achieved by bringing the end-spins on reso-
nance with an eigenmode of the bulk – the weak coupling
ensuring greater overlap with a single (possibly degener-
ate) mode. The system reduces to a Λ-network15, where
coupled-mode theory ensures perfect transport if both
ends have equal overlaps with the bulk mode29,30, a con-
dition that we will show can be engineered by the control
sequence in Fig. 2.

To make more rigorous our intuition of the weak
regime, we describe transport via a perturbative treat-
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FIG. 2. (a) On-resonance balancing sequence applied to the
end spins for perfect quantum transport. Yellow blocks indi-
cate microwave irradiation that brings the end spins on res-
onance with the bulk network. The resulting Λ-network is
in general unbalanced, but appropriately placed π-pulses (or-
ange) on the end-spin with higher mode overlap (here spin 1)
can balance the overlaps O(1,N)

25. (b) The π-pulses invert the
sign of the coupling of spin at node 1 to the bulk mode in the
toggling frame such that O1,N become equal on average. For
the network of Fig. 1, |O1|> |ON | and r=1/2(1+ |ON/O1|) =
0.5501. The sequence is symmetrized26,27 and repeated for L
cycles.

ment. Transport in the single excitation subspace is
fully described by the adjacency matrix A4, defined via
H =

∑
i<j Aij(S

+
i S
−
j + h.c.). For convenience we con-

sider normalized matrices, ‖HB‖= ‖He‖= 1, and intro-
duce the network adjacency matrix, A=βAB+εAe, which
describes the coupling networks of the system Hamilto-
nian Eq. (1); in the weak-coupling regime γ = β/ε� 1.

The fidelity can then be written as F (t) =
| 〈N | e−iAt |1〉 |2, where the vectors |j〉 now represent the
node basis in the N × N network space. We use a
Schrieffer-Wolff transformation31–33 and its truncation to
first order in 1/γ to define an effective adjacency ma-
trix, A′ = eSAe−S ≈ A + 1

2 [S,A], which drives the

evolution. Setting S so that [AB , S] = ε
βA

e, we have

A′ ≈ βAB + ε
2A

S , where AS = [S,Ae] can be evaluated
explicitly.

A. Off-resonance QST

Consider first the case where the eigenvalues {EBj } of

AB are non-degenerate, except for EB1 = EBN = 0 (as-
sociated with the end-spin subspace). We can fix the
energy eigenbasis {|vk〉} of AB by setting |v1〉 = |1〉 and
|vN 〉 = |N〉. In this basis the structure of the matrix Ae is
preserved, non-zero terms connecting only the end-nodes
to the bulk, Ae`j = 0 for ` 6= 1, N . A general element of

AS can be written as

ASij =
ε2

β

∑
k

AeikA
e
kj

(
1

EBi − EBk
+

1

EBj − EBk

)
. (2)
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FIG. 3. (a) Off-resonance transport fidelity for the network in
Fig. 1 for γ = 25. Perfect transport occurs, but on a slow time
scale, an order of magnitude longer than the on-resonance
balanced case (Fig. 4). (b) Increasing γ improves transport
fidelity (red circles) but also increases the time required for
perfect transport (blue diamonds).

Setting {i, j} 6= 1, N and {ζ, ξ} ∈ {1, N}, we have

ASij =
ε2

β
(Ai1A1j +AiNANj)

(
1

EBi
+

1

EBj

)
(3)

and

ASζξ = −2ε2

β

∑
j 6=1,N

AeζjA
e
jξ/E

B
j , (4)

while elements between the end- and bulk-nodes are zero,
ASζj = 0, if Aeξζ = 0. Hence AS can be partitioned into a

term with support only in the bulk subspace (Eq. 3) and
a second term with support only in the end-spin subspace
(Eq. 4). To first order approximation, it is only this last
term that drives QST – the transport happens via a di-
rect coupling between the end-nodes. Since this effective
coupling is mediated by the bulk via virtual transitions,
its rate is proportional to ε2/β. The fidelity of transport
is determined entirely by the effective detuning of the two
end-spins, α = (AS11 −ASNN )/2:

F (t) =
(AS1N )2

(AS1N )2 + α2
sin2

(
t
√

(AS1N )2 + α2

)
(5)

If we can modify the end-spin Hamiltonian by adding a
term Hoff = −2(ω1S

z
1 + ωNS

z
N ), such that AS11 + ω1 =

ASNN+ωN , perfect quantum transport is ensured at tm =
π/(2AS1N ). This energy shift could be obtained by locally
tuning the magnetic field or by applying local AC driving
to the end spins, which ensures they have the desired
energy in the rotating frame (similar to the Hartman-
Hahn scheme34,35). Transport fidelity also depends on
the goodness of the first order approximation, increasing
with γ at the cost of longer transport times, as shown in
Fig. 3(b).

B. On-resonance QST

Transport can be made faster if the end spins are on
resonance with one non-degenerate mode of the bulk, |vd〉

(we will consider the degenerate case in Appendix A).
Resonance happens if the corresponding eigenvalue is
EBd = 0 or it can be enforced by adding an energy shift
to the end spins to set Ae11 = AeNN = β/εEBd . Trans-
port then occurs at a rate proportional to ε, as driven
by the adjacency matrix Ad, the projection of Ae in the
degenerate subspace:

Ad = 〈1|Ae |vd〉 |1〉〈vd|+ 〈N |Ae |vd〉 |N〉〈vd|+ h.c.

We note that the goodness of this approximation depends
on the gap between the selected resonance mode and the
other bulk modes. In the node basis, Ad forms an effec-
tive Λ-network15 (of general form Ad =

∑
j(A1j+AjN )+

h.c.), coupling the end-spins with each spin of the bulk:

Ad =
∑
j

(δ1j |1〉〈j|+ δNj |N〉〈j|+ h.c.), (6)

where δ(1,N)j = 〈vd|j〉 〈(1, N)|Ae |vd〉. Note that im-
portantly we have δ1j/δNj = cst., ∀j. Transport in
such Λ-networks occurs at only four frequencies (see Ap-

pendix B), F (t) = w0 +
∑4
m=1 wm cos(fmt) with Fourier

coefficients wm defined below, and the frequencies,

f1,2 = 2

√
S2 ∓

√
S4 −∆4 ; f3,4 =

√
2(S2 ∓∆2), (7)

where,

S2 =
∑
j

1

2
(δ2

1j + δ2
jN )

∆4 =
∑
j<k

(δ1jδkN − δjNδ1k)2 (8)

δ2 =
∑
j

δ1jδjN

Physically, S ∼ ‖Ad‖ sets the energy scale of the resonant
mode, while ∆ quantifies the relative detuning between
different Λ-paths15 (see Appendix B) .

The Fourier coefficients wi are found to be w0 =

−w3 = −w4 = δ4

4(S4−∆4) , w1 = w2 = w0/2, giving the

analytical expression for QST in a Λ-network,

F (t)=
δ4

S4 −∆4
sin2

(√
S2 + ∆2

2
t

)
sin2

(√
S2 −∆2

2
t

)
(9)

Perfect QST requires ∆ = 0 and δ = S. The first con-
dition entails δ1j/δjN = cst. ∀j, which is always satisfied
by Ad if the resonant bulk mode is non-degenerate. We
note that in this case there are only two distinct frequen-
cies in Eq. (7), which act as signatures of on-resonance
transport. Thus one could search for a bulk mode ex-
perimentally by tuning the end-spin couplings until the
appearance of the two frequencies. On the other hand,
δ = S requires a balanced network, δ1j = δjN ∀j. For
the reduced adjacency matrix Ad this condition is sat-
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FIG. 4. (a) On-resonance transport fidelity for the network
of Fig. 1, with (red) and without (blue, dotted) balancing, for
γ = 1 and L = 20. Almost perfect transport occurs in the bal-
anced case, obtained by the control sequence in Fig. 2. (b) In-
creasing the number of cycles L improves the Trotter approxi-
mation yielding enhanced fidelity. The symmetrized sequence
performs better than the sequence without symmetrization.

isfied when both end-spins have equal overlap with the
resonant eigenmode, 〈1|Ae |vd〉 = 〈N |Ae |vd〉. In the bal-

anced case the fidelity simplifies to F (t) = sin(St/
√

2)4,

which leads to perfect QST at tm = π/(
√

2S), as if it
were a 3-spin chain4.

C. Perfect QST by on-resonance balancing

Unfortunately the overlaps of the two end spins with
the on-resonance mode, O(1,N) = 〈(1, N)|Ae|vd〉, are in
general unequal, and the Λ-network unbalanced. Still,
it is possible to balance the network by a simple con-
trol sequence (Fig. 2). Assume without loss of gener-
ality O1 > ON . We partition Ad into effective adja-
cency matrices with couplings only to spins 1 and N ,
Ad = Ad1 + AdN . A rotation e−iS

z
1π on spin 1 produces

Ãd = −Ad1 +AdN . Then, setting r = 1
2 (1 + |ON/O1|), the

evolution

e−iA
drte−iÃ

d(1−r)t≈e−iAd
b t, with Adb = Adr+ Ãd(1−r),

is balanced on average during the period t. The approx-
imation improves if one uses L cycles of the control se-
quence with shorter time intervals (as in a Trotter expan-
sion27,36) and appropriately symmetrizes it (see Fig. 2)
to achieve an error O(r2(1− r)t3m/L3). Fig. 4(a) shows
the effect of enhanced, almost perfect, fidelity upon bal-
ancing the network of Fig. 1.

Note that for the simplest case of spin chains, the sym-
metry of the modes ensures the network is already bal-
anced7,8,37. However, to drive transport in arbitrary net-
works, one does need an active control scheme for bal-
ancing. Similar ideas for engineered mode-matching are
employed in the photonics community where the formal-
ism is developed using coupled mode theory29,30.
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FIG. 5. (a) The control sequence for robust quantum trans-
port under dephasing noise consists of L cycles of a balanced
sequence similar to Fig. 2, but constructed out of decoupling
blocks D(τ). Here τ1 = rtm/2L and τ2 = (1−r)tm/2L. Panel
(b) details the decoupling block D(τ), consisting of M cycles.
The πx pulses are applied to both the end-spins, and the bulk
network. They are accompanied by a toggling of the phase
of the microwave irradiation used to bring the end-spins in
resonance with the bulk mode. The sequence filters out any
dephasing noise field that has a correlation time greater than
τ/M ; and by appropriately choosing M , the transport can be
made immune to noise.

IV. REQUIREMENTS FOR PERFECT QST

For transport in real spin networks, the achievable fi-
delity will be strongly affected by decoherence processes
in the spin lattice. It is then necessary to reduce as much
as possible the time required for transport. This imposes
a compromise between the transport time and the valid-
ity of the weak-coupling regime, as they both depend on
the weak coupling parameter γ. In addition, constraints
in the control achievable may further degrade the fidelity
or, conversely, good control on the spin system might
improve its coherence properties.

A. Robust transport under decoherence

In many spin systems, the major source of decoher-
ence is dephasing induced by a spin bath38. We can be
model its effects as a semiclassical dephasing noise field
Hz =

∑
j ωj(t)Zj , where ωj(t) is a stochastic fluctuating

field acting on the jth spin. The noise strength |
〈
ω2
j

〉
| is

roughly proportional to the mean interaction of the spin
to its bath, while the correlation time is approximately
the inverse of the bath mean spin-spin coupling.

Simple control methods can greatly reduce the effects
of dephasing, without affecting the transport Hamilto-
nian. Consider for instance the control sequence in Fig. 5:
A π pulse on the full network takes Hz → −Hz without
changing the coupling Hamiltonian (which is quadratic
in the spin operator). If the π-pulses are applied faster
than the correlation time of the noise, the noise Hamilto-
nian is averaged to zero. This decoupling sequence (the
decoupling block D(τ) in Fig. 5) can be embedded in
the balancing sequence of Fig. 2. Even more complex
control sequences given by various dynamical decoupling
schemes39–42 are compatible with the balancing protocol,
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provided we toggle the phase of the continuous irradia-
tion with each π-pulse to maintain the end-spins on res-
onance with the bulk mode. Dynamical decoupling tech-
niques can thus be used to increase the coherence time43

to be much longer than the transport time, thus reducing
the effects of decoherence on the transport fidelity.

B. Time requirements

We now consider the scaling of the weak coupling pa-
rameter γ required for the validity of the perturbative
approximation. We can fix β = ‖HB‖ and consider nor-

malized matrices. Then β scales as
√

(N − 2)(N − 3)/3
for a random network where all the couplings are uni-
formly distributed. For the more realistic case where the
coupling strength decreases with distance, the scaling is
less favorable, e.g. for a random dipolar coupled network
β scales as

√
2/3(N − 3)/d3, where d is the average lat-

tice constant (see Appendix C). Similar scaling occurs for
regular spin networks, for example those corresponding
to crystal lattices. In general the ratio ε/β decreases with

the size of the network (usually as O(
√
N)), averting the

need to reduce the end-couplings by engineering ε, which
had been previously deemed necessary33,37. For exam-
ple, ε = 1 is sufficient to drive perfect quantum transfer
in the network of Fig. 1.

In the case of on-resonance balancing, the time at
which perfect QST is achieved is tm = γπ/(

√
2S),

where S = min{O1, ON} scales linearly with γ. The
time is shorter the more symmetrical the end-spins are
with respect to the resonant mode, since then |O1| ≈
|ON |. For the off-resonance case the time is tm =
(πβ/2ε2)[EB` /(A

e
1`A

e
k`)], where EB` = min{

∣∣EBk ∣∣} is the
minimum eigenvalue of the bulk. In general this sec-
ond order transport process takes an order of magnitude
longer time than the on-resonance case (Fig. 3).

C. Control requirements

Finally, let us estimate the resources needed to impose
the end-spin energy shifts as required for perfect QST, for
example by a continuous irradiation during tm (Fig. 2).
In the on-resonance case, the end-spin energy should be
set equal to a bulk mode, EBd . Selecting the highest
bulk eigenmode, which has usually the largest gap to the
other modes, EBd scales as O(N) for random networks,
but it is constant, ∼ 1.6/d3, for dipolar coupled networks
(Appendix C). Off-resonance transport requires instead
a shift of AS11 −ASNN , where AS11,NN = 〈Ae1,N |`〉2/γ2EB` ,

where EB` is the minimum bulk eigenmode. Hence the
control required in this case is about an order of magni-
tude lower than in the resonant case.
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FIG. 6. Time for optimal transport in dipolar coupled spin
networks of P1 centers in diamond. The optimal time was
calculated from the average over 5000 random lattice realiza-
tions of P1 centers of density 10ppm; we considered transport
between two NV centers located at increasing distance. The
red line (circles) is the time required to achieve a transport
fidelity of at least 99% via resonant balancing. The black line
(diamonds) is the time at which optimal fidelity is achieved
for on-resonant transport without balancing. The fidelity is
however quite low (∼15%) in this case. The blue dashed line
shows the number of P1 centers in the network, N−2.

V. CONCLUSIONS AND OUTLOOK

In this paper, we showed that perfect quantum state
transfer can be engineered even in the case of arbitrarily
complicated network topologies. The protocols we pre-
sented can thus be used to achieve perfect QST even in
naturally-occurring, disordered spin systems.

An experimentally important quantum computing ar-
chitecture is that of nitrogen vacancy (NV) centers in di-
amond. Fig. 6 shows the scaling of the transport time be-
tween two separated NV centers via a bulk network con-
sisting of randomly positioned nitrogen impurities (P1
centers). Transport fidelity loss could occur due to dipo-
lar induced decoherence44,45. Dephasing times in excess
of 100µs are routinely achievable in diamond46,47. Hence
from Fig. 6, robust quantum communication is possible
in the NV-diamond architecture.

Some experimental challenges remain, although steps
to address them have already been taken. In gen-
eral spins in crystals are coupled by the natural dipo-
lar Hamiltonian and not the isotropic XY Hamiltonian
that we assumed here. Thus, we require additional ac-
tive control to achieve Hamiltonian engineering, for ex-
ample combining linear gradients with a mixing pulse
sequence21,48–50. The limitation to pure state transfer
requires that the system is polarized at low tempera-
ture and high fields. For instance, Ref.51 demonstrated
99% polarization of a large P1 network (∼ 1016 spins) at
2K and 8T. We note that smaller P1 subnetworks could
be strongly polarized via the NV centers using cross-
polarization34,52–54.

Thanks to the transport strategies we introduced,
many other spin systems can be amenable to act as quan-
tum wires for information transport. Provided the end-
spins are detuned off-resonance from the bulk network
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(as it would naturally occur in most cases), it is possible
to achieve unit transport fidelity with minimal control
requirements, although on a somewhat long time scale.
Transport speed can be improved by bringing the end-
spins on resonance with a common mode of the bulk net-
work. These transport strategies may thus present an
alternative to the interlinking of quantum registers with
little or no fabrication overhead55,56. More generally, the
in-depth description of the weak-coupling dynamics for
a general network might yield more refined strategies for
some specific network topologies.
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Appendix A: Transport for end-spins on-resonance
with a degenerate mode

In the main text we described transport when the end
spins are on resonance with an eigenmode of the bulk
with eigenvalue EBd . Here we generalize to the situa-
tion where the eigenvalue is degenerate, with eigenvec-
tors |αm〉. The projector onto the degenerate eigenspace
is then,

P = (|1〉 〈1|+ |N〉 〈N |) +
∑
m∈M

|αm〉 〈αm|

≡ (|1〉 〈1|+ |N〉 〈N |) + PM , (A1)

and, to first order, transport is driven by the projection
of the adjacency matrix Ae into the this subspace, i.e.,
Ad = P †AeP . Now we consider that Ae and AB have the
following forms, where “×” denotes a non-zero element:

Ae =


× × × ×

× ×
× ×
× ×
× ×
× × × ×

 ; AB =


× × ×

× × ×
× × ×
× × ×

 .

It follows that

〈1|Ae|1〉 = 0 ; 〈N |Ae|N〉 = 0 ; 〈αm′ |Ae|αm〉 = 0, (A2)

yielding

Ad =
∑
m

〈1|Ae|αm〉(|1〉 〈αm|+ |αm〉 〈1|)

+
∑
m

〈N |Ae|αm〉(|N〉 〈αm|+ |αm〉 〈N |), (A3)

where we have used the fact that Ae is real, and hence
〈1|Ae|αm〉 = 〈αm|Ae|1〉. Let us define the end connection

N

δ1j δjN

HB

· · · · · ·j

1

FIG. 7. (Color online) A general detuned Λ-network with
multiple Λ-paths between the end spins. Each leg of any
of these Λ-paths may have an arbitrary detuning. For the
representative case of the Λ-path going through node j (red,
thick), these detunings are δ1j and δjN .

vectors,

Ae |1〉 = |n1〉 ; Ae |N〉 = |nN 〉 . (A4)

Then,

Ad =
∑
m

〈n1|αm〉(|1〉 〈αm|+ |αm〉 〈1|)

+
∑
m

〈nN |αm〉(|N〉 〈αm|+ |αm〉 〈N |)

=
∑
j

∑
m

〈n1|αm〉 (〈αm|j〉 |1〉 〈j|+ 〈j|αm〉 |j〉 〈1|)

+
∑
j

∑
m

〈nN |αm〉 (〈αm|j〉 |N〉 〈j|+ 〈j|αm〉 |j〉 〈N |)

or simplifying,

Ad =
∑
j

(δ1j |1〉 〈j|+ δjN |N〉 〈j|+ h.c.), (A5)

where δ(1,N)j = 〈n(1,N)|PM |j〉 is the overlap of the end
vector n1 and the node j in the resonant subspace.

To achieve balanced on-resonance transport we require
that δ1j = δjN for all j, which implies that both the end-
vectors have equal projections in the resonant subspace,

PM |n1〉 = PM |nN 〉 . (A6)

Appendix B: Transport Fidelity for Λ-networks

Here we derive the maximum transport fidelity for a
Λ-type network. Λ-type networks are interesting because
the effective Hamiltonian of more complex networks re-
duces to Λ-network Hamiltonian in the weak-coupling
regime (as shown in the previous section), but we will
consider here the general case.

For any network of adjacency matrix A, the fidelity
function F (t) = |〈N | e−iAt |1〉|2 has a simple expression
in the eigenbasis of A,

F (t)=
∑
k,`

〈`|N〉〈N |k〉〈k|1〉〈1|`〉 cos (Ek − E`) t. (B1)



7

This shows that the fidelity can be written as the sum

F (t) =
∑
n

wn cos(fnt), with fn = Ek − E`, (B2)

that is, the frequencies are differences between eigenval-
ues of A, for which the corresponding eigenvectors |`〉 and
|k〉 have non-zero overlap with |1〉 , |N〉.

We now consider a general Λ-network with multiple Λ-
paths that connect the end-spins (see Fig. 7) and we will
restrict the analysis to the adjacency matrix obtained in
the on-resonance case only later. We write the adjacency
matrix in terms of the coupling strength δ1j and δjN
between the end spin and each jth spin in the bulk, which
form the Λ path:

Ad =
∑
j

Λj

Λj = δ1j (|j〉〈1|+ |1〉〈j|) + δjN (|j〉〈N |+ |N〉〈j|).(B3)

Our strategy for finding the transport fidelity in Λ-
networks is to first determine the eigenvalues of the adja-
cency matrix in Eq. (B3) and hence the possible frequen-
cies at which information transport can occur. Then, we
will use a series expansion to find an explicit expression
for the fidelity.

1. Frequencies of Transport

The eigenvalues of the adjacency matrix in Eq. (B3)
are

λ0 = 0, (N − 4) degenerate

λ1,2 = ±
√
S2 −

√
S4 −∆4, (B4)

λ3,4 = ±
√
S2 +

√
S4 −∆4,

where we defined,

S2 =
∑
j

S2
j =

∑
j

1

2
(δ2

1j + δ2
jN )

∆4 =
∑
j<k

∆4
jk =

∑
j<k

(δ1jδkN − δjNδ1k)2 (B5)

δ2 =
∑
j

δ1jδjN

While for a general network the frequencies of trans-
port are differences between the eigenvalues of Ad, here
there are only four distinct frequencies because of the

symmetries in the eigenvalues:

f0 = 0, f1 = 2λ1, f2 = 2λ3,

f3 = λ1 − λ3 =
√

2(S2 −∆2),

f4 = λ1 + λ3 =
√

2(S2 + ∆2).

2. Series expansion

With the frequencies found above, equation Eq. (B2)

reduces to F (t) =
∑4
i=0 wi cos (fit). To find the parame-

ters wi, we equate the Taylor expansion of Eq. (B2) and
of the fidelity F (t) = |〈N | e−iAt |1〉|2. We only need the
first five even power coefficients to fully determine {wi},

−S 2/2 0 S 2/2

Relative detuning∆2
jk

0

S

2S

F
re

qu
en

ci
es

of
tr

an
sp

or
t

f 1

f 2

f 3

f 4

FIG. 8. (Color online) Positive frequencies of transport fi-
delity for a Λ-network (Fig. 7) consisting of two Λ-paths,
1 → j → N and 1 → k → N . The frequencies are plot-
ted as a function of the relative detuning between the paths,
∆2

jk = (δ1jδkN − δjNδ1k). The actual transport also contains
symmetric negative frequencies and a DC (zero frequency)
component. In general there are four frequencies of transport,
derived in Eq. (B6). Note that when δjN/δ1j is a constant
for both paths, there are only two frequencies, S and 2S, that
carry the transport.
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giving the series of equations,

4∑
i=0

wi= |〈N |1〉|2 = 0

4∑
i=1

wif
2
i =−|〈N |Ad|1〉|2 = 0

1

4!

4∑
i=0

wif
4
i =

1

4
|〈N |

(
Ad
)2 |1〉|2 = C4 (B6)

1

6!

4∑
i=0

wif
6
i = − 1

24
Re[〈N |

(
Ad
)2 |1〉〈N | (Ad)4 |1〉] = C6

1

8!

4∑
i=0

wif
8
i =

1

4!
|〈N |

(
Ad
)4 |1〉|2

+
1

2 · 6!
Re[〈N |

(
Ad
)2 |1〉〈N | (Ad)6 |1〉] = C8

The expectation values can be evaluated exactly, yielding

C4 =
1

4
δ4, C6 = − 1

12
S2δ4 (B7)

C8 =
1

720
δ2
[
9S4 −∆2

]
For general frequencies fi, the coefficients wi are

w0 = −
4∑
j=1

wj ; (B8)

wj =
C8 −

∑
k 6=j f

2
kC6 +

∑
`<m;`,m 6=j f

2
` f

2
mC4

f2
j

∏
k 6=j(f

2
k − f2

j )
, j > 0

Using the expressions for the frequencies in Eq. (B6), we
find their explicit expressions in terms of S,∆ and δ:

w0 =
δ4

4(S4 −∆4)
, w1 = w2 =

w0

2
, w3 = w4 = −w0

(B9)
The fidelity is thus further simplified to

F (t) =
δ4

S4 −∆4

[
sin
(
t
√

(S2 + ∆2)/2
)

× sin
(
t
√

(S2 −∆2)/2
)]2

(B10)

3. Fidelity for random and degenerate networks

Consider the case when the number of nodes is large,
and the detunings δ1j and δjN are sampled from the same
distribution, as it would be in a random network. Then,∑

j

δ2
1j ≈

∑
j

δ2
jN (B11)

since the second moments of the random distribution
should be equal. In this situation we have

S4 − (∆4 + δ4) =
1

4

∑
j

(δ2
1j − δ2

jN )

2

= 0 (B12)

Then the condition

δ4 = S4 −∆4 (B13)

is satisfied and the fidelity becomes

F (t) =
[
sin
(
t
√

(S2 + ∆2)/2
)

sin
(
t
√

(S2 −∆2)/2
)]2

In the case of resonance to a non-degenerate mode, we
have ∆ = 0 and the fidelity can reach its maximum
F (t) = sin(St/

√
2)4 = 1, for t = π/

√
2S.

For the case of interest in this work, a network where
the end-spins are on resonance with a non-degenerate
mode, the adjacency matrix of relevance in the weak
regime is the reduced adjacency matrix, Ad. As shown
above, in this case we have ∆ = 0 and the fidelity reduces
to

F (t) =

[
δ

S
sin

(
St√

2

)]4

, (B14)

thus maximum fidelity can be reached only if the con-
dition Eq. (B13) is satisfied. For example, the mirror-
symmetric case δ1j = δjN , ∀j yields the optimal fidelity
F = 1 since then δ = S.

Appendix C: Estimating matrix norms for different
network topologies

1. Different kinds of networks

In this section, we consider different classes of net-
works, and estimate the norms of the corresponding ad-
jacency matrices A. As described in the main text, the
matrix norm of the bulk adjacency matrix is important
in predicting the transport time. For example, the scal-
ing of transport time is linear with γ in the on-resonance
case; and the value of γ implicitly depends on the norm
of the bulk matrix. Hence a large bulk matrix causes
an intrinsically high γ, and reduces the control require-
ments on the end-spins. All the networks considered are
of N spins, and hence the adjacency matrices are N ×N
matrices.

1. Random network – The matrix A has random en-
tries in the range [0, 1] (with appropriate sym-
metrization). The random entries follow a uniform
distribution, with no site-to-site correlation. Over-
all, this case represents a rather unphysical sce-
nario, but will be useful in the computations that
follow.



9

2. Random network with 1/d3 scaling – A contains
random entries from a uniform distribution scaled
by 1/(hd)3, where h is the Hamming distance be-
tween two nodes. It represents a network similar
to a spin chain where all neighbor connectivities
are allowed, and there is a possible spread in the
position of the nodes from their lattice sites.

3. Dipolar scaled regular (symmetric) network – We
consider the network to be regular (symmetric) in
two and three dimensions. With an appropriate
choice of basis, this can be converted to a Bravais
lattice. Special cases of interest are the graphene
(honeycomb) lattice and the CNT (rolled honey-
comb) lattices.

4. Dipolar scaled regular network with vacancies –
Here we consider the regular network above and
introduce vacancies that are binomially distributed
with parameter p. This approximately maps to the
NV diamond system, where we consider transport
through a P1 lattice.

Note that the generalized adjacency matrix A of a net-
work consists of positive numbers in the range [0, 1]. This
matrix is symmetric and Hermitian.

For the norm, we will use the Frobenius norm, which
is the generalized Euclidean norm for matrices.

‖A‖ =

√√√√ N∑
i,j

|aij |2 =

√√√√ N∑
i

σ2
i (C1)

where σi are the singular values of A.

2. Random network

Consider the right triangular form (R-form) of A,

A =


0 × × × × ×

0 × × × ×
0 × × ×

0 × ×
0 ×

0

 (C2)

Here × refers to random numbers uniformly dis-
tributed in the range [0, 1]. We have E[X2] = Var[X] +
(E[X])2 = 1/12 + 1/4 = 1/3. The total number of ele-
ments in the R matrix is,

n =

N∑
j=1

(N − j) =
N(N − 1)

2
(C3)

Hence, since the random numbers are assumed to be un-
correlated from site to site, we have,

‖A‖ =

√
N(N − 1)

3
(C4)

Fig. 9(a) shows the linear scaling of the norm in Eq. (C4),
compared to the numerically obtained average of 100
manifestations of random networks. The highest eigen-
value of A, Emax also scales linearly with N .

3. Dipolar coupled random network

Now we consider the case where there is 1/d3 scaling
with the Hamming distance between two nodes. This
represents a network similar to a spin chain where all
neighbor connectivities are allowed, and there is a possi-
ble spread in the position of the nodes from their lattice
sites. The adjacency matrix has the form,

A =



0 ×
d3

×
(2d)3

×
(3d)3

×
(4d)3

×
(5d)3

0 ×
d3

×
(2d)3

×
(3d)3

×
(4d)3

0 ×
d3

×
(2d)3

×
(3d)3

0 ×
d3

×
(2d)3

0 ×
d3

0


(C5)

As before, assuming that the sites are uncorrelated for
the uniform distribution of random numbers ×, we have,

‖A‖2 =
2

3

[
N − 1

d6
+
N − 2

(2d)6
+
N − 3

(3d)6
+ · · ·+ 1

[(N − 1)d]6

]

=
2

3

N
d6

N−1∑
j=1

1

j6
− 1

d3

N−1∑
j=1

1

j5

 (C6)

Consider that,

N−1∑
j=1

1

j6
≈ π6

945
= 1.01734,

N−1∑
j=1

1

j5
≈ 1.036 (C7)

and the convergence is very rapid, i.e. it is true even for
small N . Then,

‖A‖ ≈ 1

d3

√
2

3
(N − 1) (C8)

Fig. 9(b) shows that the
√
N scaling matches very

well with the numerically obtained average norm of 100
manifestations of random dipolar networks. The highest
eigenvalue Emax approaches a constant 1.6/d3.

4. Dipolar coupled regular network

Here we consider a regular, symmetric network in two
or three dimensions. To a good approximation, we can
assume,

‖A‖ = n‖A‖cell (C9)
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Size of network N

0
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40
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m
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Size of network N

0.0

0.5

1.0

1.5
(b)

||A|| ||A|| th Emax Eth
max

FIG. 9. (Color online) Figure shows the scaling with net-
work size N of the matrix norms and largest eigenmodes of
the adjacency matrices corresponding to (a) a random net-
work and (b) a dipolar random network. The solid lines
are average values obtained from 100 manifestations of the
networks. The dashed lines are theoretical results. For the
dipolar network, the largest eigenmode Emax approaches a
constant 1.6/d3 (dashed magenta line).

where ‖A‖cell is the adjacency matrix of the unit cell of
the underlying lattice, and n is the number of tilings of
this unit cell,

n ≈ N

Ncell
(C10)

where Ncell is the number of nodes per unit cell.
‖A‖cell depends on the choice of lattice in the partic-

ular network. Let us consider the case of a honeycomb
lattice, where we assume only nearest neighbor interac-
tions. This network is found naturally in graphene and
CNTs. Then, ‖A‖cell = 24/d3. Hence, for graphene,

‖A‖ =
2
√
N

d3
(C11)

5. Dipolar coupled regular network with vacancies

Let the probability of a vacancy occurring be p. Once
again we assume a binomial distribution. We also as-
sume, that we can estimate the norm in this case by us-
ing tiling – i.e. we consider the vacancies only in the unit
cells. Consider for simplicity the special case of graphene.
For j vacancies, we have,

Pj = NcellCjp
j(1− p)Ncell−j (C12)

The corresponding adjacency matrix,

‖A‖j =
4Ncell − j

d3
(C13)

Hence the mean,

‖A‖cell =
∑
j

Pj‖A‖j =
4Ncell(1− p)

d3
(C14)

Hence,

‖A‖ =
2
√
N(1− p)
d3

(C15)
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43 G. A. Álvarez, A. Ajoy, X. Peng, and D. Suter, Phys. Rev.

A 82, 042306 (2010).

44 A. Kay, Int. J. of Quantum Info. 8, 641 (2010).
45 J.-M. Cai, Z.-W. Zhou, and G.-C. Guo, Phys. Rev. A 74,

022328 (2006).
46 P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K.

Yeung, P. Cappellaro, P. R. Hemmer, A. Yacoby, M. D.
Lukin, and R. L. Walsworth, Phys. Rev. B 82, 201201
(2010).

47 G. Balasubramanian, P. Neumann, D. Twitchen,
M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard,
J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko,
and J. Wrachtrup, Nat Mater 8, 383 (2009).

48 L. Braunschweiler and R. Ernst, J. Mag. Res. 53, 521
(1983).

49 J. Sleucher, J. Quant, S. J. Glaser, and C.Griesinger, En-
cyclopedia of Nuclear Magnetic Resonance 6, 4789 (1996).
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