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In the theory of electron-phonon superconductivity both the magnitude of the electron-phonon
coupling λ as well as the Coulomb pseudopotential µ∗ are important to determine the transition tem-
perature Tc and other properties. We calculate corrections to the conventional result for the Coulomb
pseudopotential. Our calculation are based on the Hubbard-Holstein model, where electron-electron
and electron-phonon interactions are local. We develop a perturbation expansion, which accounts for
the important renormalization effects for the electrons, the phonons, and the electron-phonon ver-
tex. We show that retardation effects are still operative for higher order corrections, but less efficient
due to a reduction of the effective bandwidth. This can lead to larger values of the pseudopotential
and reduced values of Tc. The conclusions from the perturbative calculations are corroborated up
to intermediate couplings by comparison with non-perturbative dynamical mean-field results.
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I. INTRODUCTION

More than a century after its discovery superconduc-
tivity continues to be subject of intense research in con-
densed matter physics. The research ranges from topics
geared to the technical application of the phenomenon
over the search for new superconducting materials to fun-
damental questions of microscopic mechanisms.1 The lat-
ter are important as one might hope that a good under-
standing of the mechanisms will make the design of new
superconductors at elevated temperatures feasible.2,3

There are numerous classes of materials for which differ-
ent mechanisms are discussed.1,4 In most cases a bosonic
pairing function is invoked, which could be of purely elec-
tronic origin such as spin fluctuations, or the conventional
phonon mechanism, but also more exotic mechanisms
have been proposed. The electron-phonon mechanism
has the longest history and probably the most estab-
lished mathematical foundation. An effective electron-
electron attraction generated by the electron-phonon
interaction is part of the celebrated Bardeen-Cooper-
Schrieffer (BCS) theory.5 The more elaborate theory in-
cluding microscopic details goes under the name Migdal-
Eliashberg (ME) theory.6 With the help of ME theory the
superconducting properties of many elements and numer-
ous alloys have been described accurately.7,8

The general ideas of ME theory can be presented in
relatively simple fashion, although the details of the
complete framework, its foundations and specific appli-
cations, involve a substantial degree of sophistication
to which many researcher have contributed over the
years.7–10 One cornerstone is Migdal’s theorem,11 which
employs the fact that the typical electronic energy scale
Eel and the typical phonon energy scale ωph differ largely,
such that Eel/ωph is of the order 100 and larger - the elec-
trons move much faster than the phonons. It can then
be shown that the perturbation theory of the electron-

phonon problem greatly simplifies since vertex correc-
tions are small. The influence of the bosonic pairing
function α2F (ω) on the electronic properties and the oc-
currence of superconductivity can therefore be computed
reliably. A remarkable aspect of the ME theory is that
it is even well justified for large values of the electron-
phonon coupling parameter λ > 1 as long as the effec-
tive expansion parameter ∼ λωph/Eel remains small.11–13

With the help of the ME equations, the pairing func-
tion α2F (ω) and the phenomenological parameter for the
Coulomb pseudopotential µ∗ were extracted from tunnel-
ing measurement in a procedure termed inverse tunnel-
ing spectroscopy.14 Based on those other properties such
as Tc or thermodynamic quantities can be computed.
The agreement with the respective experimental values of
many elements and alloys, notably Pb and Nb, is within
the range of a few percent.7 This leads to a consistent pic-
ture and was taken as proof of the validity of ME theory
and the electron-phonon mechanism.7,8 Further support
comes from first principle calculations for α2F (ω), which
are in many cases in remarkable agreement with the re-
sults extracted from tunneling.7,8,15,16

In addition to the effective attraction induced by the
electron-phonon coupling the applications of ME theory
include the effects of the Coulomb repulsion. Due to
the enormous success of the theory it is sometimes un-
derstated that in contrast to the electron-phonon prob-
lem no rigorous arguments exist for the treatment of the
Coulomb repulsion,10 the reason being the absence of a
small parameter as in Migdal’s theorem. Traditionally,
this is seen as minor deficiency based on the following ar-
guments. Some effects of the Coulomb interaction, such
as the renormalization of the electron-phonon couplings,
g, the electron and phonon dispersion εk, ωq are implicit
in the experimentally derived results or in the first princi-
ple calculations. It remains to deal with the direct repul-
sion in the pairing channel which opposes s-wave super-



2

conductivity. Morel and Anderson proposed a procedure
in two stages:17 first the Coulomb interaction is screened
and averaged over the Fermi surface. In a second step
it is projected to the phonon scale. The result possesses
the famous form,9,17,18

µ∗
c =

µc

1 + µc log
(

Eel

ωph

) , (1)

which is sometimes termed the Morel-Anderson (MA)
pseudopotential. Here, µc is a dimensionless quantity
which consists of a product of the the averaged, screened
Coulomb interaction with the density of states per spin
at the Fermi energy; Eel is an electronic scale, such as
the half bandwidth D or the Fermi energy EF, and ωph

the phonon scale, e.g. the Debye frequency. Eq. (1)
has the important property that for the typical large
energy separation between electronic and phonon scale,
Eel ≫ ωph, such that log(Eel/ωph) ∼ 5− 10, µ∗

c is much
smaller than µc. This effect is remarkable, as it enables
the electron-phonon s-wave superconductivity to be pos-
sible in spite of the Coulomb repulsion, which on a bare
level is much larger and working directly against it. This
is sometimes even termed the true mechanism of electron-
phonon superconductivity.8 The textbook physical pic-
ture is that electrons do not need to be close in position
space and suffer from the Coulomb repulsion in order to
pair since the electron-phonon interaction is retarded and
thus electrons can pair with a “time-delay”. Using appro-
priate energy scales in Eq. (1) leads to estimates of the
order µ∗

c ∼ 0.1−0.14. This fits well to the parameters µ∗

obtained from tunneling in many elemental superconduc-
tors and alloys.7 Hence, the Coulomb effects are generally
considered to be well described by µ∗, which is a fairly
universal quantity. In contrast to the pairing function
it is usually not calculated based on first principles and
rather used as a fitting parameter. It is worth mention-
ing that there is also an alternative ab-initio approach to
superconductivity based on the DFT framework.19–21

Review of the literature however also reveals evidence
that the description of the Coulomb repulsion in the form
of Eq. (1) is incomplete. In some cases, such as V or
Nb3Ge,7 the values for µ∗ appear to be of the order
0.2− 0.3 substantially larger than the traditional quotes,
even though the maximal phonon scales does not seem to
be particularly large. Density functional theory (DFT)
calculation16 for α2F (ω) find good agreement with the
tunneling results, but to explain the experimental val-
ues for Tc also somewhat larger values of µ∗ have to be
used. A specific case which raises doubts about the con-
ventional framework is the example of elemental lithium
at ambient pressure.22,23 The coupling constant was es-
timated to be λ ∼ 0.4,22,24 which seems to be in line
with specific heat measurements. With the usual value
of µ∗ ∼ 0.1 and the appropriate phonon scale this implies
Tc ∼ 1K. This is in contrast to experiments where for a
long time no superconductivity was observed down to val-
ues of 6mK,25 and only recently, Tc ∼ 0.4mK was found
at ambient pressure, which requires µ∗ ∼ 0.23.26 In this

context, we also mention alkali doped picene, which was
recently discovered to be superconducting at Tc ∼ 7K
and Tc ∼ 18K depending on preparation.27 First prin-
ciple calculations only seem to be able to explain these
values of Tc based on an electron-phonon mechanism with
relatively large values of µ∗ ∼ 0.23.28 However, also other
interpretations exist.29,30

It is our endeavor to reanalyze the expression for the
Coulomb pseudopotential in Eq. (1) and calculate cor-
rections to it. We focus on the reduction of phonon
induced s-wave superconductivity due to the Coulomb
repulsion between electrons. Superconductivity which
is induced in an anisotropic higher order angular mo-
mentum channel by purely repulsive interactions, such
as the well-known Kohn-Luttinger effect31, is not dealt
with in the present work. Berk and Schrieffer32 in-
cluded a specific class of higher order diagrams describ-
ing the coupling to ferromagnetic (FM) spin fluctua-
tions, addressing almost FM metals, like Pd. They
found that retardation is ineffective for the added dia-
grams and that superconductivity is strongly suppressed,
which can help to explain the cases when FM spin fluc-
tuations are important. In another line of work going
beyond MA the jellium model for electrons was consid-
ered and the Eliashberg equation were solved including
the frequency and momentum dependence of the dynam-
ically screened Coulomb interaction. Curiously, random
phase approximation (RPA) calculations by Rietschel
and Sham yielded negative values for µ∗

c when the den-
sity parameter rs exceeded values rs > 2.5.33 The re-
sulting unrealistic large values for Tc were interpreted as
plasmon induced superconductivity.34 It was shown that
vertex corrections lead to a reduction of Tc and partly
cure this problem.34,35 Phenomenological models of the
form of Kukkonen and Overhauser36 for the screened
Coulomb interaction mostly yield realistic positive re-
sults for µ∗

c ∼ 0.1 and no s-wave superconductivity,23,37

although there also exist different conclusions.38 We re-
mark that Richardson and Ashcroft23 arrived at a rather
accurate prediction for Tc in Li at ambient pressure based
on such calculations. Nevertheless, there does not seem
to be a conclusive study, which systematically analyzes
higher order corrections to the unphysical RPA result.

Rather than treating the Coulomb interaction in the
electron gas, our approach is based on a model with local
interactions.39 It can thus be interpreted as only consider-
ing the second step of the MA procedure, where the pro-
jection of the screened interaction to the phonon scale is
considered. To be specific we take the Hubbard-Holstein
(HH) model, where there is a local electron-electron re-
pulsion and an electron-phonon interaction present. The
advantage of the restriction to this model is that it can
be analyzed by means of the dynamical mean field theory
(DMFT).45 Since the DMFT becomes exact in the limit
of large dimensions, it can provide benchmark results in-
dependent of the interaction strength and thus allows us
to test otherwise uncontrolled perturbative approxima-
tions. Retardation effects encoded in the frequency de-
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pendence of the self-energies are fully contained. DMFT
treats both the electron-phonon and the electron-electron
interaction non-perturbatively and therefore include con-
tributions to µ∗

c to all orders. However, it also includes
renormalization effects of the phonons, the electrons and
the electron-phonon coupling. This makes the interpre-
tation of the results and the extraction of µ∗

c more diffi-
cult. In order to be able to nevertheless obtain meaning-
ful insights, we developed a diagrammatic perturbative
approach for the HH model in the limit of large dimen-
sions. This allows us to see how accurate the conventional
theory describes the benchmark results and which correc-
tions are necessary to get a good agreement between the
perturbative results and DMFT. We will see that higher
order corrections to µ∗

c enter in a modified form when
compared to Eq. (1).

The occurrence of superconductivity in the HH model
has been analyzed theoretically beyond ME theory.40–44

Freericks and Jarrel40 studied the suppression of the in-
stabilities towards charge density wave (CDW) forma-
tion and superconductivity at and away from half fill-
ing within the framework of DMFT. Their finding of ro-
bustness of CDW against superconductivity could be ex-
plained within weak coupling perturbation theory with-
out invoking corrections to the pseudopotential result in
Eq. (1). Functional renormalization group studies43,44

found spin density wave (SDW), CDW and different su-
perconducting instabilities. The phonon scale in those
works was however relatively large such that retardation
effects only played a moderate role.

In this work we show that retardation effects lead to
the reduction µc → µ∗

c also in the higher order calcula-
tion, but not as efficiently as for the first order one. Non-
perturbative DMFT calculations clarify that the per-
turbative result is accurate up to intermediate coupling
strength. An important conclusion is then that retarda-
tion effects indeed lead to rather small values of µ∗

c , even
when contributions beyond the standard theory are con-
sidered. For systems with sizable Coulomb interactions
µc, our values for µ∗

c are however larger than in the stan-
dard theory and therefore lead to reduced values of the
superconducting gap and Tc. The paper is structured
as follows: In Sec. II, the details of the model are in-
troduced as well as some basic properties of the DMFT
approach. In Sec. III, we discuss the diagrammatics for
the calculation of Tc from the pairing equation, includ-
ing self-energy and vertex corrections. In Sec. IV, similar
diagrams are discussed for the calculation of the gap at
T = 0. In Sec. V, we focus on the calculation of the

µ∗
c and derive analytic results including the higher order

corrections. In Sec. VI, we put together the results from
the perturbation theory and validate our findings up to
intermediate couplings with the non-perturbative DMFT
results, followed by the conclusions.

II. MODEL AND DMFT SETUP

The purpose of our work is to obtain generic insights
into the behavior of a coupled electron-phonon system.
Specifically, we employ the Hubbard-Holstein model,

H = −
∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) + U

∑

i

n̂i,↑n̂i,↓ (2)

+ω0

∑

i

b†ibi + g
∑

i

(bi + b†i )
(

∑

σ

n̂i,σ − 1
)

.

c†i,σ creates an electron at lattice site i with spin σ, and

b†i a phonon with oscillator frequency ω0, n̂i,σ = c†i,σci,σ.
The electrons interact locally with strength U , and their
density is coupled to an optical phonon mode with cou-
pling constant g. The local oscillator displacement is

related to the bosonic operators by x̂i = (bi + b†i )/
√
2ω0,

where h̄ = 1, and one can define a characteristic length
x0 = 1/

√
ω0 for the oscillator. We have set the ionic

mass to M = 1 in (2). The model in Eq. (2) possesses
the minimal ingredients necessary, such as energy scales
for electrons, phonons and their interactions. In the limit
of large dimensions this model can be solved exactly by
DMFT. Hence, we can provide controlled benchmark re-
sults in this situation. The following calculations are
based on this model in the limit of large dimension. In
this case the self-energy is independent of the momentum
k, but retains the full frequency dependence. This can
be compared with the usual application of ME theory,
where one usually projects to the Fermi surface and only
deals with frequency dependent quantities.

A. Calculating Tc

In DMFT the critical temperature can be calculated by
analyzing the relevant susceptibility. For completeness
we display some of the results, which we use later. The
notation follows the one in Ref. 45. The equation for
the s-wave superconductivity susceptibility χq(iωn) reads
with χq(iωn) =

∑

n1,n2
χ̃q(iωn1 , iωn2; iωn),

χ̃q(iωn1 , iωn2 ; iωn) = χ̃0
q(iωn1 , iωn2 ; iωn) +

1

β

∑

n3,n4

χ̃0
q(iωn1 , iωn3 ; iωn)Γ

(pp)(iωn3 , iωn4 ; iωn)χ̃q(iωn4 , iωn2 ; iωn). (3)

Γ(pp)(iωn1 , iωn4 ; iωn) is the irreducible vertex in the
particle-particle channel which is local in DMFT. The

corresponding pair propagator χ̃0
q(iωn1 ; iωn) is

χ̃0
q(iωn1 , iωn2 ; iωn) =

∑

k

Gk(iωn1)Gq−k(iωn−iωn1)δn1,n2 ,

(4)
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For special values of q and iωn we can evaluate the pair
propagator.45 We are interested in the limit q → 0 and
iωn → 0, and one finds

χ̃0
0(iωn1 , iωn2; 0) =

G(iωn1)−G(−iωn1)

ζ(−iωn1)− ζ(iωn1)
δn1,n2 , (5)

where ζ(iωn) = iωn + µ− Σ(iωn) and

G(iωn) =

∫

dε
ρ0

ζ(iωn)− ε
≡ HT[ρ0](ζ(iωn)). (6)

One has for the semi-elliptic DOS

HT[ρ0](z) =

D
∫

−D

dε
ρ0(ε)

z − ε
=

1

2t2

(

z−sgn(Im(z))
√

z2 − 4t2
)

,

(7)
where the square root of a complex number w is given by√
reiϕ/2, where ϕ = [0, 2π), such that the imaginary part

of
√
w is positive. At half filling G(iωn) and Σ(iωn) are

purely imaginary functions. The phonon Green’s func-
tion D(iωm),

D(iωm)−1 = D0(iωm)−1 − Σph(iωm), (8)

where D0(iωm) = 2ω0/[(iωm)2 − ω2
0 ], and its self-energy

Σph(iωm) are real functions. In the non-interacting case
the Green’s function reads,

G(iωn) =
i

2t2

(

ωn − sgn(ωn)
√

ω2
n + 4t2

)

. (9)

At half filling µ = 0, G(−iωn) = −G(iωn), Σ(−iωn) =
−Σ(iωn). With Σ(iωn) = iωn(1−Z(iωn)), where Z(iωn)
is symmetric and real, we find

χ̃0
0(iωn1 , iωn2 ; 0) = − G(iωn1)

iωn1Z(iωn1)
δn1,n2 . (10)

This expression is positive.
We can write Eq. (3) as a matrix equation (omitting

the general arguments, q, iωn),

χ̃ = χ̃0 + χ̃0Γχ̃. (11)

The instability criterion is that χ diverges for some
T, iωn, q. This can be written as the eigenvalue equa-
tion [χ̃0Γ]v = v, or with v = [χ̃0]1/2ṽ,

[χ̃0]1/2Γ[χ̃0]1/2ṽ = ṽ, (12)

where the matrix is symmetric if Γ is symmetric. The
relevant symmetric matrix reads,

Mn1,n2 =
1

β

√

χ̃0(iωn1)[Γ
(pp)(iωn1 , iωn2 ; 0)]

√

χ̃0(iωn2),

(13)
and we have to find its largest eigenvalue. We have sim-
plified the notation for the arguments for χ̃0 omitted the
q = 0-label. In a DMFT calculation for a given temper-
ature T , we first determine Σ(iωn) and the full particle-
particle irreducible vertex Γ(pp)(iωn1 , iωn2 ; 0). The pair
propagator χ̃0(iωn1) is obtained from Eq. (5). Then we
can search for the largest eigenvalue of the symmetric
matrix in Eq. (13) for the instability criterion.

B. Calculations in the superconducting phase

We also perform calculations in the superconducting
phase. We work in Nambu space with matrices then.
The local lattice Green’s functions have the form

G11(iωn) = AGHT[ρ0](ε+) +BGHT[ρ0](ε−) (14)

and

G21(iωn) = AFHT[ρ0](ε+) +BFHT[ρ0](ε−) (15)

with AG = (ζ2(iωn) + ε+(iωn))/(ε+(iωn) − ε−(iωn)),
BG = (ζ2(iωn) + ε−(iωn))/(ε−(iωn) − ε+(iωn))
AF = Σ21(iωn)/(ε+(iωn) − ε−(iωn)), and BF =
Σ21(iωn)/(ε−(iωn)− ε+(iωn)), where

ε± =
ζ1(iωn)− ζ2(iωn)

2
±

1

2

√

(ζ1(iωn) + ζ2(iωn))2 − 4Σ21(iωn)Σ12(iωn),

with ζ1(z) = z+µ−Σ11(z) and ζ2(z) = z−µ−Σ22(z). We
have G12(iωn) = G21(iωn) and G22(iωn) = −G11(−iωn)
for the Nambu Green’s functions. We use Σ12(iωn) =
Σ21(iωn) and Σ22(iωn) = −Σ11(−iωn) for the self-
energies. This can be deduced from the properties of the
corresponding Green’s functions including the assump-
tion of time-reversal symmetry. At half filling G11(iωn)
and Σ11(iωn) are imaginary functions, whereas G21(iωn)
and Σ21(iωn) and D(iωm) and Σph(iωm) are real func-
tions.

In the NRG approach we calculate the self-energy
matrix for the effective impurity model from the ma-
trix of higher Green’s functions F (ω) with F11(ω) =

〈〈cd,↑n↓; c
†
d,↑〉〉ω , F12(ω) = 〈〈cd,↑n↓; cd,↓〉〉ω , F21(ω) =

−〈〈c†d,↓n↑; c
†
d,↑〉〉ω and F22(ω) = −〈〈c†d,↓n↑; cd,↓〉〉ω . For

the phonon part we use M11(ω) = 〈〈cd,↑(b + b†); c†d,↑〉〉ω ,

M12(ω) = 〈〈cd,↑(b + b†); cd,↓〉〉ω , M21(ω) = −〈〈c†d,↓(b +

b†); c†d,↑〉〉ω and M22(ω) = −〈〈c†d,↓(b + b†); cd,↓〉〉ω. In the
NRG we calculate M11 and M21 directly on the real
axis from the Lehman spectral representation. The oth-
ers follow from M12(ω) = −M21(−ω)∗ and M22(ω) =
M11(−ω)∗. We can define the self-energy matrix by

Σ(ω) = UF (ω)G(ω)−1 + gM(ω)G(ω)−1. (16)

For self-consistency the local lattice Green’s functions
G(ω) has to be equal to the impurity Green’s function,
G(ω) = G(ω), where

G−1(ω) = ω12 + µτ3 −K(ω)− Σ(ω), (17)

with the matrix K(ω) describing the effective medium.
We can take the form of the effective impurity model
to correspond to an Anderson-Holstein impurity model46

and calculations are carried out as detailed, for instance
in Ref. 47. We solve the effective impurity problem with
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the numerical renormalization group48,49 (NRG) adapted
to the case with symmetry breaking. The NRG has been
shown to be very successful for calculating the local dy-
namic response functions, and we use the approach50,51

based on complete basis set proposed by Anders and
Schiller.52 For the logarithmic discretization parameter
we take the value Λ = 1.8 and keep about 1000 states
at each iteration. The initial bosonic Hilbert space is re-
stricted to a maximum of 50 states. We will mainly con-
sider two cases: (i) constant density of states ρ0 = 1/W ,
where W is the bandwidth and (ii) the semi-elliptic DOS

ρ0(ε) =
√
4t2 − ε2/(2πt2) with W = 4t = 2D.

III. DIAGRAMMATIC CALCULATION FOR Tc

In this section we first show how the standard approach
to conventional superconductivity, ME theory, would be
applied to the model under consideration, and which di-
agrams are included. To determine Tc we use the in-
stability criterion, Eq. (12), which is equivalent to the
linearized ME equations.

A. Standard diagrammatics, ME theory

In ME theory the irreducible vertex in Eq. (13) is given
by the full phonon propagator

Γ(pp)(iωn1 , iωn2 ; iωn = 0) = −g2D(iωn1 − iωn2). (18)

Diagrammatically this is depicted in Fig. 1 (a).

−ωn1 ↓

ωn1 ↑

−ωn2 ↓

D(iωn1 − iωn2)

ωn2 ↑

g

g

(a)

−ωn1 ↓

ωn1 ↑

−ωn2 ↓

U

ωn2 ↑

(b)

FIG. 1: Contributions to the irreducible vertex (a) electron-
phonon part, (b) first order in U .

Due to Migdal’s theorem11 other vertex corrections in-
cluding the phonon propagator are neglected. In gen-
eral, the ME theory is a self-consistent calculation, and
the electronic self-energy reads [see Fig. 2 (a)],

Σ(iωn) = −g2

β

∑

m

G(iωm + iωn)D(iωm). (19)

The phonon self-energy reads [see Fig. 2 (b)],

Σph(iωm) =
2g2

β

∑

n

G(iωn)G(iωm + iωn). (20)

G

D

(a) (b)

FIG. 2: Diagrams for (a) electronic self-energy and (b) the
phonon self-energy.

We define ωr
0 as the relevant renormalized phonon scale,

which is extracted from the peak position of the full
phonon spectral function ρD(ω). The electronic Green’s
function G(iωn) is determined as in Eq. (6). An appro-
priate definition of the coupling constant λ is

λ = 2

∞
∫

0

dω
α2F (ω)

ω
, (21)

where we the pairing function is defined via a Fermi sur-
face average,

α2F (ω) =
1

ρ20

∑

k,k′

α2
k,k′F (ω)δ(εk − µ)δ(εk′ − µ) (22)

with

α2
k,k′F (ω) = ρ0|gk,k′ |2ρDk−k′ (ω). (23)

For the Holstein model using the free spectral function
we have α2F (ω) = ρ0g

2[δ(ω−ω0)− δ(ω+ω0)], such that
we obtain λ0 = ρ02g

2/ω0, purely in terms of bare param-
eters. However, more relevant is the effective coupling λ
for the Holstein model is given by the full renormalized
phonon propagator,13

λ = 2ρ0g
2

∞
∫

0

dω
ρD(ω)

ω
= −ρ0g

2D(0). (24)

The dimensionless quantity for the Coulomb interaction
corresponding to λ0 is µc = ρ0U .

In a self-consistent numerical calculation for a given
temperature T , we first determine Σ(iωn) and Σph(iωm)
by iterating Eqs. (19) and (20) and thus G(iωn) and
D(iωm). Then we determine χ̃0(iωn1) from Eq. (5).
D(iωm) is used in Eq. (18) to determine the irreducible
vertex. Then we calculate the largest eigenvalue of the
symmetric matrix in Eq. (13) for the instability criterion.
Instead of calculating the phonon Green’s function self-
consistently we can also take it as an input. Using the
DMFT results for D(iωm) we found in previous work13

that Tc obtained from this procedure agrees well with
the full DMFT result as long as the renormalized Migdal
condition, λωr

0/W small, is satisfied. In the DMFT cal-
culation Γ(pp) and Σ(iωn) contain all higher order cor-
rections.

In the usual theory the Coulomb repulsion is included
directly up to first order or as an additional empirical
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parameter µ∗. The vertex has then two contributions,
one as before due to the electron-phonon interaction, and
the second one from the Coulomb repulsion [see Fig. 1
(b)],

Γ(pp)(iωn1 , iωn2; iωn = 0) = −g2D(iωn1 − iωn2)− U.
(25)

The eigenvalue equation (12) with the pairing vertex
(25) can be solved analytically with approximations sim-
ilar to the ones by McMillan.53 This yields

Tc =
2Cωr

0

π
exp

[

− Z

λ− µ∗
c [1 +

1
2λ]

]

, (26)

with C = eγ ≈ 1.78 with the Euler-Mascheroni con-
stant γ = 0.57721. We have introduced Z = 1 −
limω→0 Σ(iω)/iω and µ∗

c is given by Eq. (1) with Eel = D
and ωph = ωr

0 . This corresponds to the result by
McMillan53 or Allen and Dynes54,

Tc =
〈ω〉
1.2

e
− 1.04(1+λ)

λ−µ∗
c (1+0.62λ) , (27)

where Z = 1 + λ is used. The essential feature is that
the Coulomb repulsion, which is the same for all iωn

is effectively reduced from µc to µ∗
c when counteract-

ing the electron-phonon attraction with strength λ. This
shows how retardation effects assist the electron-phonon
induced superconductivity by suppressing the detrimen-
tal effects due to the Coulomb repulsion.

In summary, the diagrams in Figs. 1 and 2 are the ones
included in the standard theory of superconductivity.
Usually, the phonons are not calculated self-consistently
but rather taken as an input, for instance from DFT cal-
culations or from experiment. Also µ∗

c is usually not cal-
culated but used as a fitting parameters. In the following
we consider higher order corrections to the standard ap-
proach.

B. Higher order terms

The perturbation expansion for two different interac-
tions is rather involved, since terms of each perturbation
series as well as mixtures can appear. In a skeleton ex-
pansion higher order contributions can be grouped into
the following terms for self-energies and vertex functions:

1. Contributions to the full electron-phonon vertex

Γ(ep) = Γ
(ep)
g +Γ

(ep)
U +Γ

(ep)
g,U , where the bare vertex

is Γ
(ep)
0 = g:

(a) Higher order corrections Γ
(ep)
g purely due to g,

not including Γ
(ep)
0 .

(b) Contributions Γ
(ep)
U which include the bare

vertex Γ
(ep)
0 and higher order terms purely due

to U .
(c) Higher order corrections Γ

(ep)
g,U due to mixed

terms of g and U , not including Γ
(ep)
0 .

2. Contributions to the phonon self-energy Σph:

(a) Higher order contributions to Σph, which can

be written in terms of Γ
(ep)
g , i.e., purely due

to g.

(b) Contributions to Σph due to mixed terms of
g and U . These can be expressed in terms of

Γ
(ep)
U or Γ

(ep)
g,U .

3. Contributions to the electron self-energy Σ:

(a) Contributions to Σ, which can be written in

terms of Γ
(ep)
g , i.e. purely due to g.

(b) Contributions to Σ purely due to U .

(c) Contributions to Σ due to mixed terms, which

can be expressed in terms of Γ
(ep)
U or Γ

(ep)
g,U .

(d) Contributions to Σ due to mixed terms, which
can not be written in terms of Γ(ep).

4. Contributions to the irreducible vertex Γ(pp):

(a) Contributions to Γ(pp) purely due to U .

(b) Contributions to Γ(pp) due to g and U , which
can be written in terms of full propagators and
the electron-phonon vertex Γ(ep).

(c) Contributions to Γ(pp) due to g and U , which
can not be written in terms of Γ(ep).

We assume in the following that the parameters are cho-

sen such that higher order contributions of the type Γ
(ep)
g ,

i.e., 1(a), 2(a) and 3(a), are small due to Migdal’s the-
orem. By taking the full phonon propagator from the
DMFT calculation as in previous work,13 we avoid con-
sidering in detail effects of 2(b), and rather assume that
we can include the correct phonon propagator. We focus
on contributions 1(b), 3(b,c), and 4(a)(b), in the follow-
ing, which are the main contributions in the low order
perturbation theory. Contributions to the type 1(c), 3(d)
and 4(c) include higher order diagrams and will not be
considered explicitely here.

We can generally write contributions to the pairing
vertex of the form 4(b) as

Γ(pp)(iωn1 , iωn2 ; iωn = 0) = −Γ
(ep)
U (iωn1 , iωn2)D(iωn1 − iωn2)Γ

(ep)
U (−iωn1,−iωn2), (28)
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where Γ
(ep)
U includes g and all corrections due to U , see

Fig. 3.

ΓU = + + + . . .

FIG. 3: Contributions to the electron-phonon vertex Γ
(ep)
U

.

For Γ
(ep)
U (iωn1 , iωn2), iωn1 is the ingoing electronic fre-

quency, iωn2 the outgoing one and the bosonic one is
iωn1 − iωn2 . D(iωn) is the full propagator including cor-
rections due to U and g. Diagrammatically, these contri-
butions to Γ(pp) are displayed in Fig. 4 (a).

−ωn1 ↓

ωn1 ↑ ωn2 ↑

D(iωn1 − iωn2)

−ωn2 ↓

ΓU

ΓU

(a)

D

G

ΓU ΓU

(b)

FIG. 4: (a) Higher order terms involving vertex corrections
of the electron-phonon vertex. (b) Electronic self-energy in-
cluding vertex corrections for the electron-phonon vertex.

The higher order corrections included in Eq. (28) can
be seen as a redefinition of λ defined in (24). The ver-

tex Γ
(ep)
U does not vary much up to the small phonon

scale, such that we can write approximately with gr =

Γ
(ep)
U (0, 0),

λ ≃ 2ρ0[g
r]2

∞
∫

0

dω
ρD(ω)

ω
= −ρ0[g

r]2D(0), (29)

where ρD(ω) can also include self-energy corrections due
to U . Such a redefined λ enters the approximate results
for Tc such as Eq. (26). We can also take into account the

effect that Γ
(ep)
U is a function of frequency and average

over a range given by the phonon Green’s function such
that

[gr]2 =
1

ND

∑

n2

Γ
(ep)
U (0, iωn2)

2D(iωn2), (30)

where ND =
∑

n2
D(iωn2).

We now consider the diagrams contributing to the

electron-phonon vertex Γ
(ep)
U . Some of them are shown

in Fig. 3. To order Ug we have

Γ
(ep,1)
U (iωn1 , iωn2) = g[1 + UΠ(iωn1 − iωn2)], (31)

where the particle-hole bubble is given by

Π(iωn) =
1

β

∑

m

G(iωn + iωm)G(iωm). (32)

Π(0) can be evaluated analytically at T = 0 and one finds
for the constant density of states Π(0) = −2 log(2)ρ0 and
for the semi-elliptic DOS Π(0) = − 4

3ρ0. It turns out that
a good empirical form for Π(iω) is given by

Π(iω) =
−aρ0

1 + b1|ω|+ b2ω2
. (33)

If G(iωn) is the non-interacting Green’s function in Eq.
(32) then a = 4/3 for the semi-elliptic DOS. In this case
we find that b1 = 1.3/D and b2 = 1.63/D2 give a good
fit.

We can sum up a whole series of diagrams of the type
discussed in Eq. (31) which corresponds to screening on
the RPA level,

Γ
(ep,RPA)
U (iωn1 , iωn2) =

g

1− UΠ(iωn1 − iωn2)
. (34)

Note the absence of a factor 2 in the denominator for the
Hubbard interaction. Since Π < 0 these diagrams lead to
an effective reduction of the electron-phonon coupling. If
one assumes that Π does not change much on the phonon
scale enforced via D(iωm), then one could approximate
gr = g/[1−UΠ(0)], and for the Bethe lattice gr = g/[1+
4µc/3].

There are three diagrams to order U2 in addition to
the screening term to correct the vertex (see the third
diagram in the Fig. 3 and Fig. 5).

ωn

ωm

ωn − ωm

(a)

ωn

ωm

ωn − ωm

(b)

ωn

ωm

ωn − ωm

(c)

FIG. 5: Vertex corrections to the electron-phonon vertex to
order gU2.

The first term, Fig. 5 (a), reads,

Γ
(ep,2,1)
U (iωn, iωm) = −gU2

β

∑

k

Π(iωk)G(iωk + iωn)×

×G(iωk + iωm). (35)

The second one, Fig. 5 (b), is of the form

Γ
(ep,2,2)
U (iωn, iωm) = −gU2

β

∑

k

Πpp(iωk)G(iωk − iωn)×

×G(iωk − iωm), (36)

where we have introduced the particle-particle bubble,

Πpp(iωn) =
1

β

∑

m

G(iωn − iωm)G(iωm). (37)
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At half filling we have G(−iωm) = −G(iωm), which im-
plies Πpp(iωn) = −Π(iωn). With this one obtains

Γ
(ep,2,2)
U (iωn, iωm) = −Γ

(ep,2,1)
U (iωn, iωm), (38)

and the first diagram is canceled. The third diagram,

Fig. 5 (c), is like the first one Γ
(ep,2,3)
U (iωn, iωm) =

Γ
(ep,2,1)
U (iωn, iωm). So altogether we have just one con-

tribution of the form (35) at half filling. Diagrams of
these type together with the RPA screening series were
discussed by Huang et al.55 for the two dimensional
Hubbard-Holstein model. The full electron-phonon ver-
tex was calculated with QMC. It was found that for val-
ues of U up to half the bandwidth the diagrammatics
and the non-perturbative result are in good agreement.
However, for large values of U , the perturbation theory
breaks down.

As can be seen from this analysis of the vertex correc-
tion, there is a considerable effect to suppress the cou-
pling g when U is finite. Including diagrams in Eq. (34)
and (35) we can write the approximate form,

gr

g
=

1

1 + aµc
− bµ2

c , (39)

where a = −Π(0)/ρ0 and

b =
1

ρ20β

∑

k

Π(iωk)G(iωk)
2. (40)

In the simplest case for free Green’s functions and a semi-
elliptic DOS we have a = 4/3 and b = 0.8237 numerically.
In a calculation strictly up to second order in U we have
instead of Eq. (39),

gr

g
= 1− aµc + (a2 − b)µ2

c , (41)

We plot results for (gr/g)2 in Fig. 6.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

µ
c

(g
r /g

)2

FIG. 6: (Color online) (gr/g)2 as a function of µc, full line
according to Eq. (39) and dashed line according to Eq. (41) .

We see that there occurs a substantial suppression, such
that already for µc = 0.25 the quantity (gr/g)2 is reduced
to about a half of its value for µc = 0. Since a2 > b,
the second term in Eq. (41) which dominates for larger
µc, leads to an upturn of the result. The result in Eq.
(39) overestimate the suppression effect for large values of
µc.

55 For the interacting system, the coefficients a and b
tend to be smaller than the values in the non-interacting
limit.

The vertex corrections Γ
(ep)
U also enter the electronic

self-energy as one class of diagrams contributing to 3(c).
This can be written as

Σ(iωn) = − 1

β

∑

m

Γ
(ep)
U (iωn, iωm + iωn)G(iωm + iωn)D(iωm)Γ

(ep)
U (iωm + iωn, iωn). (42)

This is shown diagrammatically in Fig. 4 (b). As dis-
cussed above, there are also other types of mixed dia-
grams 3(d), which cannot be written in the form of Eq.
(42).

C. Higher order corrections from purely U

We now deal with the higher order corrections purely
from U , i.e., of type 4(a). We will restrict our attention
only to the terms second order in U . The correspond-
ing contribution (crossed diagram) to the pairing vertex

reads

Γ(pp)(iωn1 , iωn2; iωn = 0) = U2Π(iωn1 + iωn2). (43)

The diagram is depicted in Fig. 7 (a).

A naive way of taking this into consideration would be to
assume that Π(iωn1 + iωn2) varies little for the scales un-
der considerations, such that for all frequencies we can as-
sume −ρ0U

2Π(0) = aµ2
c . Then this term can be treated

in the same way as the first order term in U , where we
can simply write µc → µ̄c = µc + aµ2

c . This quantity is
then subject to the full retardation effects and becomes
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−ωn1 ↓

ωn1 ↑

ωn3 ↓

U

−ωn2 ↓

ωn1 + ωn2 + ωn3 ↑

U

ωn2 ↑

(a)

σ σ

U

σ

−σ

−σ

U

(b)

FIG. 7: (a) Higher order diagram vertex contribution from
the Coulomb repulsion. (b) Second order in U diagram for
electronic self-energy.

µ̄∗
c ,

µ̄∗
c =

µ̄c

1 + µ̄c log(
D
ωph

)
, (44)

However, as analyzed in detail in Sec. V retardation ef-
fects are less efficient for the second order term when the
decay of Π(iω) is taken into account properly.

For the self-energy contributions of type 3(b), we will
only consider the standard second order diagram de-
picted in Fig. 7 (b),

Σ(iωn) = −U2

β2

∑

n1,n2

G(iωn−iωn1)G(iωn1+iωn2)G(iωn2).

(45)

IV. DIAGRAMMATIC CALCULATION FOR

THE SUPERCONDUCTING STATE

In this section we consider calculations in the super-
conducting state. We first present the application of
the standard theory to the HH model and then discuss
higher order corrections. These calculations allow us,
for instance, to study the gap at T = 0. The relevant
quantities are matrices in Nambu space. We have to cal-
culate the diagonal and off-diagonal components of the
self-energy. First we present the diagrams usually used
in the standard ME approach.

A. Standard diagrammatics, ME theory

To lowest order the diagonal self-energy is given by

Σ11(iωn) = −g2

β

∑

m

G11(iωm + iωn)D(iωm), (46)

and the off-diagonal self-energy reads,

Σ21(iωn) =
g2

β

∑

m

G21(iωm + iωn)D(iωm). (47)

D

F

(a)

F

(b)

FIG. 8: Diagrams for the off-diagonal self-energy (a) from
electron-phonon interaction and (b) for the Coulomb repul-
sion with the notation F = G21.

This is depicted in Fig. 8 (a) with the off-diagonal self-
energy marked as F .

In the limit of low temperature, T → 0, we use

1

β

∑

n

f(iωn) →
1

2π

∞
∫

−∞

dω f(iω). (48)

For the off-diagonal self-energy [see Fig. 8 (b)] we have
the Coulomb contribution (η → 0)

Σ21(iωn) =
U

β

∑

m

G21(iωm)eiωmη. (49)

Since G21(iωm) decays sufficiently rapidly the factor
eiωmη is usually not needed.

These are the equations, which are taken into account
in the standard theory. Often, the Coulomb term is then
projected onto the phonon scale (Coulomb pseudopoten-
tial), where only the reduced value µ∗

c enters. Making a
few simplifying assumption (see Sec. VB) we can derive
for the spectral gap at T = 0, ∆sp ≃ Σ21(0)/Z,

∆sp = 2ωr
0e

− Z

λ−µ∗
c (1+ λ

2
) . (50)

This result is very similar to the one for Tc. Equations
(46), (47), and(49) correspond to the standard approach
for the theory of conventional superconductivity.7,8

B. Higher order corrections

In a similar way as for the analysis of the pairing vertex
in Sec. III, we can classify terms for the self-energy into
different contributions. We will follow the same logic as
in the calculation for Tc and focus on the same type of
diagrams as before. Here we consider a subclass of type
3(c), which includes Coulomb vertex corrections of the

electron-phonon vertex of the type Γ
(ep)
U . It reads,
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Σ11(iωn) = − 1

β

∑

m

Γ
(ep)
U (iωn, iωm + iωn)G11(iωm + iωn)D(iωm)Γ

(ep)
U (iωm + iωn, iωn). (51)

Assuming a slow variation of ΓU on the phonon, scale a good approximation is of the form,

Σ11(iωn) ≃ − [gr]2

β

∑

m1

D(iωm1)G11(iωn + iωm1). (52)

Similarly we have for the off-diagonal self-energy,

Σ21(iωn) =
1

β

∑

m

Γ
(ep)
U (iωn, iωm + iωn)G21(iωm + iωn)D(iωm)Γ

(ep)
U (iωm + iωn, iωn). (53)

For Γ
(ep)
U (iωn, iωm) we consider the same diagrams as in

Sec. III B. We assume that D(iωm) is the full phonon
propagator and hence it contains corrections due to U as
well.

C. Higher order corrections from purely U

Of the contributions of the type 3(b) we discuss all terms to second order in U . In the Nambu perturbation theory
ones has (cf. Ref. 56),

Σ
(2,1)
11,U (iωn) = −

(U

β

)2 ∑

m1,m2

G11(iωn + iωm1)G22(iωm2)G22(iωm1 + iωm2). (54)

and

Σ
(2,2)
11,U (iωn) =

(U

β

)2 ∑

m1,m2

G21(iωn + iωm1)G12(iωm2)G22(iωm1 + iωm2). (55)

For the off-diagonal part we have

Σ
(2,1)
21,U (iωn) = −

(U

β

)2 ∑

m1,m2

G21(iωn + iωm1)G12(iωm2)G12(iωm1 + iωm2), (56)

Σ
(2,2)
21,U (iωn) =

(U

β

)2 ∑

m1,m2

G11(iωn + iωm1)G22(iωm2)G12(iωm1 + iωm2). (57)

The first diagram Σ
(2,1)
11,U (iωn) is the well known U2-

diagram which gives the first dynamic correction, also
in the normal phase as in Eq. (45). In comparison

Σ
(2,2)
11,U (iωn) gives a smaller contribution as it is propor-

tional to two off-diagonal Green’s function. Σ
(2,1)
21,U (iωn)

is also comparably small, but Σ
(2,2)
21,U (iωn) gives a sizeable

reduction of the superconducting state. We can see this
by writing it as

Σ
(2,2)
21,U (iωn) = −U2 1

β

∑

m1

Π(iωn + iωm1)G21(iωm1). (58)

where Π(iωn) is given in Eq. (32) with G(iωm) =
G11(iωm).

For small iωn a crude approximation is to write

Σ
(2,2)
21,U (0) ≃ −U2c1Π(0)

1

β

∑

m1

G21(iωm1), (59)

where it is assumed that G21(iωm1) is only finite in small
interval such that we can take Π(iωn) constant. Hence

we find a direct correction to the term Σ
(1)
21,U . With the
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result for Π(0), one has then approximately

Σ
(1)
21,U +Σ

(2,2)
21,U (0) ≃ U(1 + aµc)

1

β

∑

m1

G21(iωm1), (60)

This is the same effect that was discussed for Tc and
the crossed diagram [see Fig. 7 (a)] where naively the
effective µc becomes µ̄c = µc(1+aµc). In a more accurate
treatment, we have to take the frequency dependence into
account, and we will see that this leads to modifications.

V. ANALYTIC AND NUMERICAL RESULTS

FOR µ∗

c

In the last two sections we have analyzed the diagram-
matic expansion for the model in Eq. (2) and discussed
certain types of diagrams. In this section we want to
specifically study the pseudopotential effect without in-
cluding all other corrections. We are interested whether
the first and second order calculations give qualitatively
different results for µ∗

c . We present a combination of
analytical and numerical arguments. In the literature,
there exist a number of ways to calculate µ∗

c for a given
microscopic model. One early approach by Bogoliubov
et al. is based on an integral equation for the Coulomb
part in the pairing equation.9,18 Morel and Anderson17

gave an approximate solution for the Migdal-Eliashberg
equations including a screened Coulomb repulsion in the
T = 0 formalism. The pseudopotential µ∗

c also appears
naturally when superconducting pairing instabilities are
studied in a renormalization group framework.44,57 In the
following we first calculate µ∗

c directly by projecting the
pairing matrix to low energy. Analytic and numerical
results are compared. Then in a second approach we
calculate ∆sp from an approximate solution of the self-
consistency equation and thus extract µ∗

c . Finally we also
compute numerical results for Tc obtained from the in-
stability condition and analyze these results in terms of
µ∗
c .

A. Projection scheme

The starting point for the projection approach is the
pairing matrix in the form

Anm = δnm −Mnm, (61)

where Mnm is given in Eq. (13). This matrix becomes
singular at Tc. We introduce the “low-energy part”

Alow
nm = Anm −

∑

|ω′

n|,|ω
′

m|>ωph

Ann′ [Ā−1]n′m′Am′m, (62)

n,m such that |ωn|, |ωm| < ωph, and Ā is the matrix that
is left after the blocks given by |ωn| < ωph or |ωm| <
ωph were removed. If Ā−1 is not singular, Eq. (61) and
Eq. (62) become singular for the same parameters. This

way we can reduce the matrix size so that it only includes
frequencies for which the electron-phonon interaction is
important. The “folding in” of larger frequencies then
describes how retardation effects reduce the effects of the
Coulomb repulsion on low frequency properties.

We first consider the lowest order term of Γ(pp) in U
namely Γ(pp) = −U . We want to focus on the dependence
on the half-band width D and assume that the density
of states scales as

ρ(ε) =
1

2D
ρ̄
( ε

2D

)

, (63)

where ρ̄ is independent of D. For simplicity we assume
in the following that ρ̄(x) = 1 is a constant for |x| ≤ 1/2
and zero otherwise, such that ρ0 = 1/(2D). It is then a
rather good approximation to write

χ̃0(iωn) =

{

ρ0π/|ωn|, if |ωn| < D;

0, otherwise.
(64)

The matrix A then takes the form

Anm = δnm +
π

β
√

|ωnωm|
µc, (65)

which is separable and can be inverted exactly. We obtain

[Ā−1]nm = δnm − πµc

β
√

|ωnωm|[1 + πµc/β
∑′

k 1/|ωk|]
,

(66)

where
∑

′

k involves a summation over |ωk| > ωph. Re-
placing the summations in Eqs. (62, 66) by integrals, we
find

Alow
nm = δnm +

π

β
√

|ωnωm|
µc

− π

β
√

|ωnωm|
µ2
c log(D/ωph)

1 + µclog(D/ωph)
(67)

= δnm +
π

β
√

|ωnωm|
µc

1 + µclog(D/ωph)
.

Comparison of Eq. (65) and (67) leads to the Coulomb
pseudopotential, µc → µ∗

c , as given in in Eq. (1), and it
is the result of Morel and Anderson.17

We next consider the second order term of Γ(pp) in U
[Eq. (43)]. Because of the form of Π(iωn+ iωm) it is then
not possible to invert Ā in Eq. (62) analytically. For the
density of states [Eq. (63)] we can rewrite Π(iωn + iωm)
as

Π(iωn + iωm) = − 1

2D
f
(ωn + ωm

2D

)

, (68)

where f is independent of D. As in Eq. (33) it is quite
accurate to approximate f as

f(x) =
a

1 + b|x|+ cx2
, (69)

where a = 1.38, b = 2 and c = 5 are suitable values for
the constant DOS.
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We now want to calculate Alow in Eq. (62) to third
order in U . We use the result for Ā−1 in Eq. (66), which
neglects the second order term and is therefore only cor-
rect to order U . However, since the off-diagonal terms of
A in Eq. (62) are of the order U , the final result is of the
order U3. We obtain

∑

nm

A1n[Ā
−1]nmAm1

= χ̃0(iω1)
(U

β

)2 ∑

|ωn|≥ωph

χ̃0(iωn)
[

1 + µcf
( ωn

2D

)]2

−
(U

β

)3 χ̃0(iω1)

1 + µclog(D/ωph)
(70)

×
{

∑

|ωn|≥ωph

χ̃0(iωn)
[

1 + µcf
( ωn

2D

)]}2

,

where we focus on the diagonal result for the lowest fre-
quency ω1. Using the definition of χ̃0(iωn) in Eq. (5),
not the approximation in Eq. (64), and applying the limit
ωph ≪ D, we calculate the sums

∑

|ωn|≥ωph

χ̃0(iωn)f
( ωn

2D

)k

=
akβ

2D
log
(DAk

ωph

)

, (71)

where A0 ≈ 1.00, A1 ≈ 0.32 and A2 ≈ 0.20. For k = 1
and 2 the denominator of f reduces the integral for large
|ωn|, which effectively reduces the band width by a factor
Ak. This reduction is naturally larger for k = 2 than for
k = 1.

We now make an ansatz for µ∗
c

µ∗
c =

µc + aµ2
c

1 + µc log
(

D
ωph

)

+ aµ2
c log

(

D
ωph

A22

) , (72)

along the lines of the Morel-Anderson form, but includ-
ing a second order term and a corresponding logarithm.
Based on Eq. (71) we expect the effective band width
to be smaller for the second order term and we there-
fore allow for a different multiplying factor A22 in the
logarithm. Since the result in Eq. (70) is correct to
order U3 the factor A22 in Eq. (72) can be identified,
A22 = A2

1/A0 ≈ 0.10. The ansatz in Eq. (72) is then also
correct to order U3.

Fig. 9 shows the results obtained by performing the
calculations in Eq. (62) numerically using the first or
second order result in U for Γ(pp), and without intro-
ducing the approximation in Eq. (64). The figure also
shows the analytical result in Eq. (72). The second or-
der result is clearly larger than the first order result. For
µc

<∼ 0.5, Eq. (72) describes the full second order calcula-
tion rather well, while for larger µc there are corrections
to the analytic result which make µ∗

c still larger compared
to Eq. (72).

It is interesting to discuss the origin of the factor A22

in Eq. (72). In the present language the term log(D/ωph)
in the first order calculation arises from “folding in” large

frequency contributions from U in Eq. (62), which ex-
tend to approximately ω ∼ D. The second order term
in U is “folded in” in a similar way. However, as shown
by Eq. (69), the contribution from large frequencies is re-
duced, leading to the effective band width being reduced
by some factor for the second order contribution. This
reduction factor is surprisingly large (1/10). The origin
can be seen in Eq. (70), where the relevant terms are
a product of the first and second order contributions in
the first term, containing a factor two, and the first order
contribution in the second term. The prefactor two of the
logarithm in the first contribution leads to the factor A2

1,
and thereby a very small factor.

This shows that the second order terms contribute to
retardation effects, like the first order contribution. How-
ever, the reduction is substantially less efficient, as de-
scribed by the small factor A22. The band width there-
fore has to be very large to make this contribution to
retardation efficient.
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FIG. 9: The pseudopotential µ∗

c as a function of µc for
D/ωph = 100 and βωph = 240. The figure shows the cal-
culated results using both the first order and first plus second
order result for Γ(pp) as well as the approximation in Eq. (72).

It is interesting to consider the second order contribution
alone. We can then calculate results accurate up to order
U4. The matrix Ā−1 can be approximated by a unit
matrix. Making an ansatz for µ∗

c and identifying with
the fourth order result, we obtain

µ∗
c =

aµ2
c

1 + aµ2
c log

(

DA2

ωph

) , (73)

where A2 = 0.20 was given above. The result of a full cal-
culation is compared with the analytical approximation
[Eq. (73)] in Fig. 10. Also in this case the analytical result
agrees rather well with the full calculation for µc

<∼ 0.5.
Finally, we compare the first and second order result as
a function of log(D/ωph) in Fig. 11. Different values for
µc were used in the first and second order calculations,
and chosen such that both calculations gave the same
µ∗
c for D/ωph = 10. It is quite interesting that µ∗

c then
decreases in a very similar way in the two cases.
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FIG. 10: (Color online) µ∗

c as a function of µc for D/ωph = 100
and βωph = 240. The figure shows the calculated value using

just the second order result for Γ(pp) as well as the analytical
approximation in Eq. (73).
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FIG. 11: (Color online) µ∗

c as a function of log(D/ωph) for
βωph = 240 according to a first (µc1 = 0.5) and second (µc2 =
0.2756) order calculation. µc1 and µc2 were chosen so that the
same µ∗

c was obtained in the two calculations for D/ωph = 10.

We are now in the position to discuss the results for µ∗
c .

We have performed calculations using the first or sec-
ond order expression for Γ(pp). We then either calcu-
lated Eq. (62) numerically, without any further approx-
imations. Alternatively, we performed analytical calcu-
lations involving the neglect of additional higher order
terms in U .

When the first order result for Γ(pp) is used, the ana-
lytical calculations can be performed without further ap-
proximations. This leads to the Morel-Anderson result,
which has two important features. When D/ωph → ∞,
µ∗
c → 0, and when U → ∞, µ∗

c → 1/log(D/ωph) stays
finite and saturates. Is this still true when the second
order contribution to Γ(pp) is included?

The analytical results in Eqs. (72,73) have these prop-
erties. However, these results were not derived but are
ansätze inspired by the Morel-Anderson result and ad-
justed so that they agree with the analytical calculations
to low order in U . Actually, Figs. 9,10 show that although

retardation effects strongly reduce µ∗
c , there is no sign

that the values saturate as U becomes very large. In this
sense there is an important difference from the Morel-
Anderson result. For these large values of U , higher or-
der effects in Γ(pp) become important, and it is not clear
how these influence the conclusions.

The second issue is how µ∗
c is influenced when D/ωph

becomes very large. As is clear from Eqs. (72,73), retar-
dation effects also reduce the second order contribution
to µ∗

c . This is also seen in Fig. 11. However, the effective
band width is smaller due to the frequency dependence of
the second order contribution and retardation effects are
less efficient. Nevertheless, the second order contribution
goes to zero as D/ωph → ∞. In this context Fig. 11 may
seem surprising. One might have expected the second
order contribution to drop more slowly with D/ωph. To
understand this one can study Eqs. (72,73) and find the
µc1 and µc2 which lead to the same µ∗

c in the first and
second order calculation. Because of the less efficient re-
tardation effects for the second order term, µc2 has to be
chosen smaller than would otherwise have been the case.
The criteria for the choice of µc2 is, however, independent
of D. Thus the two curves in Fig. 11 should be identi-
cal according to Eqs. (72,73). The small deviation is due
to the inaccuracies of these analytical results for finite
U . Fig. 11, nevertheless, nicely illustrates how both the
first and second order contributions are systematically
reduced as D/ωph is increased.

B. Calculations for the gap at T = 0

In this section we conduct a complimentary analysis
to extract results for µ∗

c . We calculate the spectral gap
of the superconductor ∆sp at T = 0, and show how µ∗

c

enters naturally in the analytical description. We present
this analysis to order U2. The approach here is similar
to the original work by Morel and Anderson,17 which in-
cluded only the first order term in U and was carried out
in the T = 0 formalism. Here, we work on the imag-
inary axis in the limit T → 0. Starting point is the
self-consistency equation for the off-diagonal self-energy,

Σ21(iωn) =
1

β

∑

m

G21(iωm)K(iωn, iωm), (74)

where the kernel K(iωn, iωm) includes the following
terms,

K(iωn, iωm) = g2D(iωn − iωm) + U − U2Π(iωn + iωm).
(75)

The second and the third term are as given in Eq. (49)
and Eq. (58). The expression for G21(iωm) was given in
Eq. (15) and a semi-elliptic DOS is used in the following.
We do not consider vertex corrections of the electron-
phonon vertex here, and we simply use the form,

g2D(iωn) = − λ

ρ0

1

1 +
(

ωn

ωph

)2 . (76)
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The effect of the diagonal self-energy is taken into ac-
count in the analytical calculations for completeness with
a Z-factor for small frequencies, |ωn| < ωph. In the nu-
merical calculations in this section it is neglected.

The self-consistency equation (74) can be solved nu-
merically by iteration to find a solution for Σ21(iωn). For
an analytical solution, we need to make some approxima-
tions. At half filling we use for the Green’s function for
|ωn| < ωph,

G21(iωn) ≃ −1

t

Σ21(iωn)
√

Z2ω2
n +Σ21(iωn)2

(77)

for ωph < |ωn| < D,

G21(iωn) ≃ −1

t

Σ21(iωn)

|ωn|
(78)

and for |ωn| > D

G21(iωn) ≃ −Σ21(iωn)

ω2
n

≃ 0. (79)

As discussed, Π(iω) is well approximated by the form
given in Eq. (33). As noted by Morel and Anderson17 the
ω-dependence of the off-diagonal self-energy is very sim-
ilar to the one of the pairing kernel K(iωn, iωm). Hence,
a suitable ansatz for the off-diagonal self-energy is,

Σ21(iω) = ∆3+
∆2

1 + b1|ω|+ b2ω2
+
∆1 −∆2 −∆3

1 +
(

ω
ωph

)2 . (80)

It contains the parameters ∆i. We assume that b1 and
b2 take the same values as what is found for Π(iω) in
Eq. (33). By comparing the ω-dependence with the full
numerical solution we find reasonable accuracy for this
assumption. In general we have to solve then for the
parameters three ∆1, ∆2, and ∆3 by evaluating the self-
consistency equation at suitable values of iω. Unfortu-
nately, the general case is algebraically very involved. It
will be discussed to some detail in the appendix. Here
we only treat the first and purely second order cases to
see the major effects.

For the first order case, we set ∆2 = 0 and omit the
U2-term in Eq. (75). We use the self-consistency equa-
tions Σ21(0) = ∆1, and Σ21(iD) ≃ ∆3. When evaluat-
ing the Σ21(0) and Σ21(iD) according to Eq. (74), we
approximate the integrals in order to find an analytic so-
lution (see appendix). We also assume ∆i ≪ ωph ≪ D
for simplification. Then for a self-consistent solution the
parameters ∆1 and ∆3 have to satisfy the equations

∆1 =
λ− µc

Z
∆1 log

(2Zωph

∆1

)

+ a0λ∆3 − µc∆3 log
( D

ωph

)

,

∆3 = −µc

[∆1

Z
log
(2Zωph

∆1

)

+∆3 log
( D

ωph

)]

. (81)

The coefficient a0 is given in the appendix. This yields
the non-trivial solutions

∆1 = 2Zωphe
− Z

λ−µ∗
c (1+a0λ) , ∆3 = −2Zωphµ

∗
c

λ− µ∗
c

e
− Z

λ−µ∗
c (1+a0λ) ,

(82)

where the standard result for µ∗
c is obtained,

µ∗
c =

µc

1 + µc log(
D
ωph

)
. (83)

Note that the gap in the spectral function ∆sp, found
from the pole of the Green’s function, occurs at |ω| =
∆1/Z in this approximation.

Accounting for the approximations made in this deriva-
tion we can use this form with three fitting parameters
as in Eq. (27),53

∆sp = c1ωphe
−

Zc2
λ−µ∗

c (1+c3λ) , (84)

where c1 > 0, c2 > 1. We can determine the parameters
c1, c2 by fitting to the numerical solution of Eq. (74) for
µc = 0 in the regime 0 < λ < 0.5. Note that in contrast
to the analytical solution the result of the numerical so-
lution depends in general on the bandwidth W . It only
becomes independent in the large bandwidth limit.58

For µc = 0, D = 8/ωph = 80, we find with c1 = 1.7,
c2 = 1.07 good agreement of the formula (84) with the
numerical results for λ < 0.5 as can be seen in Fig. 12.
Note that for the Holstein model and larger values of
λ, the result in Eq. (84) underestimates ∆sp as already
pointed out by Allen and Dynes.54
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FIG. 12: The spectral gap ∆sp as calculated from the numer-
ical solution of Eq. (74) as a function of λ for D/ωph = 80 in
comparison with the analytical form in Eq. (84) with the the
parameters c1 = 1.7, c1 = 1.07.

For fixed λ = 0.5, we also compare the µc-dependence of
the analytical result in Eq. (84) with the full numerical
solution. In Fig. 13 a comparison can be found, where
we used the same values for c1 and c2 as for µc = 0 and
found that c3 = 0.8 gives a reasonable fit.
We analyze the situation including only the U2-term
now. We set ∆3 = 0 in this case and omit the con-
stant U -term in Eq. (75). To determine the parame-
ters ∆1 and ∆2, we use the following two conditions:
Σ21(0) = ∆1 =

∑

iN1i∆i, and Σ21(iD) + Σ21(−iD) ≃
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FIG. 13: (Color online) The spectral gap ∆sp as calculated
from the numerical solution of Eq. (74) with different kernels
as a function of µc for D/ωph = 80 in comparison with the
analytical result in Eq. (84).

2∆2/(1 + b1D+ b2D
2) =

∑

i N2i∆i. This yields the self-
consistency equation,

1 = N11 +
N12N21
2

1+b1D+b2D2 −N22

. (85)

Making similar approximation as in the first order calcu-
lation we find for the coefficients Nij ,

N11 =
1

Z
(λ− aµ2

c) log(T1), (86)

and

N21 = − 2

Z

aµ2
c

1 + b1D + b2D2
log(T1). (87)

with

T1 =
Zωph +

√

(Zωph)2 +∆2
1

∆1
. (88)

One also finds

N12 = a12λ− aµ2
c log

( D

ωph
Ā12

)

, (89)

and

N22 = −aµ2
c

2

1 + b1D + b2D2
log
( D

ωph
Ā22

)

. (90)

The expressions for a12, Ā12 and for Ā22 can be found
in the appendix. The coefficients Ā12 < 1 and Ā22 < 1
appear due to additional terms to 1/ω in the integrand
which accelerate the decay towards higher energy. Hence,
they lead to a reduced effective bandwidth, D → Ā22D
as discussed in the previous section. The solution of Eq.
(85) yields

∆1 = 2Zωphe
− Z

λ−µ∗
c (1+a12λ)−µ∗

c,1 , (91)

with

µ∗
c =

aµ2
c

1 + aµ2
c log

(

D
ωph

Ā22

) , (92)

and

µ∗
c,1 =

log( Ā22

Ā12
)a2µ4

c

1 + aµ2
c log

(

D
ωph

Ā22

) . (93)

The result for µ∗
c has the same form as what was derived

in Eq. (73). In addition a higher order term µ∗
c,1 ap-

pears. In the first order calculations all higher order con-
tributions cancel in the numerator of the expression for
µ∗
c . However, in the second order calculation this is not

the case anymore and an additional term remains. The
coefficient log(Ā22/Ā12) does not increase with the band-
width W and therefore the whole term becomes small in
the large bandwidth limit due to the logarithm in the de-
nominator. For the relevant values one has Ā22/Ā12 ≈ 2
such that the coefficient of the µ2

c is relatively small and
the term does not contribute much for small values of µc.
For larger values, however, it does play a role. Thus it
can account for the discrepancy between the numerical
and the analytical result from Eq. (73) observed in Fig.
10, where the numerical result does not seem to saturate.

We would like to check these analytical findings with
the full numerical solution of the self-consistency equa-
tion. Formally, we had found very similar results to
the ones of the last section derived from the projection
scheme. For the comparison with the numerics we take
these expressions and use the values for the parameters
derived there, i.e. we use Ā22 → A2 , where A2 = 0.197
or log(A22) = −1.624. We omit the term µ∗

c,1, and for c1,
c2 we take the same values as above, and we use a12 = c3.
The reason for this procedure is that due to a number of
approximations involved in the analytic calculation the
results for these coefficient do not tend to be very accu-
rate. Moreover, we aim for a unified description with as
little parameters as possible.

The result for the “only U2”-calculation is added in
Fig. 13 and compared with the full numerical solution.
We find good agreement. For small values of µc the re-
duction of ∆sp is smaller than for the first order term,
but then ∆sp drops more rapidly. Notice that the second
order result for µ∗

c is analogous in the form to the first
order calculation. The difference is the factor Ā22 < 1 in
the logarithm in the denominator. Hence, the retarda-
tion effects are less effective in this case as discussed in
the previous section. The results here are derived inde-
pendently from the arguments of the last section, but are
fully consistent with them. The higher order term µ∗

c,1 is
not very important for the values of µc appearing in Fig.
13.

In the general case including both the first and second
order terms in Eq. (75), we have to solve for three pa-
rameters and hence have three self-consistency equations
to be solved. In general this can be written as a matrix
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equation ∆ = M∆. Algebraically this becomes rather
lengthy and yields a number of different terms for µ∗

c , as
discussed in the appendix. To simplify the discussion, we
use results in the form of Eq. (84) with µ∗

c as introduced
in Eq. (72),

µ∗
c =

µc + aµ2
c

1 + µc log(
D
ωph

) + aµ2
c log

(

D
ωph

A22

) , (94)

for comparison with the numerical results. In Fig. 13 we
have included the numerical result of Eq. (74) with the
full kernel in Eq. (75). We also included the analytical
description based on Eq. (84) and (72) with the same
value log(A22) = −2.28 or A22 = 0.1022 as in the pre-
vious section. We find a rather good agreement for the
range of values of µc.

We can accurately calculate the dependence of the
spectral gap ∆sp on µc for given λ, D and ωph numeri-
cally. However, it is not possible to calculate µ∗

c directly
from the self-consistency equation (74). If we assume
that the form of Eq. (84), which neglects higher order
terms of the form Eq. (93), gives a good description and
we can solve for µ∗

c ,

µ∗
c =

λ

1 + c3λ
+

Zc2

log
(

∆sp

c1ωph

)

(1 + c3λ)
. (95)

As higher order terms are neglected this is not the com-
plete result for µ∗

c for the whole range of µc. However, if
µ∗
c is interpreted as the quantity in competition with λ

to cause superconductivity, then this form is useful and
the inversion of Eq. (84) can give us an estimate for µ∗

c .
The results for µ∗

c obtained from Eq. (95) together
with the analytical estimates in Eqs. (1,73,72) can be
found in Fig. 14.
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FIG. 14: (Color online) µ∗

c as a function of µc for D/ωph = 80
computed from Eq. (95). We show in comparison the result
for the first order and the second order calculation. The fit
parameters are c1, c2 and c3 are the same as above.

The results look very similar to the ones in the previ-
ous section in Fig. 9. For small µc, µ

∗
c increases linearly

with µc in Eqs. (1,72). This implies an initially rela-
tively large drop of superconductivity once the Coulomb
repulsion becomes finite (see Fig. 13). However, then the
curves bend and the analytical results saturate. Only for
very small values of µc the first and second order results
are in agreement, otherwise the second order result is
substantially larger. For the first order calculation the
upper boundary is given by µ∗

c,max = 1/ log( D
ωph

) inde-

pendent of µc. It is reached both in the limit of large µc

and large ratio D/ωph. For instance for D/ωph = 1000,
we have µ∗

c,max ≈ 0.145, similar to what is usually used in
the literature. Using µc = 0.5 for the screened Coulomb
interaction gives with the same ratio for D/ωph the value
µ∗
c = 0.112 (see Tab. I).

D/ωph 10 100 1000

µ∗

c in Eq. (1) 0.232 0.151 0.112

µ̄∗

c in Eq. (44) 0.286 0.172 0.123

µ∗

c in Eq. (72) 0.386 0.204 0.139

TABLE I: Exemplary values for µ∗

c for µc = 0.5.

D/ωph 10 100 1000

µ∗

c in Eq. (1) 0.303 0.172 0.127

µ̄∗

c in Eq. (44) 0.366 0.199 0.136

µ∗

c in Eq. (72) 0.700 0.268 0.166

TABLE II: Exemplary values for µ∗

c for µc = 1.

We can see that the higher order results for µ∗
c are

generally substantially larger than in the first order cal-
culation. In particular the results are larger than the
simple minded estimate, µ̄∗

c in Eq. (44), where retarda-
tion effects are the same for the first and second order
term. For this expression the limits of large bandwidth
and large µc lead to the same result µ̄∗

c,max = 1/ log( D
ωph

),

which is however reached already for smaller values, e.g.
for µc = 0.5 we have µ̄∗

c = 0.1233. In contrast, the re-
sult in Eq. (72) goes to µ∗

c,max = 1/ log( D
ωph

A22) in the

limit of large µc and to µ∗
c,max = 1/ log( D

ωph
) in the limit

of a very large bandwidth. With the estimate for A22

above we find for D/ωph = 1000 that in the large µc

limit µ∗
c,max ≈ 0.216 is about 50 % larger than the first

order estimate. For comparison we give some results in
tables I and II for µc = 0.5, µc = 1, and the ratios
D/ωph = 10, 100, 1000. Notice, that the more accurate
result for µ∗

c as obtained from the numerical calculation
and shown in Fig. 9 can be still significantly larger than
the estimate in Eq. (72). We conclude that the usual
result in Eq. (1) substantially underestimates µ∗

c for in-
termediate and larger values of µc. However, for very
large values of D/ωph retardation effects are operative in
all cases and lead to a strongly reduced value of µ∗

c .
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C. Calculations for Tc

For completeness we also include a brief section on the
critical temperature Tc. It is analyzed similar to the last
section. The basis for the calculations is the pairing ma-
trix in Eq. (13). For the pairing vertex we use the same
terms as in the previous section in Eq. (75),

Γ(pp)(iωn1 , iωn2 ; 0) = −K(iωn1, iωn2). (96)

The effect of the Z-factor is neglected. Then with the
bare Green’s function and a semi-elliptic DOS

χ̃0(iωn1 ; 0, 0) = −G(iωn1)

iωn1

= ρ0
π

2t

(
√

1 +
4t2

ω2
n

− 1

)

.

(97)
Π(iωn) is calculated numerically from the free Green’s
function. With this we compute the matrix Mn1,n2 in Eq.
(13) and search for the largest eigenvalue. We compare
the results for Tc for three different calculations: (1) in-
cluding only the U -term, (2) including only the U2-term
and (3) including both.

Apart from the first order calculation it is not easy
to find a good analytic approximation for the eigenvalue
equation (12). In principle, one can do something similar
to what has been done in the last section and make an
appropriate ansatz for the eigenvector. To first order in
U this works reasonably well. We find a result of the
standard form,

Tc = c1ωphe
−

Zc2
λ−µ∗

c (1+c3λ) . (98)

where µ∗
c is given by Eq. (83). For the higher order

analysis we did not pursue an analytical solution, and
instead also assume Tc as in Eq. (98) and for µ∗

c the
form in Eq. (72).

First we fix the constants c1 and c2 by fitting to the
result for µc = 0, see Fig. 15. We take the value c1 =
1/1.2 ≈ 0.833 as in Ref. 54 and find a good fit for c2 =
1.04. Similar as before the agreement is only good up to
values of λ < 0.5.
In Fig. 16 we give the numerical result for Tc as a func-
tion of µc for the first order calculation, only the second
order and first plus second order. We have kept λ = 0.5
constant.
Tc decays in a very similar way as the spectral gap when
µc is increased. We included results from the analytic
fit form in Eq. (98) with the value c3 = 0.8. For the
first order calculation, we find good agreement with the
numerical result for the case λ = 0.5. For the second
order results we use the same parameters as before and
the fits are reasonable, i.e. they show that the functional
form is close to the actual result.

Note, that in spite of the identical form for the pairing
kernel, the results for Tc here and the ones for the gap at
T = 0 in the previous section are obtained from two in-
dependent calculations. The results indicate that for the
range of parameters studied the analytical expressions
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FIG. 15: (Color online) Tc as a function of λ for D/ωph = 80.
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FIG. 16: (Color online) Tc as a function of µc for D/ωph = 80.

Eqs. (1,73,72) describe the effect of µ∗
c on Tc quite accu-

rately. In particular the results are very similar to what
has been found in the projective approach before, and
hence a consistent picture emerges. We conclude that
higher order dynamic effects, and in particular the sec-
ond order contributions, give an important correction to
the usual results for the Coulomb pseudopotential. Not
only does the higher order term give a direct increase of
the coupling, as would be the case in expression in Eq.
(44) it also leads to a reduced effective bandwidth in the
logarithm in the denominator. This is an effect which to
our knowledge has not been discussed in the literature so
far. In the following section we analyze how these effects
are manifest in the non-perturbative DMFT calculations.

VI. DMFT AND PERTURBATIVE RESULTS

In this section we put the analysis of the previous
sections together and compare with non-perturbative
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DMFT calculations, which include all possible renormal-
ization effects. We first clarify that it is therefore very
important to work with renormalized parameters for the
interpretation of the results. Then we demonstrate up
to which interaction strengths the perturbative results
derived in the previous section are reliable.

We focus on calculations for the spectral gap ∆sp at
T = 0 and consider a half filled band. The spectral gap
∆sp is extracted directly from the gap edges of the di-
agonal spectral function. It is usually well approximated
by the product zΣ21(0), but it can be a bit larger due to
the frequency dependence of the off-diagonal self-energy.
For an interpretation of the DMFT results we need to
compare with the perturbation theory (PT) results. We
include the following terms for the self-consistent PT cal-
culation: For the diagonal and off-diagonal self-energy we
use Eqs. (51) and (53). The vertex is approximated by
the contributions from RPA screening in Eq. (34) up to
second order in U and the second order in U corrections
in Fig. 5. For a small phonon frequency, the ω = 0 value
of the vertex function provides a good approximation.
From the diagrams in U we take Eqs. (49), and (54)-
(57) into account. The phonon propagator is taken as an
input from DMFT calculations and not calculated self-
consistently, similar to what has been done in Ref. 13.

To get a feeling for the renormalization effects let us
first consider calculations, where the bare parameters
λ0 = ρ02g

2/ω0 and ω0 in the Hamiltonian (2) are kept
fixed. For µc = 0 the system has a superconducting solu-
tion and we analyze how the gap ∆sp is affected, when µc

becomes finite. For λ0 = 0.308 and λ0 = 0.382, the cor-
responding spectral gaps ∆sp are shown in Fig. 17. For
comparison we have also included the results from the
self-consistent PT as explained above in Fig. 17. These
are seen to be in very good agreement with the DMFT
result.
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FIG. 17: (Color online) Behavior of the spectral gap ∆sp and
zΣoff (0) for constant λ0 = 0.308 and λ0 = 0.382 (ω0 = 0.1 in
both cases) as a function of µc.

We find a rapid decrease of ∆sp when µc becomes finite,

similar to the results in Fig. 13. However, notice that
∆sp goes to zero for even smaller values of µc ∼ 0.3.
Naively one could conclude that µ∗

c is even larger than
what was discussed in the last section even though we
are still at very weak coupling in U . As we will see, how-
ever, this drastic reduction of ∆sp has a different origin.
It can be understood by analyzing the relevant effective
parameters and the PT results.

Since, as shown in Sec. V many aspects of the PT are
well described by approximate analytical results, such as
Eq. (72) for µ∗

c or Eq. (84) for ∆sp, it makes sense to
use those equations to analyze the results. In Sec. V the
equations were used in terms of bare parameters, but to
understand the DMFT results we need to use renormal-
ized parameters. Those effective parameters extracted
from the DMFT calculation are shown in Fig. 18 as func-
tion of µc.
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FIG. 18: (Color online) The effective parameters (a) the
quasiparticle renormalization z, (b) the renormalized phonon
frequency ωr

0/ω0 (c) the renormalized coupling constant
(gr/g)2 (the full line corresponds to the result with a and b
obtained from the free Green’s functions) and (c) the effective
λ as a function of µc.

The z-factor in Fig. 18 (a) increases moderately with µc.
According to Eq. (84) with Z = z−1 this would actually
help superconductivity, so it can not be responsible for
the reduction in Fig. 17. The renormalized phonon fre-
quency ωr

0 in Fig. 18 (b) also increases with µc showing
that corrections to the phonon self-energy and electron-
phonon vertex from finite U are important. In the pref-
actor of Eq. (84) with ωph = ωr

0 this leads to an en-
hancement of ∆sp, whereas µ∗

c increases with ωr
0 which

leads to a reduction of ∆sp. Both effects are not strong
enough to be decisive. The strongest and most impor-
tant effect of µc can be seen in Fig. 18 (c) and (d), where
we plot the renormalized coupling gr from Eq. (39) and



19

the effective λ according to Eq. (29). The parameters
a and b in Eq. (39) are calculated from the full Green’s
functions. We find that the renormalized coupling gr de-
creases substantially with µc. In addition the phonon
self-energy is modified for finite U . Therefore, the effec-
tive λ becomes much smaller. So the main reason for the
rapid suppression of ∆sp is the strong effect of the cor-
rections to the electron-phonon vertex and to the phonon
self-energy, such that the effective λ decreases.

Using values ωph = ωr
0 we can calculate results for the

Coulomb pseudopotential µ∗
c according to Eq. (72). The

ratio of electron over phonon scale is with D/ωr
0 ∼ 35 not

as large as in the last section, and thus retardation effects
not as effective. For the largest value µc ≃ 0.318 we find
µ∗
c ≃ 0.2. At this µc we have λ ≃ 0.45 and the analytic

expression in Eq. (84) yields ∆sp/ω0 ≃ 0.0002, where
Z = z−1, ωph = ωr

0, and for the fitting parameters ci
take the same values as in Sec. VB. This is in agreement
with the DMFT finding that superconductivity goes to
zero then. If we compare the results for the spectral gap
according to Eq. (84) with the renormalized parameters
in Fig. 18 with the results from the full calculation in
Fig. 17 we find good agreement. Hence we conclude that
the superconducting state at small µc can be well under-
stood in terms of the effective parameters λ, ωr

0, z and
µ∗
c and the approximate equations for µ∗

c and ∆sp.

The conclusion up to this stage is that the strongest ef-
fect of the Coulomb repulsion in the DMFT calculations
is to renormalize the effective λ via electron-phonon ver-
tex and phonon propagator such that superconductivity
drops to zero rapidly. Even at very weak coupling these
effects play an important role in the Hubbard-Holstein
model and must be taken into account. Since in this
work our main interest is the effectiveness of retardation
effects visible in the direct competition between λ and
µ∗
c , we will offset the vertex-correction effect in the fol-

lowing. We do this by appropriately adjusting the bare
parameters, i.e., increasing λ0 and ω0. We proceed by
keeping λ = λ(µc) as defined in Eq. (29) constant. For
gr we rely on the perturbative results. This was found
to give a relatively good description up to U ∼ W/2.55

First we do a calculation for certain bare values ω0 and
λ0 at µc = 0. From the phonon spectral function we can
then extract the value ωr

0 and λ from (29) where, gr = g.
Then we choose a finite value of µc. We have to in-
crease λ0 and ω0, such that ωr

0 roughly equals the U = 0
value and λ remains approximately the same according
to Eq. (29). For the renormalized coupling gr entering
Eq. (29) we consider two conditions: (a) the second or-
der expansion as in Eq. (41) and (b) the RPA series plus
the second order terms as in Eq. (39). With the set of
bare parameters (λ0, ω0, µc) found from this procedure
we also do perturbative calculations for comparison. We
distinguish PT-a, which includes up to second order di-
agrams for the electron-phonon vertex, and PT-b which
includes the RPA series plus the second order terms for
the electron-phonon vertex. The results of such a cal-
culation, where λ ≃ 1 according to condition (a) and

ωr
0/D ≃ 0.025 are shown in Fig. 19 as ∆sp vs µc.
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FIG. 19: (Color online) Behavior of the DMFT result for the
spectral gap ∆sp and zΣoff(0) for constant λ ≃ 1 according to
condition (a) for the vertex corrections (see text), ωr

0 ≃ 0.05
as a function of µc in comparison with PT-a and PT-b (see
text) and the analytic formula in Eq. (84).

The DMFT results show a steady decrease of ∆sp on
increasing µc. Since the effective λ and ωph are kept
constant the diminution of ∆sp is now due to the com-
petition with the Coulomb repulsion µc. To understand
the result quantitatively we compare it with the pertur-
bative calculations PT-a, PT-b and the analytic results
based on Eq. (84) using the effective parameters and µ∗

c

according to Eq. (72) with the value of A22 as in Sec. V.
We find a relatively good agreement of the DMFT result
with PT-a and the analytic formula up to µc ∼ 0.5. This
demonstrates that (i) the effective parameter description
is appropriate, (ii) the electron-phonon vertex correction
according to condition (a) is suitable and (iii) that the
derived higher order form for the Coulomb pseudopoten-
tial in Eq. (72) captures correctly the results of the PT
and the of the full DMFT calculation. This validates the
analysis of the Sec. V in a more complete calculation and
it corroborates our findings for µ∗

c and retardation effects
by comparison with non-perturbative DMFT up to inter-
mediate values of µc ∼ 0.5. For larger values of µc, higher
order correction enhance the value of µ∗

c such that ∆sp

is suppressed stronger. In addition the electron-phonon
vertex is not well described by condition (a) anymore.
The PT-b calculation agrees with DMFT quite well up
to values µc ∼ 0.3, but then overestimates the reduction
of the electron-phonon vertex and therefore leads to a too
strong suppression of superconductivity.

To extend the present analysis to larger values of µc,
one needs to find reliable estimates for the full renor-
malized electron-phonon vertex Γ

(ep)
U . A higher order

perturbative analysis or non-perturbative calculation for
this quantity could provide this. A consistent calculation
up to certain order in µc should then also include higher
order corrections to the self-energies, which will compli-
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cate the analytical calculation for µ∗
c further. This is

beyond the scope of this work.

VII. CONCLUSIONS

For the occurrence of conventional superconductivity
it is important that on the one hand there is a sizeable
electron-phonon coupling and on the other that the detri-
mental effects of the Coulomb repulsion are reduced suf-
ficiently by screening and retardation effects. We have
stressed in this article that while the effect of the for-
mer can be described in a controlled fashion by Migdal-
Eliashberg theory, the standard approach to the latter is
based on an uncontrolled approximation, since there is
no Migdal theorem for the Coulomb interaction. For the
Hubbard-Holstein model we have analyzed this issue in a
controlled framework by a combination of perturbative
calculations and non-perturbative DMFT calculations.
We have shown that the conventional arguments based on
the lowest order diagrams become modified when higher
order corrections are taken into account. There is still
a reduction of the Coulomb repulsion due to logarithmic
terms in the denominator. This demonstrates that indeed
a small value of µ∗

c can be obtained due to retardation ef-
fects even when higher order corrections are considered.
Thus our results support the arguments by Morel and
Anderson qualitatively. However, the effective energy
scale separation is reduced. This is due to the dynamic
behavior of the higher order diagrams which make retar-
dation effects less operative. This result was shown ex-
plicitely in two independent calculations in a combination
of analytical and numerical arguments. By studying the
occurrence of superconductivity with DMFT, where all
higher order corrections are present, we were able corrob-
orate our findings up to intermediate coupling strength.
The perturbative approach allowed us to distinguish dif-
ferent renormalization effects. Our analysis is limited to
intermediate coupling strength due to the difficulty to
reliably estimate the vertex corrections to the electron-
phonon vertex. Non-perturbative calculations for this
quantity would be desirable.

We conclude that the usual expression for µ∗
c in Eq. (1)

is only valid for small values for µc. The second order cor-
rections lead to less efficient retardation effects as shown
in Eq. (72),

µ∗
c =

µc + aµ2
c

1 + µc log
(

Eel

ωph

)

+ aµ2
c log

(

α Eel

ωph

) , (99)

where we found α ≈ 0.1 for a typical large energy separa-
tion of electron and phonon scale Eel/ωph. The coefficient
a is given by the limit ω → 0 of the particle-hole bubble Π
divided by ρ0, the DOS at the Fermi energy, and α can be
estimated from the decay of Π with ω. In addition higher
order terms appear such that µ∗

c does not saturate in the
limit of large µc. Thus, for systems with sizeable effec-
tive Coulomb repulsion we should expect larger values

for µ∗
c than the traditional quote µ∗

c ∼ 0.1. As a conse-
quence the values for µ∗

c are not as universal as sometimes
claimed and predictions for Tc can be unreliable.

It is premature to draw detailed conclusion from our
calculations for real materials such as lithium, since the
Hubbard model is not an accurate description for itin-
erant metallic systems, which are better described by an
electron gas model. Nevertheless one can understand our
results as a qualitative trend, which shows that for sys-
tem with less efficient screening, such that µc is larger, we
expect an enhanced value of µ∗

c as compared to what is
traditionally quoted. This could be expected in systems
with larger values of rs. Hence our conclusions would
seem to be line with the observation in a number of ma-
terials, such as Li with enhanced µ∗

c , and what is quoted
in work based on DFT calculations.16 Similar conclusions
are important for systems where the ratio Eel/ωph is re-
duced from the usual scenario, which could be the case in
picene. We would like to stress, however, that a more ac-
curate attempt of understanding the problem should also
include the dynamic effect of screening the bare Coulomb
repulsion in a metal, which was not taken into account
explicitely. As discussed in the introduction this can lead
to very small and even negative values of µ∗

c . We expect
that the combination of these effects and the corrections
studied here, which lead to an enhancement, will even-
tually lead to the physical values occurring in nature.
More detailed calculations are required to fully resolve
this quantitatively. As long as µ∗

c can not be estimated
reliably, the predictive power of the theory of electron-
phonon superconductivity is limited.
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Appendix A: Details for the calculation of the

spectral gap

In this appendix we collect some details for the analytic
calculation in Sec. VB.

1. Integrals for the first order case

For Σ21(0) we approximate the integrals over small fre-
quencies,

1

2π

ωph
∫

−ωph

dω G21(iω)g
2D(−iω) ≃ ∆1λ

Z
log(T1) , (A1)
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and

1

2π

ωph
∫

−ωph

dω G21(iω)U =
∆1µc

Z
log(T1) , (A2)

where T1 is given in (88). For larger frequencies we write

1

2π

[

−ωph
∫

−D

dω +

D
∫

ωph

dω
]

G21(iω)g
2D(−iω) = a0∆3λ , (A3)

and

1

2π

[

−ωph
∫

−D

dω +

D
∫

ωph

dω
]

G21(iω)U = −∆3µc log
( D

ωph

)

.

(A4)
We have

a0 =

D
∫

ωph

dω
1

ω

1

1 + ω2

ω2
ph

=
1

2
log
(

2
D2

ω2
ph +D2

)

. (A5)

For Σ21(iD), the electron-phonon contribution is small
for ωph/D ≪ 1, and the Coulomb contribution is the
same as above. This yields Eq. (81).

2. Integrals for the only second order case

We give some results for the second order calculation.
To determine the coefficient Ā12 we calculate

D
∫

ωph

dω
1

ω

1

f1(ω)2
= log

( D

ωph
Ā12

)

, (A6)

where

f1(ω) = 1 + b1|ω|+ b2ω
2. (A7)

One finds that

Ā12 =

√

f1(ωph)

f1(D)
exp

[ 1

B2
1

(2b2 − (b21 + b1b2D)

f1(D)
−

2b2 − (b21 + b1b2ωph)

f1(ωph)

)]

exp
(b31 − 6b1b2

B2
1

fa

)

with B1 =
√

4b2 − b21 and

fa = arctan
(b1 + 2b2D

B1

)

−arctan
(b1 + 2b2ωph

B1

)

. (A8)

By comparing the integrals in Eq. (A4) and Eq. (A6)
we see that the factor 0 < Ā12 < 1 leads to a reduction
of the effective bandwidth. For the given fitting values
b1, b2, and large ratios D/ωph > 100 one finds Ā12 ≈ 0.2,

which can be compared to the calculation in Eq. (71).
The coefficient Ā22 is obtained from the integral

D
∫

ωph

dω
1

ω

1

f1(ω)

( 1

f1(D + ω)
+

1

f1(D − ω)

)

=
2 log( D

ωph
Ā22)

f1(D)
.

The integral on the left hand side can be carried out an-
alytically, but the expression is lengthy and not instruc-
tive. We can express Ā22 as

Ā22 = exp
[

D
∫

ωph

dω
1

ω

( f1(D)

2f1(ω)

( 1

f1(D + ω)
+

1

f1(D − ω)

)

− 1
)]

.

Since the function 1/f1(D + ω) + 1/f1(D − ω) increases
in the integration interval the coefficient Ā22 comes out
larger than Ā12. For the parameters above we find Ā22 ≈
0.44. The coefficient for λ reads

a12 =

D
∫

ωph

dω
1

ω

1

1 + ω2

ω2
ph

1

f1(ω)
(A9)

The integral can be solved analytically but the expression
is lengthy. Due to the reduction factor 1/f1(ω), a12 term
is a bit smaller than a0 in Eq. (A5).

3. Calculation up to second order

We use the following three conditions: (i) Σ21(0) = ∆1,
(ii),

Σ21(ib̄1) + Σ21(−ib̄1) ≃ 2∆3 + 2∆2/f1(b̄1), (A10)

with b̄1 ≡ 1/b1, and (iii),

Σ21(iD) + Σ21(−iD) ≃ 2∆3 + 2∆2/f1(D). (A11)

We use Σ21(0) =
∑

iN1i∆i,

Σ21(ib̄1) + Σ21(−ib̄1) =
∑

i N2i∆i, (A12)

Σ21(iD) + Σ21(−iD) =
∑

i N3i∆i. (A13)

This implies N1i = M1i,

M21 = f1(b̄1)N21/2,M22 = f1(b̄1)N22/2, (A14)

M23 = f1(b̄1)(N23 − 2)/2,M31 = N31/2, (A15)

M32 = (N32 − 2/f1(D))/2,M33 = N33/2. (A16)

The calculations give with certain approximations in the
integrals

N11 =
1

Z
(λ − µc − aµ2

c) log(T1), (A17)
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N12 = a12λ− µc log
( D

ωph
A

(1)
12

)

− aµ2
c log

( D

ωph
A

(2)
12

)

,

(A18)

N13 =
1

2
λ− µc log

( D

ωph

)

− aµ2
c log

( D

ωph
A

(2)
13

)

, (A19)

N21 =
2

Z

(

λ
ω2
ph

b̄21
− µc −

aµ2
c

f1(b̄1)

)

log(T1), (A20)

N22 = a22λ− 2µc log
( D

ωph
A

(1)
22

)

− 2aµ2
c

f1(b̄1)
log
( D

ωph
A

(2)
22

)

,

(A21)

N23 = a23λ− 2µc log
( D

ωph

)

− 2aµ2
c

f1(b̄1)
log
( D

ωph
A

(2)
23

)

,

(A22)

N31 = − 2

Z

(

µc +
aµ2

c

f1(D)

)

log(T1), (A23)

N32 = a32λ− 2µc log
( D

ωph
A

(1)
32

)

− 2aµ2
c

f1(D)
log
( D

ωph
A

(2)
32

)

,

(A24)

N33 = a33λ− 2µc log
( D

ωph

)

− 2aµ2
c

f1(D)
log
( D

ωph
A

(2)
33

)

.

(A25)

The coefficients a12, A
(2)
12 = Ā12 and A

(2)
32 = Ā22 were

given above. The others read,

A
(1)
12 = A

(1)
32 = A

(1)
22 = A

(2)
13 =

√

f1(ωph)

f1(D)
exp

[ b1
B1

fa

]

,

(A26)

a22 =

D
∫

ωph

dω
1

ω

1

f1(ω)

( 1

1 + (b̄1+ω)2

ω2
ph

+
1

1 + (b̄1−ω)2

ω2
ph

)

,

(A27)

a23 =

D
∫

ωph

dω
1

ω

( 1

1 + (b̄1+ω)2

ω2
ph

+
1

1 + (b̄1−ω)2

ω2
ph

)

, (A28)

a32 =

D
∫

ωph

dω
1

ω

1

f1(ω)

( 1

1 + (D+ω)2

ω2
ph

+
1

1 + (D−ω)2

ω2
ph

)

, (A29)

a33 =

D
∫

ωph

dω
1

ω

( 1

1 + (D+ω)2

ω2
ph

+
1

1 + (D−ω)2

ω2
ph

)

, (A30)

A
(2)
22 = exp

[

D
∫

ωph

dω
1

ω

( f1(b̄1)

2f1(ω)

( 1

f1(b̄1 + ω)
+

1

f1(b̄1 − ω)

)

−1
)]

,

(A31)

A
(2)
23 = exp

[

D
∫

ωph

dω
1

ω

(f1(b̄1)

2

( 1

f1(b̄1 + ω)
+

1

f1(b̄1 − ω)

)

−1
)]

,

(A32)

A
(2)
33 = exp

[

D
∫

ωph

dω
1

ω

(f1(D)

2

( 1

f1(D + ω)
+

1

f1(D − ω)

)

−1
)]

.

(A33)
One can give analytic expressions for the integrals, which
are however, lengthy and not very instructive. For typical

values for D/ωph, we have A
(2)
23 ≈ 1.6 and A

(2)
33 ≈ 1.7. All

other coefficients obey 0 < A
(α)
ij < 1, leading to a reduce

effective bandwidth as discussed before. The coefficients
aij are small for D/ωph ≫ 1.

From the matrix equation ∆ = M∆, we can derive
the self-consistency equation,

1 = M11 +
M13M31

1−M33
+
(

M12 +
M32

1−M33

) M21(1−M33) +M23M31

(1−M22)(1 −M33)−M23M32
, (A34)
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or when using the expression for M11 with T1 =
Zωph+

√
(Zωph)2+∆2

1

∆1
as in Eq. (88),

1 =
log(T1)

Z

[

λ− µc − aµ2
c +

M13M31
Z

log(T1)

1−M33
+
(

M12 +
M32

1−M33

) Z

log(T1)

M21(1−M33) +M23M31

(1−M22)(1 −M33)−M23M32

]

. (A35)

When solved for gap parameter ∆1, the term in the
square brackets is the exponent, such that terms to the
right of λ contribute to the expression for the pseudopo-
tential µ∗

c . We now would like to argue that in an expan-
sion in µc the dominant term is of the form of Eq. (72).
We neglect the terms involving λ in Mij to simplify the
arguments. We find then that −µc − aµ2

c together with
M13M31

Z
log(T1)

1−M33
gives a term of the form in Eq. (72),

µ∗
c =

µc + aµ2
c

1 + µc log
(

D
ωph

)

+ aµ2
c log

(

D
ωph

Ā
(2)
33

) , (A36)

where

Ā
(2)
33 = exp

[

D
∫

ωph

dω
1

ω

(1

2

( 1

f1(D + ω)
+

1

f1(D − ω)

)

−1
)]

.

(A37)
There are also additional terms to order µ3

c and µ4
c whose

coefficients are not proportional to log(D/ωph) in the nu-
merator (cf. discussion in Sec. VB). The denominator in
the other part, F2 ≡ (1 − M22)(1 − M33) − M23M32,
has similar properties to the one in Eq. (A36) but con-
tains also contributions to order µ3

c and µ4
c and terms

∼ log(D/ωph)
2. Due to a cancellation the lowest or-

der term in the numerator, M21(1 − M33) + M23M31,
is ∼ aµ2

c(f1(b̄1)/f1(D)− 1). From the prefactor,

M12(1−M33) +M32

1−M33
(A38)

the lowest order term is −1/[f1(D)(1−M33)]. This gives
a contribution

∼
aµ2

c

(

f1(b̄1)
f1(D) − 1

)

f1(D)F2
, (A39)

which is smaller compared to aµ2
c . All other terms are of

the order µ3
c and higher. Hence, in an expansion in µc

the term to the right in the square brackets in Eq. (A36)
gives a smaller contribution to µ∗

c . This explains why the
numerical results in Sec. VB were fit well by an expres-
sion involving µ∗

c of the form in Eq. (72).
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