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Recent neutron scattering measurements on the spinel CdCr2O4 revealed a rare example of helical
magnetic order in geometrically frustrated pyrochlore antiferromagnet. The spin spiral character-
ized by an incommensurate wavevector Q = 2π(0, δ, 1) with δ ≈ 0.09 is accompanied by a tetragonal
distortion. Here we conduct a systematic study on the magnetic ground state resulting from the
interplay between the Dzyaloshinskii-Moriya interaction and further neighbor exchange couplings,
two of the most important mechanisms for stabilizing incommensurate spin orders. We compute
the low-energy spin-wave spectrum based on a microscopic spin Hamiltonian and find a dispersion
relation characteristic of the helimagnons. By numerically integrating the Landau-Lifshitz-Gilbert
equation with realistic model parameters, an overall agreement between experiment and the nu-
merical spectrum, lending further support to the view that a softened optical phonon triggers the
magnetic transition and endows the lattice a chirality.

PACS numbers:

I. INTRODUCTION

Magnets with geometrical frustration provide a fertile
ground for studying complex spin orders and unconven-
tional magnetic phases.1 The defining feature of strong
geometrical frustration is the occurrence of extensively
degenerate ground states. This usually arises when the
arrangement of spins on a lattice precludes satisfying all
interactions at the same time. A great deal of attention
has been devoted to the so-called pyrochlore magnets in
which the magnetic ions form a three-dimensional con-
nected network of corner-sharing tetrahedra.2 With mag-
netic interactions restricted to only nearest neighbors,
classical spins on the pyrochlore lattice remain disordered
even at temperatures well below the Curie-Weiss energy
scale. Magnetic fluctuations in this liquid-like phase are
subject to strong local constraints that maintain van-
ishing total spin on each tetrahedron. This disordered
yet highly correlated phase is often called a cooperative
paramagnet. Because of the huge degeneracy, the magnet
is sensitive to nominally small perturbations. The low-
temperature ordering thus depends subtly on the residual
perturbations present in the system.

The recent discovery of a novel chiral spin structure in
spinel CdCr2O4 has generated much interest both theo-
retically and experimentally.3,4 The magnetic Cr ions in
this compound have spin S = 3/2 and no orbital degrees
of freedom, providing a very good realization of Heisen-
berg antiferromagnet on the pyrochlore lattice. Despite
a rather high Curie-Weiss temperature |ΘCW| ≈ 70 K,
a spiral magnetic order sets in only at TN = 7.8 K, in-
dicating a high degree of frustration. The discontinuous
magnetic transition at TN is accompanied by a struc-
tural distortion which lowers the crystal symmetry from
cubic to tetragonal (a = b < c) with an elongated unit
cell: (c − a)/c ≈ 5 × 10−3. Polarized neutron-scattering
experiment reveals an incommensurate magnetic order
in which coplanar spins rotate about either a or b axes

with a period of roughly ten lattice constants; the or-
dering wavevector Q = 2π(0, δ, 1) with δ ≈ 0.09. It is
worth noting that a very similar coplanar helical order
has also been reported in the weak itinerant antiferro-
magnet YMn2

5,6.

Spin-lattice coupling has been shown to play an
important role in relieving magnetic frustrations in
several chromium spinels.7–10 In particular, there are
strong experimental evidences indicating that the mag-
netic transition in CdCr2O4 is mainly driven by spin-
lattice coupling. These include anomalies of the elastic
constants,11,12 splitting of optical phonons,13,14 and en-
ergy shift of zone-boundary phonons15 at the magnetic
ordering temperature. The spin-lattice or magnetoelastic
coupling arises from the dependence of exchange on the
ion displacements δrij of spins: (∂J/∂r)(Si ·Sj) δrij .

16,17

As a result, the lattice distortion creates disparities be-
tween nearest-neighbor exchange constants and paves the
way for magnetic ordering. However, spin-lattice cou-
pling usually favors collinear magnetic orders. Indeed,
assuming a simple elastic energy cost k(δrij)

2/2 and in-
tegrating out the displacements δrij in the above model
gives rise to a biquadratic spin interaction: −(Si · Sj)

2,
which is minimized by collinear spins. While the mag-
netic frustration is relieved by the distortion, the appear-
ance of helical spin order in CdCr2O4 thus comes from
other mechanisms.

Magnetic spirals resulting from the competition be-
tween nearest neighbor and next nearest neighbor in-
teractions are a common theme in frustrated spin
systems.18,19 However, this is not the case for pyrochlore
lattice. Detailed mean-field and numerical investiga-
tions show that inclusion of further-neighbor interactions
partially relieves the frustration and sometimes selects
rather complicated multiple-q spin orders, but fails to
stabilize magnetic spirals with a definite handedness.20,21

Another mechanism for the formation of spirals is the
Dzyaloshinskii-Moriya (DM) interaction which originates
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from the relativistic spin-orbit coupling.22,23 Although
symmetry considerations allow the presence of DM terms
in the pyrochlore lattice,24 the ground states selected by
the DM interaction are non-chiral magnetic orders with
wavevector q = 0.24–26

The origin of the spiral order as well as the lattice dis-
tortion in CdCr2O4 has been consistently explained in
Ref. 27. In this scenario, the magnetic transition is trig-
gered by the softening of q = 0 optical phonons with odd
parity. The two types of tetrahedra with different orien-
tations are flattened along the a and b directions, respec-
tively, resulting in an overall tetragonal elongation along
the c axis. The lattice distortion relieves the magnetic
frustration by creating disparities among the nearest-
neighbor exchange constants and stabilizes a collinear
Néel order with wavevector Q0 = 2π(0, 0, 1). Moreover,
the broken parity due to the staggered distortion gives
rise to a chiral pyrochlore structure. The collinear spins
are twisted into a long-period spiral with Q = 2π(0, δ, 1)
as the structural chirality is transferred to magnetic or-
der by relativistic spin-orbit interaction.17,27 The broken
parity in CdCr2O4 has also been confirmed by recent op-
tical measurements.14

In this paper we undertake a systematic study of the
general helical order resulting from the interplay between
DM interaction and further-neighbor couplings in py-
rochlore antiferromagnets. We also employ various nu-
merical methods to investigate the spin-wave excitations
in the spiral magnetic orders. We first revisit the contin-
uum theory which is valid in the J → ∞ limit and show
that the resultant Hamiltonian possesses a continuous
symmetry similar to that in smectic liquid crystals.28–30

In particular, despite the broken symmetry of the heli-
cal order is described by a O(3) order parameter, the
three associated Goldstone modes reduce to a single
smectic-like phonon mode which emerges on scales longer
than the helical pitch. This low-energy gapless excita-
tions, dubbed helimagnons in Ref. 31, exhibit a highly
anisotropic dispersion relation.

The emergent continuous symmetry of the effective
theory is broken by the anisotropic crystal fields at the
microscopic level. We first adopt the spherical approx-
imation to investigate the resultant magnetic ground
states. Three typical helical orders with wavevectors
(0, 0, 1− δ), (0, δ, 1) and (δ, δ, 1) are stabilized depending
on the relative strengths of DM interaction D and third
neighbor interaction J3. We then focus on the (0, δ, 1)
spiral, which is relevant to the case of CdCr2O4, and con-
sider perturbation corrections to the coplanar spiral solu-
tion obtained from the continuum theory. We show that
the first-order corrections do not shift the spiral pitch but
introduces a small out-of-plane spin component.

Next we study the magnetic excitations in the spi-
ral magnetic ground state. The incommensurate nature
of the helical order presents a challenging task for the
calculation of spin-wave spectrum. To circumvent this
problem we employ the conventional Holstein-Primakoff
method with a large commensurate unit cell. We also

(a) (b) (c)

FIG. 1: (Color online) Schematic picture of (a) even and (b)
odd tetragonal distortions with Eg and Eu symmetries, re-
spectively. Both types of distortion preserve the lattice trans-
lational symmetry and could result in an overall elongation
along the c axis. Panel (c) shows the DM vectors Dij on the
six inequivalent NN bonds of the pyrochlore lattice.

perform dynamics simulations based on the Landau-
Lifshitz-Gilbert (LLG) equations.32 The LLG simula-
tions with a large damping also provide an efficient ap-
proach to obtain the accurate spin structures in the equi-
librium state. The magnon spectrum obtained from our
dynamics simulation exhibits a gapless mode at the heli-
cal wavevectorQ = 2π(0, δ, 1) reminiscent of the smectic-
like phonon mode or helimagnons mentioned above.30,31

An overall agreement is obtained between the numerical
calculations and the experimental data on CdCr2O4.

The remainder of this paper is organized as follows.
In Sec. II we consider the helical magnetic order in py-
rochlore antiferromagnet. After presenting a minimal
model relevant for CdCr2O4, we first review the contin-
uum theory of the magnetic spirals on pyrochlore. We
then demonstrate the existence of a continuous symme-
try similar to that in smectic liquid crystals. We obtain
a phase diagram of the helical order based on the spher-
ical approximation. Sec. III is devoted to a discussion of
the magnon excitations of pyrochlore magnet. A system-
atic analysis of the low-energy acoustic mode indicates
a highly anisotropic dispersion characteristic of that of
helimagnons. We then perform dynamics simulation to
obtain the spin-wave spectrum of the helical spin order
with wavevector Q = 2π(0, δ, 1) and compare the results
with available experimental data. We conclude in Sec. V
with a summary and discussion of our results.

II. HELICAL MAGNETIC ORDER

Our starting point is a classical Heisenberg model on
the pyrochlore lattice described by the Hamiltonian

H =
∑

〈ij〉

(J +Kij) Si · Sj +
∑

〈ij〉

Dij · (Si × Sj)
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+ J2
∑

〈〈ij〉〉

Si · Sj + J3
∑

〈〈〈ij〉〉〉

Si · Sj , (1)

The dominant term is the nearest-neighbor (NN) ex-
change interaction with an antiferromagnetic sign J > 0.
Due to the special geometry of the pyrochlore lattice,
this term can be recast to (J/2)

∑

r |M(r)|2, where M

denotes the vector sum of spins on a tetrahedron at r.
Minimization of this term requires the vanishing of to-
tal magnetic moment on every tetrahedron but leaves an
extensively degenerate manifold.
The exchange anisotropy Kij results from a distorted

lattice through magnetoelastic coupling. The structural
distortion in CdCr2O4 reduces the crystal symmetry
from cubic to tetragonal while preserving the lattice
translational symmetry.3 Here we consider q = 0 lat-
tice distortions with even and odd parities; see Fig. 1(a)
and (b). The dominant Eu component results in a stag-
gered distortion: tetrahedra of types I and II are flattened
along the a and b directions, respectively; the lattice is
elongated overall, a = b < c. The resulting space group,
I4122, lacks the inversion symmetry. Fig. 2 shows the
exchange anisotropy of the six NN bonds in the unit cell.
As pointed out in Ref. 16, this tetragonal distortion com-
pletely relieves the magnetic frustration and stabilizes
a collinear Néel order with wavevector Q0 = 2π(0, 0, 1)
shown in Fig. 2.
The DM term Dij · (Si × Sj) originates from the rel-

ativistic spin-orbit interaction λ(L · S). This term is al-
lowed on the ideal pyrochlore lattice, where the bonds are
not centrosymmetric as required by the so-called Moriya
rules.23 Moreover, the high symmetry of the pyrochlore
lattice completely determines the orientations of the DM
vectors [see Fig. 1(c)] up to a multiplicative factor. Fi-
nally, we also include second and third exchanges cou-
plings J2 and J3, respectively, in the model Hamiltonian.
First principle ab initio calculations indicate that these
further-neighbor exchanges are important for the model-
ing of spinel CdCr2O4.

27,34 In the limit dominated by a
large NN exchange, the ground-state properties actually
depend only on the difference between J2 and J3. The
relative shift in energy for any pair of ground states due
to a small J3 is identical to the effect of a J2 of the same
magnitude with an opposite sign.21

A. Gradient approximation and emergent

continuous symmetry

We first briefly review the continuum theory of helical
orders derived from the Q0 = 2π(0, 0, 1) Néel order. The
effective energy functional is obtained based on a gradi-
ent approximation of the staggered magnetizations.17,27

The antiferromagnetic order on the pyrochlore lattice is
characterized by three order parameters:

L1 = (S0 + S1 − S2 − S3)/4,

L2 = (S0 − S1 + S2 − S3)/4, (2)

L3 = (S0 − S1 − S2 + S3)/4,

FIG. 2: (Color online) A Néel order on the pyrochlore lat-
tice with wavevector q = 2π(0, 0, 1). This collinear spin or-
der is stabilized by a staggered distortion with Eu symmetry.
Tetrahedra of type I and II are flattened along the a and b
directions, respectively. The exchange constants on various
NN bonds are J +Ku −Kg (solid), J − 2Ku −Kg (dashed),
and J +Ku + 2Kg (dotted).

where Sµ denotes magnetic moments at µth sublattice.27

For example, the collinear Néel state shown in Fig. 2 is
described by order parameters: M = 0, L2 = L3 = 0,
and L1 = n̂1 e

iQ0·r, where n̂1 is an arbitrary unit vec-
tor. Assuming a slow variation of staggered magnetiza-
tions in the low-period spiral, we parameterize the or-
der parameters as: Li(r) = eiq·rφi(r) n̂i(r), where ni(r)
and φi(r) are the directions and magnitudes of the stag-
gered magnetizations. The hard constraints |Si| = S
require that three unit vectors n̂i are orthogonal to each
other and φ21 +φ22 +φ23 = 1.27 Note that the phase factor
eiQ0·r = ±1 changes sign between consecutive layers of
tetrahedra along the z direction (cf. the two layers of
green tetrahedra in Fig. 3).
The calculation can be further simplified in the J → ∞

limit. The vanishing of the total magnetization on tetra-
hedra in this limit requires n̂3 ‖ ∂yn̂1, and the φ fields
can be analytically expressed in terms of the director
fields n̂i. The effective energy functional in the gradient
approximation can be solely expressed in terms of the
director fields n̂1 and n̂2 ‖ ∂yn̂1 × n̂1

27. It contains two
contributions: F =

∫

dr (EK + EDM ). The first term,
originating from magnetoelastic coupling, gives penalties
to variations of the staggered magnetizations:

EK =
Ku

4

[

(∂xn̂1)
2+(∂yn̂1)

2+2 (∂zn̂1)
2−(n̂2 · ∂zn̂1)

2
]

,

(3)
while the DM term contains Lifshitz invariants which are
first-order in the gradients of n̂1:

EDM = −Dn̂1 ·
(

â×∂xn̂1+b̂×∂yn̂1−ĉ×∂zn̂1

)

/4. (4)

Here we orient the axes of coordinate reference frame x, y,
and z along the principal axes a, b, and c of the crystal.
The form of the DM functional suggests spiral solu-

tions with n̂1 rotating about one of the principal axes and
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staying in the plane perpendicular to it. These special
solutions were first obtained in Ref. 27. For example, the
solution n̂1 = (cos θ(y), 0, sin θ(y)) with θ(y) = 2πδy + ψ
describes a helical order with coplanar spins lying in the
ac plane (see Fig. 3). This spiral magnetic order pro-
ducing a Bragg scattering at Q = 2π(0, δ, 1) is consistent
with the experimental characterization of CdCr2O4.

3

The energy functional F actually possesses a continu-
ous symmetry related to the O(2) rotational invariance of
the helical axis. To describe the general coplanar spiral
solution, we first introduce two orthogonal unit vectors
lying in the xy plane:

ξ̂ = +cosΦ x̂+ sinΦ ŷ,

ζ̂ = − sinΦ x̂+ cosΦ ŷ (5)

A coplanar spiral with spins rotating about the ξ̂ direc-
tion has the form

n̂1(r) = cos θ(ξ) ζ̂ + sin θ(ξ) ẑ, ξ ≡ r · ξ̂. (6)

Substituting n̂1(r) into the Eqs. (3) and (4) yields an en-

ergy density: E[θ] = −D∂ξθ + 1
4
Ku (∂ξθ)

2 , whose mini-
mization gives a helical wavenumber

Q = 2πδ = dθ/dξ = 2D/Ku. (7)

The O(2) invariance indicates that the magnetic energy
is independent of the angle Φ, i.e. δF [n̂1]/δΦ = 0. It is
worth noting that this degeneracy is similar to the O(3)
symmetry for the helical axis observed in the spiral order
of MnSi.31 More importantly, as will be discussed below,
it is exactly this additional symmetry that gives rise to
the anisotropic dispersion of helimagnons.
The coplanar spirals described above (with its axis

lying in the xy plane) are also accidentally degenerate
with a spiral in which spins rotate about the z axis.27

In real compounds, this accidental degeneracy as well
as the aforementioned O(2) symmetry are lifted by fur-
ther neighbor interactions and cubic symmetry field of
the lattice. In particular, the further-neighbor exchange
contributes to a gradient term (J3−J2)(∂zn̂1)

2 in the gra-
dient expansion.27 The experimentally observed (0, δ, 1)
spiral is selected by a large antiferromagnetic third-
neighbor exchange J3 which favors coplanar spirals rotat-
ing about the x or y axes. The explicit magnetizations
of a spiral with the pitch vector parallel to the y-axis are

S̄µ(r) = â sin(Q · r+ ϕµ) + ĉ cos(Q · r+ ϕµ), (8)

where µ = 0, 1, 2, 3 is the sublattice index, ϕ0 = ψ, ϕ1 =
πδ + ψ, ϕ2 = π + ψ, and ϕ3 = π(1 + δ) + ψ, with ψ an
arbitrary constant related to the U(1) symmetry of the
coplanar spiral, i.e. θ(r) = Q · r+ ψ.
It is worth noting that the pitch of magnetic spirals

induced by DM interaction is usually rather long with
the wavenumber of the order δ ∼ D/J ∼ 10−3 − 10−2.
The relatively short pitch of spirals in CdCr2O4 is due
to the ineffectualness of J in stabilizing the magneitc
order. Instead, the DM interaction competes with the
magnetoelastic coupling and the helical wavenumber is
given by δ ∼ D/K ≈ 0.1.

FIG. 3: (Color online) Coplanar helical order with spins lying
in the ac plane and rotating about the b axis. The magnetic
order corresponds to the solution n̂1 = (cos θ(y), 0, sin θ(y)),
with θ(y) = 2πδy + const. It produces a Bragg peak Q =
2π(0, δ, 1) in neutron scattering, consistent with the experi-
mental measurement on CdCr2O4.

B. Spherical approximation

While the above continuum theory gives a rather con-
sistent and simple picture of helical magnetic orders in
tetragonal pyrochlore antiferromagnets, it is based on the
assumption of an infinite J . To go beyond this limit and
investigate the magnetic orders when the various param-
eters are of similar order, we resort to the spherical ap-
proximation, in which the local length constraints |Si| =
S are replaced by a global one

∑N
i=1 |Si|2 = NS2, where

N is the number of lattice sites. With this soft constraint,
the model Hamiltonian (1) can be diagonalized with the
aid of Fourier transform Si =

∑

k Sµ(k) e
ik·r. Here we

label a lattice site as i = (µ, r), where µ = 0, 1, 2, 3 is the
sublattice index and r denotes its position. The Hamil-
tonian then becomes

H =
∑

k

∑

µ,ν

Jµν(k)Sµ(k) · Sν(−k)

+
∑

k

∑

µ,ν

∑

α,β

Dαβ
µν (k)S

α
µ (k)S

β
ν (−k), (9)

where the matrices Jµν(k) and Dαβ
µν (k) are the Fourier

transform of the exchange and DM interactions, respec-
tively. The explicit form of the matrices are given in
the Appendix A. The ground-state energy is given by
the minimum eigenvalue λmin of the matrix Hαβ

µν =

Jµνδ
αβ + Dαβ

µν . In particular, the ordering wavevector
Q is obtained by minimizing λmin(k) with respect to k,
i.e. E0 = Nλmin(Q).
Fig. 4 shows the ordering wavevector Q as a function

of DM interaction and third-neighbor coupling J3. We
find three different helical orders characterized by an in-
commensurate wavenumber δ ∼ D/Ku. At small J3, the
ordering wavevector Q = 2π(0, 0, 1− δ) indicates a mag-
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FIG. 4: (Color online) Phase diagram of helical magnetic or-
ders on pyrochlore lattice based on spherical approximation.
Both D and J3 are measured with respect to the NN ex-
change J , and we have set the odd-parity exchange anisotropy
Ku = 0.1J and 0.2J while leaving the even-parity exchange
anisotropy Kg = 0. The green, yellow, and white regions
are characterized by a ordering wavevector Q = 2π(0, δ, 1),
2π(0, 0, 1− δ), and 2π(δ, δ, 1), respectively.

netic spiral in which spins rotate about the z axis. This
spiral solution has been discussed in Ref. 27 and is acci-
dentally degenerate with the coplanar spirals described in
Eq. (8) in the J → ∞ limit. A new spiral order with or-
dering wavevector Q = 2π(δ, δ, 1) is obtained for a small
window of J3 (depending on the value of Ku). This spi-
ral state with its axis pointing along the diagonal in the
xy plane is also included in the general coplanar spiral
solution Eq. (6) in the infinite J limit. As J3 is further in-
creased, the (0, δ, 1) spiral observed in CdCr2O4 becomes
the ground state. For a helical wavenumber δ ∼ 0.1, this
spiral order is indeed the magnetic ground state for a
J3 ≈ 0.3J , consistent with the ab initio calculations.27,34

Interestingly, for small exchange anisotropies, e.g.
Ku = 0.1J , the spiral order (0, δ, 1) with axis along ei-
ther a or b axes is sandwiched by the spiral state with
axis along the [110] direction, and the ordering wavevec-
torQ switches back to 2π(δ, δ, 1) for largest J3 [Fig. 4(a)].
On the other hand, for larger anisotropy Ku, the ground
state remains the (0, δ, 1) spiral for large J3.

C. Perturbation correction to coplanar spirals

We now focus on the helical magnetic order with
wavevector Q = 2π(0, δ, 1), which is relevant for the
case of CdCr2O4, and use perturbation method to obtain
corrections si ∼ O(D/J) to the coplanar spiral solution
Eq. (8) when the NN exchange is finite. In the ground
state, the magnetic moment is parallel or antiparallel to
the effective exchange field

Hi = ∂H/∂Si =
∑

j

(Jij Sj −Dij × Sj) , (10)

such that the torque Ti = Si × Hi vanishes. Math-
ematically, our perturbative calculation is based on a

FIG. 5: (Color online) A schematic diagram showing the out-
of-plane corrections to a coplanar helical order. The coplanar
spins are described by a vector field n̂1 = (cos θ(y), 0, sin θ(y)),
with θ(y) = 2πδy+ const, while the out-of-plane components
are given by Eq. (13). The inset shows the out-of-plane spin
component ∆S as a function of r computed for the following
set of parameters: J = 1.35 meV, Ku = 0.21 meV, Kg =
0 meV, D = 0.14 meV, and J3 = 0.28 meV.

1/J expansion of the equilibrium equation Ti = 0. The
zeroth-order result corresponds to the J → ∞ limit and
is given by Eq. (8). We express the exchange field as
Hi = H̄i + hi, the condition of zero torque requires

(S̄i + si)× (H̄i + hi) = 0.

Collecting only terms linear in D/J from this equation,
we obtain a set of coupled equations:

∑

j

Jij cos θij (s
x
i − sxj ) = 0, (11)

∑

j

{

Dx
ij cos θj −Dz

ij sin θj − Jij
[

cos θij s
y
i − syj

]}

= 0,

(12)

where θi = Q · r+ψµ, and θij = θi− θj. Sine the NN ex-
change J can be expressed as (J/2)|M(r)|2, the J → ∞
limit imposes hard constraints M(r) = 0 on all tetrahe-
dra. A finite value of J is thus expected to introduce a
finite total magnetization. For simplicity, here we con-
sider anisotropies dominated by a tetragonal distortion
with odd parity only. Solving the above equations yields
(µ = 0, · · · , 3)

sµ(r) =
−
√
2D

(4J + 10Ku)
cos (Q · r) b̂. (13)

Interestingly, the first-order corrections does not modify
the spiral pitch; the incommensurate ordering wavevector
is still given by the zeroth order expression Q = 2πδ.
As the correction is uniform for the four sublattices, the
finite value of J gives rise to a modulated ferromagnetic
component M(r) on individual tetrahedron.
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FIG. 6: (Color online) The energy decrease ∆E(t) = E(t) −
E(t = 0) as a function of simulation time starting with (a)
coplanar spiral solution Eq. (8) and (b) initial state including
first order correction (13). The energy and time are mea-
sured with respect to J and 1/J , respectively. We performed
the simulations on a lattice with 16× 103 spins with periodic
boundary conditions. Panels (c) and (d) show the correspond-
ing averaged spin deviations ǫS(t) =

∑

i
|Si(t) − S̄i|/N from

the coplanar state and the inclusion of the first order correc-
tion respectively as a function of simulation time.

D. Relaxation dynamics simulations

While the perturbation correction gives a better ap-
proximation of the helical order in pyrochlore lattice, a
high-precision description of the magnetic structure is
required for the calculation of spin-wave excitations. A
common approach to obtain the magnetic ground state
is the low-temperature Monte Carlo simulations. How-
ever, the spin configurations obtained from Monte Carlo
simulations are still too noisy for the purpose of the cal-
culation of magnon spectrum. Instead, here we resort
to the overdamped dynamics simulations based on the
Landau-Lifshitz-Gilbert (LLG) equations. In particular,
since the coplanar spiral solution with the perturbation
corrections already provide a close approximation to the
true ground state, such relaxation simulations can effi-
ciently bring the system to the desired magnetic order.
The LLG equation is a first-order differential equation

describing the dynamics of classical magnetic moments:

∂Si

∂t
= Si ×Hi +

αG

S
Si ×

∂Si

∂t
, (14)

where Hi is the effective exchange field defined in

Q
z

Q
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FIG. 7: (Color online) Structure factor of the helical spin or-
der obtained from the relaxation dynamics simulation. Sharp
peaks appear at the ordering wavevector Q = 2π(0, δ, 1).

Eq. (10), and αG is a dimensionless damping parame-
ter. We employ a finite-difference method to integrate
the LLG equation numerically.35 The technical details of
the numerical method can be found in Appendix B. We
performed our simulations on a cluster of 103 cubic unit
cells with N = 16000 spins. Periodic boundary condi-
tions were used in all simulations. We have also tested
our algorithms on some well studied Hamiltonians and
obtained excellent agreement with exact solutions.
We start our dynamics simulation from the coplanar

spiral state both with and without the first-order correc-
tions. Fig. 6 shows the simulation results for parameters
Ku = 0.1J , D = −0.069J and J3 = 0.2J ; the corre-
sponding helical wavenumber is δ = 0.1. In both cases,
the energy monotonically decreases with simulation time,
indicating a steady relaxation towards the true helical
magnetic ground state. Also shown are the averaged de-
viations of spin configurations Si(t) from the coplanar
helical state (with and without first-order correction) as a
function of simulation time. The rather small deviations
of the order 10−3 ∼ 10−3 indicate that both the copla-
nar spiral and the first-order result are indeed already
good approximations to the ground state. Fig. 7 shows
the structure factor S(k) = |(1/N)

∑

i Si exp(ik · ri)|2
of the spin configurations obtained from the relaxation
dynamics simulations. As expected, the structure factor
exhibits peaks at the ordering wavevectorQ = 2π(0, δ, 1).

III. SPIN-WAVE EXCITATIONS

In this Section we study magnetic excitations of the
helical magnetic order on the pyrochlore lattice. We first
discuss the so-called helimagnons in the continuum limit.
The appearance of this special gapless mode originates
from the unique symmetry-breaking in chiral magnets.
However, since the spiral pitch in CdCr2O4 is relatively
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short compared with helical orders in other systems, the
crystal effects are expected to modify the helimagnon dis-
persion significantly. We thus also compute the spin-wave
dispersions based on microscopic spin models. Starting
from the high-precision ground state obtained in the pre-
vious section, we performed exact diagonalizations on
a large unit cell to study the nature of the low-energy
acoustic-like modes. The results are then compared with
the predictions based on helimagnon theory. We also em-
ployed dynamics simulations on finite systems to obtain
the full magnon spectrum and compare the results with
the experiments.

A. Helimagnons in the continuum limit

We first consider magnetic fluctuations in the helical
order within the framework of the continuum theory. For
a spiral with a fixed axis, the obvious soft modes are
phase fluctuations associated with the coplanar director
field. More specifically, let us consider a spiral with its
axis along the y-direction: n̂1 = (cos θ, 0, sin θ). Intro-
ducing a slowly-varying perturbation to the phase angle
θ = Qy + ψ(r), the energy functional associated with

the fluctuations is E [ψ] = Ku

∫

dr [∇ψ(r)]2. This indeed
describes a soft mode similar to that of a planar mag-
net. However, as is well known in chiral nematics and
smectic liquid crystals, a phase fluctuation of the form
ψ = α ζ corresponds to a simple rotation of the helical
axis.29 Since coplanar spirals with different axes are en-
ergetically degenerate (see discussions in Sec. II A), such
rotations cannot cost energy, yet E ∼ α2 6= 0 for this
particular phase fluctuation. Consequently, there cannot
be any (∂ζψ)

2 term in the effective energy density. The
correct energy functional thus has the form29,31

E =
1

2

∫

dr
[

cz(∂zψ)
2
+c‖(∂ξψ)

2
+
c⊥
Q2

(

∂2ζψ
)2
]

, (15)

where c‖, c⊥ ∼ Ku, cz ∼ J3 are elastic constants, and
Q = 2πδ is the pitch wavenumber. Note that the first
term in the above equation arises from a rather large J3
which gives a penalty to variations along the z direction.
A derivation of the dynamics equations starting from

the microscopic model (1) is tedious and almost in-
tractable. To obtain the dispersion of the soft mode, it is
more illuminating to employ a simple phenomenological
approach based on the time-dependent Ginzburg-Landau
theory.29,31 In this formalism, the Goldstone mode ψ cou-
ples to a mode m at zero wavevector, which is soft due
to spin conservation. Schematically the coarse-grained
magnetization field is

Sµ(r) ∼ S̄µ(r) + m(r)ŷ (16)

+ ψ(r)
[

cos(Q · r+ ϕµ) x̂− sin(Q · r+ ϕµ) ẑ
]

,

where S̄µ is the coplanar spiral given in Eq. (8) and ϕµ

denotes the relative phase shift of the sublattices. The

total energy functional becomes

F [m,ψ] =
r0
2

∫

drm2(r) + E [ψ]. (17)

Here r0 is an effective mass of the zero-wavevector mode.
The magnetization dynamics is governed by a generalized
Landau-Lifshitz equation:

∂tSµ(r) = −γ Sµ(r) ×
δF

δSµ(r)
(18)

where γ is a constant. Substituting (16) into the above
equation and following similar steps outlined in Ref. 31,
we arrive at the following coupled equations

∂tm(r) = −γ δF
δψ(r)

, ∂tψ(r) = γ
δF
δm(r)

. (19)

To obtain the spectrum of the soft mode, we eliminate
m in the above equations to obtain a wave equation for
the ψ field

∂2t ψ(r) = −r0γ2
(

−cz∂2z − c‖∂
2
ξ +

c⊥
Q2

∂4ζ

)

ψ(r). (20)

Assuming a space-time dependence ψ ∼ exp(ik ·r−iǫkt),
the energy of the soft mode is

ǫ(k) = γ r
1/2
0

√

czk2z + c‖k
2
‖ +

c⊥
Q2

k4⊥. (21)

The dispersion is highly anisotropic: for wavevectors par-
allel to the spiral ξ-axis direction or the z-axis the dis-
persion is linear as in an antiferromagnet, while it is
quadratic for wavevectors parallel to the x-axis.

B. Exact diagonalization with large unit cell

As discussed in Sec. II A, the helical wavenumber in
tetragonally distorted pyrochlore is determined by the ra-
tio of DM interaction to exchange anisotropy (instead of
the NN exchange constant). The spiral pitch in CdCr2O4

is relatively short compared with that in other helical or-
ders. We thus expect significant anisotropy coming from
the microscopic crystal fields. In addition, the (0, δ, 1)
spiral which is relevant to our case is stable only in the
presence of a small third-neighbor coupling. A gradient-
expansion analysis shows that spin stiffness along the z
axis is increased in the presence of J3. To address these
issues, here we perform exact diagonalizations with a
large unit cell to investigate the low-energy acoustic-like
magnons and compare the results with predictions based
on the helimagnon theory.
To begin with, we first choose a commensurate unit

cell composed of Λ cubic unit cells along the b axis (each
cube contains 4 tetrahedra), corresponding to an order-
ing wavevector Q = 2π(0, δ, 1) with δ = 1/Λ. The DM
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FIG. 8: (Color online) Spin-wave dispersions along three principal axes [panels (a)–(c)] obtained from numerical exact diago-

nalization of a large unit cell. The results are fitted to the phenomenological dispersion ǫk =
√

αk2 + βk4. The magnon energy
is measured in unit of JS. Panels (d)–(f) show the dispersion parameters α and β as a function of the helical wavenumber δ.
These data are fitted to α =const, α ∝ δ2, and β ∝ δ−2, respectively.

constant that is required to stabilize such a spiral is then
determined using the expression

D = −(3/
√
2)Ku tanπδ (22)

This is the discrete version of Eq. (7) for a given fixed
anisotropyKu, and is obtained by substituting the copla-
nar spiral ansatz (8) into Hamiltonian (1) and minimizing
the resulting expression with respect to δ. The relaxation
dynamics simulation discussed in Sec. II D is carried out
to obtain an accurate description of the ground state. We
then introduce small deviations to spins in the ground
state: Si = S0

i + σi, where σi ⊥ S0
i denotes transverse

deviations. Note that because of this constraint, there
are two degrees of freedom associated with σi at each
site. The LLG equation is linearized with respect to the
small deviations σi:

∂σi

∂t
= S0

i ×
∑

j

(Jijσj −Dij × σj)−H0
i × σi, (23)

where Jij includes J , Kij and further-neighbor ex-
changes, H0

i =
∑

j(JijS
0
j −Dij × S0

j) is the equilibrium
local exchange field, and we have set the damping con-
stant αG to zero. The eigenmodes of the LLG equation
has the form σi = σm exp(ik · r− iǫkt), where the site
index i = (r,m), where r denotes the position of the ex-
tended unit cell containing Λ cubes and m labels spins

within this block. Note that the above eigenmode {σm}
has a momentum Q + k due to the underlying struc-
ture of the supercell. Arranging σm = (σx

m, σ
y
m) into

a column vector ~u = (σx
1 , σ

y
1 , · · · , σx

s , σ
y
s ) of dimension

n = 2 × 4Λ × 4, the linearized LLG equation is recast
into an eigenvalue problem T̂(k) · ~u = −iǫk ~u. Numeri-

cal diagonailization of the n × n matrix T̂(k) gives the
dispersion of the low-energy magnons in the vicinity of
ordering wavevector Q.
The resulting magnon dispersions along the three prin-

cipal directions are shown in Fig. 8(a)–(c). The number
of spins in the unit cell is defined by the value of the
spiral pitch δ. We have considered δ = 0.2, 0.1, 0.05,
which gives Ns = 80, 160, 320, respectively. The numer-
ical spectra are fitted to a phenomenological dispersion:

εk =
√

αk2 + βk4. The dispersion parameters α and β
obtained from the fitting are shown in Fig. 8(d)–(f) as
a function of the helical wavenumber δ. First, we note
that the dispersion along the y (helical direction) and z
(staggering direction) axes can be well approximated by a
linear relation, εk ∼ vk, with v =

√
α weakly dependent

on δ, see Fig. 8(d). The large spin-wave velocity along
the z axis can be attributed to a large J3, consistent with
the analysis of gradient expansion.27

On the other hand, the spectrum along the x-axis ex-
hibits a predominant quadratic behavior at small k, sim-
ilar to that of a ferromagnet. Although the continuum
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theory predicts an exact quadratic dispersion along the
x direction, Eq.(21), careful fitting shows a small linear
component α, which can be attributed to the discrete
cubic symmetry of the underlying lattice model. Di-
mensional analysis indicates that α should scale as Q2,31

while the coefficient β ∼ 1/Q2 according to the heli-
magnon dispersion Eq. (21). These scaling relations are
indeed confirmed by our exact diagonalization as demon-
strated in Figs. 8(e) and (f).

IV. MAGNON SPECTRUM OF CdCr2O4

A. Linear dynamics simulation

Although the exact diagonalization method discussed
above provides a rather accurate magnon spectrum, the
complicated band-folding due to large unit cell makes it
difficult to compare the results with experiment. Instead,
here we employ a less accurate but more direct approach
based on simulating the real-time dynamics of spins in a
large finite lattice. Specifically we introduce a local basis
for the transverse fluctuations: σi = σx

i êxi +σ
y
i ê

y
i , where

êαi are two unit vectors orthogonal to the equilibrium spin
direction n̂i. Substituting σi(t) into the linearized LLG
equation yields

∂tσ
x
i = (τxi − αG τ

y
i ) /(1 + α2

G) + ζxi (t),

∂tσ
y
i = (αG τ

x
i + τyi ) /(1 + α2

G) + ζyi (t),
(24)

where τxi and τyi are linearized torques projected onto the
local basis; see Appendix C for details of the calculations.
A small damping is added to ensure stable simulations.
The dynamics simulation is initiated by a short pulse
ζi(t) = ζ0 exp(−t2/w2) δi,0 localized at ri = 0. Here ζ0
determines the strength of the initial perturbation and w
is the width of the pulse.

The differential equations (24) are integrated with the
aid of the fourth-order Runge-Kutta method. The solu-
tion σi = σm(r, t) describes the evolution of each indi-
vidual spin due to the localized short pulse. Since the
system is driven by a white source with flat spectrum,
we expect magnetic excitations of various energy and
momentum are generated in our simulations. The spin-
wave spectrum is then obtained via the Fourier trans-
form of the simulation data. First we performed the
spatial Fourier transform σm(k, t) =

∑

r σm(r, t)eik·r,
where only those momenta k which satisfy the periodic
boundary conditions of the finite lattice are allowed. In
Fig. 9 we present the time evolution of σm(k, t) for dif-
ferent values of k. The magnon spectrum is then ob-
tained the temporal Fourier transformation: σm(k, ǫ) =
∫

eiǫtσm(k, t) dt. The spectrum obtained for a set of
model parameters that are realistic for CdCr2O4 is dis-
cussed in the next subsection.

FIG. 9: (Color online) Time evolution of σx
0 (k, t) for different

values of k.

B. Comparison with experiments

The magnon spectrum of CdCr2O4 has been studied
by Chung et al. using inelastic neutron scattering.3 Here
we present our numerical calculations and compare the
results with the experimental findings. The fact that
the helical wavenumber δ ≈ 0.09 can be used to fix the
ratio of the DM interaction to the exchange anisotropy
Ku. On the other hand, values of Ku and Kg can be
estimated by the magnon energies at the zone center, and
we find that even tetragonal distortion does not play a
significant role here. As for further-neighbor exchanges,
ab initio calculations find a negligible J2 and a quite large
J3 with antiferromagnetic sign.27,34 Using the following
set of parameters: J = 1.46 meV, Ku = 0.34 meV, Kg =
0 meV, D = 0.078 meV, and J3 = 0.30 meV, we obtained
very good agreement with the experimentally measured
spectrum, as shown in Fig. 10.

V. CONCLUSION AND DISCUSSION

We have studied the spin-wave excitations in a spe-
cial helical magnetic order on the pyrochlore lattice.
This spiral structure characterized by a wavevector Q =
2π(0, δ, 1) is observed in frustrated spinel CdCr2O4. Mo-
tivated by the experiments, we assumed that magnetic
frustration is completely relieved by a tetragonal dis-
tortion which preserves the lattice translational symme-
try. We have employed various analytical approaches
and numerical methods to investigate the interplay of
Dzyaloshinskii-Moriya interaction and further-neighbor
couplings. Our spin-wave calculation with parameters
inferred from structural data and ab initio calculations
agrees well with the measured magnon spectrum. Com-
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FIG. 10: (Color online) (a) Spin wave spectrum of a Néel
state with wavevector q = 2π(0, 0, 1). This collinear order is
the ground state of H with parameters J = 1.35 meV, Ku =
0.21 meV, D = 0 meV, and J3 = 0.28 meV. (b) Fitted spin
wave spectrum to the neutron scattering measurement(white
circles and rectangles)3. The final set of parameters are J =
1.35 meV, Ku = 0.21 meV, D = 0.14 meV, and J3 = 0.28
meV. Note that adding DM interaction lifts the gap at q =
2π(1, 1, 0) and splits each band into three. All the parameters
are determined based on this fitting. Note that vertical peaks
at the ordering wave vector q = 2π(1, 1± δ, 0) are numerical
artifacts.

bined with a systematic analysis of the helical structure,
our study helps clarify the underlying mechanisms that
stabilize the observed helical order and provides a quan-

titative description of the model Hamiltonian.

We have also shown that the continuum model of the
spin spirals based on a gradient-expansion of the or-
der parameter exhibits a continuous symmetry similar to
that of smectic liquid crystals. A Goldstone mode with
highly anisotropic dispersion results from the unique bro-
ken symmetry of the helical order. Although the emer-
gent continuous symmetry is broken by the crystal fields
effects at the microscopic level, our exact diagonalization
on a large unit cell finds acoustic-like magnons which are
reminiscent of the Goldstone mode discussed above.

Several recent experiments have established CdCr2O4

as the paradigmatic example of magnetic ordering in-
duced by spin-lattice coupling in geometrically frustrated
magnets. Although an overall tetragonal distortion with
a = b < c is observed below the ordering temperature,
details of the lattice distortion remain to be clarified ex-
perimentally. The issue at hand is whether the distor-
tion breaks the lattice inversion symmetry. As pointed
out in a previous theoretical study,27 the broken parity
plays an important role in stabilizing the observed he-
lical order. This is because the lack of inversion sym-
metry endows the crystal structure with chirality, which
is transferred to the magnetic order through relativistic
spin-orbit interaction. Experimental evidence implying
a broken parity in CdCr2O4 was recently reported in in-
frared absorption spectra.14 Our numerical calculation
on spin-wave dispersions also indicates a predominantly
tetragonal distortion which breaks the inversion symme-
try, giving further support to the scenario that the helical
magnetic order inherits its chirality from a lattice with
broken parity.
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Appendix A: Spherical approximation

The matrices Jµν(k) and D
αβ
µν (k) in the spherical approximation (Eq. 9) are defined as follows:

Ĵ(k) =



















2J3 (c̃xȳ + c̃xz̄ + c̃yz) (2J −Ku)cyz + 3Kusyz (2J −Ku)cxz̄ + 3Kusxz̄ 2(J +Ku)cxȳ

(2J −Ku)cyz − 3Kusyz 2J3 (c̃xy + c̃xz + c̃yz) 2(J +Ku)cxy (2J −Ku)cxz + 3Kusxz

(2J −Ku)cxz̄ − 3Kusxz̄ 2(J +Ku)cxy 2J3 (c̃xy + c̃xz̄ + c̃yz̄) (2J −Ku)cyz̄ + 3Kusyz̄

2(J +Ku)cxȳ (2J −Ku)cxz − 3Kusxz (2J −Ku)cyz̄ − 3Kusyz̄ 2J3 (c̃xȳ + c̃yz̄ + c̃xz)



















, (A1)



11

D̂(k) =
√
2D







































0 0 0 0 −cyz −cyz 0 cxz̄ 0 0 0 cxȳ
0 0 0 cyz 0 0 −cxz̄ 0 cxz̄ 0 0 −cxȳ
0 0 0 cyz 0 0 0 −cxz̄ 0 −cxȳ cxȳ 0
0 cyz cyz 0 0 0 0 0 −cxy 0 −cxz 0

−cyz 0 0 0 0 0 0 0 −cxy cxz 0 cxz
−cyz 0 0 0 0 0 cxy cxy 0 0 −cxz 0
0 −cxz̄ 0 0 0 cxy 0 0 0 0 cyz̄ −cyz̄
cxz̄ 0 −cxz̄ 0 0 cxy 0 0 0 −cyz̄ 0 0
0 cxz̄ 0 −cxy −cxy 0 0 0 0 cyz̄ 0 0
0 0 −cxȳ 0 cxz 0 0 −cyz̄ cyz̄ 0 0 0
0 0 cxȳ −cxz 0 −cxz cyz̄ 0 0 0 0 0
cxȳ −cxȳ 0 0 cxz 0 −cyz̄ 0 0 0 0 0







































(A2)

Note that here we use simplified notations defined as follows: cαβ = cos(kα + kβ), cαβ̄ = cos(kα − kβ), c̃αβ =
cos(2(kα + kβ)), and sαβ = i sin(kα + kβ).

Appendix B: Finite-difference method for integrating LLG equation

In this appendix, we discuss a finite difference scheme for numerical integration of the Landau-Lifshitz-Gilbert(LLG)
equation by adopting the method introduced by Serpico et al

35. The LLG equation can be written in the following
form:

∂Si

∂t
= Si ×

(

Hi +
αG

S

∂Si

∂t

)

, (B1)

Note that the effective exchange field Hi is defined in the Eq. (10).
Then the following approximations are applied on the midpoint between time step n and n+ 1 :

∂Si

∂t
(tn+1/2) =

Si(tn+1)− Si(tn)

∆t
+O(∆t2) (B2)

Si(tn+1/2) =
Si(tn+1) + Si(tn)

2
+O(∆t2) (B3)

where ∆t = tn+1 − tn and tn+1/2 denotes midpoint between tn and tn+1.
We now express Hi(tn+1/2) in terms of Hi(tn) and Hi(tn−1) by applying the midpoint approximation (B3) twice :

Hi(tn+1/2) =
3

2
Hi(tn)−

1

2
Hi(tn−1) (B4)

By substituting Eq. (B2),(B3), and (B4) into Eq. (B1) we get:

Si(tn+1)− Si(tn)

∆t
=

[

Si(tn+1) + Si(tn)

2

]

×
[

3

2
Hi(tn)−

1

2
Hi(tn−1) +

αG

S

Si(tn+1)− Si(tn)

∆t

]

(B5)

which yields the expression for Si(tn+1) in terms of previous time step spin components Si(tn) and Si(tn−1):

Si(tn+1)− Si(tn+1)×
[(

3

4
Hi(tn)−

1

4
Hi(tn−1)

)

∆t− α

S
Si(tn)

]

(B6)

= Si(tn) + Si(tn)×
(

3

4
Hi(tn)−

1

4
Hi(tn−1)

)

∆t (B7)
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Then the spin configuration Si (tn+1) is obtained by solving the matrix equation:

Si(tn+1) = Bi(tn, tn−1)
−1Ai (tn, tn−1)Si (tn) , (B8)

where Ai(tn, tn−1) and Bi (tn, tn−1) are both 3× 3 matrix defined as follows :

Ai (tn, tn−1) =





1 −Kz
i Ky

i

Kz
i 1 −Kx

i

−Ky
i Kx

i 1



 , (B9)

Bi(tn, tn−1) =





1 Fz
i −Fy

i
−Fz

i 1 Fx
i

Fy
i −Fx

i 1



 , (B10)

where K̂i =
[

1
4
Hi(tn−1)− 3

4
Hi(tn)

]

∆t and F̂i = K̂i +
αG

S Si(tn).

Appendix C: Torques in the linearized LLG equation

The torques in the linearized time-dependent LLG equation (24) are calculated in this Appendix. First we choose
the following parametrization for the local basis:

êxi = cos θi cosφiâ+ cos θi sinφib̂− sin θiĉ ,

ê
y
i = − sinφiâ+ cosφib̂ ,

n̂i = sin θi cosφiâ+ sin θi sinφib̂+ cos θiĉ ,

(C1)

where θi and φi are polar and azimuthal angles that determine the orientation of spin at site i. Introducing the
following notations for simplicity: ci = cos θi, si = sin θi, c̃i = cosφi, s̃i = sinφi. the linearized torques projected
onto the localized basis are:

τxi =
∑

j

[

Dz
ijcj c̃i−j +

(

Dx
ij c̃i +Dy

ij s̃i
)

sj + Jijcj s̃i−j

]

σx
j +

∑

j

[

Dz
ij s̃i−j − Jij c̃i−j

]

σy
j

+
∑

j

[

(

Dx
ij s̃i −Dy

ij c̃i
)

sicjD
z
ijsisj s̃i−j +

(

Dy
ij c̃j −Dx

ij s̃j
)

cisj + Jij (cicj + sisj c̃i−j)
]

σy
i , (C2)

τyi =
∑

j

[

(

Dy
ij c̃i −Dx

ij s̃i
)

sicj +Dz
ijsisj s̃i−j +

(

Dx
ij s̃j −Dy

ij c̃j
)

cisj − Jij (cicj + sisj c̃i−j)
]

σx
i

+
∑

j

[

(

Dy
ij c̃i −Dx

ij s̃i
)

cisj −
(

Dy
ijsi +Dz

ijcis̃i
)

cj c̃j +
(

Dz
ijcic̃i +Dx

ijsi
)

cj s̃j + Jij (cicj c̃i−j + sisj)
]

σx
j

+
∑

j

[

Dz
ijcic̃i−j +

(

Dx
ij c̃j +Dy

ij s̃j
)

si + Jijcis̃i−j

]

σy
j (C3)
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