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In topologically-protected quantum computation, quantum gates can be carried out by adiabat-
ically braiding two-dimensional quasiparticles, reminiscent of entangled world lines. Bonesteel et
al. [Phys. Rev. Lett. 95, 140503 (2005)], as well as Leijnse and Flensberg [Phys. Rev. B 86, 104511
(2012)] recently provided schemes for computing quantum gates from quasiparticle braids. Math-
ematically, the problem of executing a gate becomes that of finding a product of the generators
(matrices) in that set that approximates the gate best, up to an error. To date, efficient methods
to compute these gates only strive to optimize for accuracy. We explore the possibility of using
a generic approach applicable to a variety of braiding problems based on evolutionary (genetic)
algorithms. The method efficiently finds optimal braids while allowing the user to optimize for
the relative utilities of accuracy and/or length. Furthermore, when optimizing for error only, the
method can quickly produce efficient braids.

PACS numbers: 03.67.Lx, 75.40.Mg, 73.43.-f

I. INTRODUCTION

Sensitivity to noise makes most of the current quantum
computing schemes prone to error and nonscalable, al-
lowing only for small proof-of-principle devices. Topolog-
ical quantum computation1,2 offers an elegant alternative
to overcome decoherence by using non-Abelian quasipar-
ticles. Materials with sufficiently complex topologically-
ordered phases can thus be used as media for intrinsically
fault tolerant and scalable quantum information process-
ing. Different proposals and implementations exist to
date, ranging from fractional quantum Hall systems3–5

with filling factors ν = 5/2 and ν = 12/5—conjectured to
exhibit non-Abelian anyonic excitations6,7—to quantum
dimer models8–14 (implemented via Josehpson junction
arrays),10,15 spin and Hubbard models,16–19 toric2 and
color20 codes, anisotropic spin model,21 as well as imple-
mentations using cold atomic22 or molecular23,24 gases.
While the holy grail is the firm establishment of a phase
with non-Abelian anyons, virtually all aspects of topo-
logical quantum computation are now under intense ex-
perimental and theoretical study. Unfortunately, huge
technological challenges remain for the development of
working devices, however, some proposals based on cur-
rent technologies exist.10,15

While bosons or fermions pick up phase factors of ±1
when braided, for anyonic particles these simple phases
are replaced by non-Abelian matrices. The matrices act
on a (degenerate) Hilbert space with a dimensionality
that grows exponentially in the number of quasiparti-
cles and whose states are intrinsically immune to de-
coherence because they cannot be distinguished by lo-
cal measurements. A topologically-protected quantum
gate then can be implemented by adiabatically braid-
ing quasiparticles.1,2,25 At low enough temperatures the
system is, by design, protected to decoherence because
errors only can occur due to particle-hole excitations.

There are different quasiparticle systems that can be

used to generate quantum gates. However, in all cases
the problem can be reduced to finding a product of braid
generators (matrices) that approximates a given quan-
tum gate with the smallest possible error and, if possi-
ble, as short as possible. For example, in Bonesteel et
al.25 braids of Fibonacci anyons1 are computed. The
fusion rules for these anyons make the Hilbert space
of the quasiparticles two dimensional (see Sec. II below
for details), i.e., a product of two-dimensional matrices
has to be computed. Bonesteel et al. first performed
a brute force (exhaustive) search up to a braid length
of 46 exchanges obtaining nontrivial gates with an er-
ror ε ∼ 10−3. Unfortunately, the search space grows
exponentially with the length of the braid. Using the
Solovay-Kitaev algorithm26–28 they then were able to
compute braids to any desired accuracy with a length
that grows ∼ | log10(ε)4|. For example, for an accuracy
of ε ∼ 10−3 the Solovay-Kitaev algorithm would require
braids of an approximate length of 81 exchanges. How-
ever, the Solovay-Kitaev algorithm does not allow for the
user to optimize for the relative utilities of accuracy vs
length. Depending on physical implementations, a longer
braid might be more problematic due to error prolifera-
tion and, as such, having the option to either optimize
for accuracy and/or length might lead to braids better
suited for a given physical implementation.

In this paper we explore the possibility of using evolu-
tionary (genetic) algorithms29 to efficiently find optimal
braids while allowing the user to optimize for the relative
utilities of accuracy and/or length. We test the method
with the braids computed by Bonesteel et al.,25 as well as
a recent proposal by Leijnse and Flensberg30 that braids
six Majorana fermions to create two-qubit gates. Fur-
thermore, we show that when optimizing for error only,
the method can quickly produce efficient braids, outper-
forming brute force searches. We emphasize that the
presented method is generic and therefore can be applied
to any problem that requires the computation of the op-
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timal product of (non-Abelian) operators. Thus, it can
be applied, for example, also to surface codes.31

The paper is structured as follows. In Sec. II we show
how the complex quantum computing problem can be re-
duced to a simple mathematical problem of finding ma-
trix products, followed by a brief review of previous meth-
ods in Sec. III. The evolutionary algorithm is introduced
in Sec. IV, followed by results in Sec. V and concluding
remarks.

II. SIMPLIFIED PROBLEM REPRESENTATION

In the following section we illustrate the method on
two different quantum computing proposals.
A braid operation can be represented by a matrix that

acts on the qubit space. These matrices will be referred
to as generators and the quantum gate that a braid rep-
resents is the product of the generators that represent
the individual braid operations. The problem of find-
ing braiding operations that approximate gates is then
reduced to finding a product chain of the reduced gen-

erators and their inverses that approximates the matrix
representing the quantum gate.
Fibonacci anyon braids25 only encompasses 1-qubit

gates. In such systems, the braid transition operators
result in a phase change for the noncomputational state,
and therefore it can be ignored. Overall phases in the
problem can also be ignored. Therefore, the transition
matrices can be projected onto SU(2) by a multiplica-
tion with eıπ/10, yielding for the generators and their
graphical representations

σ1 =

(

e−ı7π/10 0
0 −e−ı3π/10

)

=

σ2 =

(

−τe−ıπ/10 −ı√τ
−ı√τ −τeıπ/10

)

=

where τ = (
√
5− 1)/2, and the graphical representations

are those used, for example, in Fig. 3.
In the Leijnse and Flensberg scheme based on Majo-

rana fermions the braid operators act on a 2-qubit sys-
tem, i.e., the gates will be 2-qubit gates. The generators
for this scheme are higher dimensional, i.e.,

B1 =







ı 0 0 0
0 ı 0 0
0 0 1 0
0 0 0 1






, B2 =

1√
2







1 0 ı 0
0 1 0 ı
ı 0 1 0
0 ı 0 1






, B3 =







ı 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ı






, B4 =

1√
2







1 ı 0 0
ı 1 0 0
0 0 1 −ı
0 0 −ı 1






, B5 =







ı 0 0 0
0 1 0 0
0 0 ı 0
0 0 0 1






. (1)

The goal is now to find a product of generator matrices
that produces a braid that represents a gate operation
under the constrains that either length is minimized, er-
ror is minimized or both length and error are minimized.

III. TRADITIONAL APPROACHES

The näıve approach to solve the braiding problem is
a brute-force search. A target error is set, and the set
of all braids is searched from shortest to longest until a
braid whose error is smaller than or equal to the target
error is found. However, this approach is nonscalable, as
illustrated in Fig. 1 for Fibonacci anyons. In this case
we have 4 possible matrices (two generators and their
inverse) for each position in the braid (2 or 3 choices
if cancellations between inverses are not ignored). This
means that the number of different braids of length ℓ is
4ℓ (or in the range 2ℓ – 3ℓ including cancellations). This
is even worse in the Leijnse and Flensberg scheme for
Majorana fermions where one has 10 different matrices,
i.e., an exhaustive search for a braid of length ℓ might
have a worst-case run time of order O(10ℓ). Because
the number of possible braids grows exponentially with
length, a brute-force search would be too slow for most

practical applications. Note, however, that bidirectional
search,32,33 greatly improves the performance.

The Solovay-Kitaev algorithm provides a boost in the
efficiency of finding more accurate braids, but at the
cost of accepting braids that are longer than neces-
sary. Depending on the implementation, this might be
problematic: While a given error might be desirable, a
given hardware implementation might degrade consider-
ably with the length of the braid. In such cases short
braids might be desirable. Given a target error of ε,
the Solovay-Kitaev algorithm produces braids of length
O[log3.9710 (1/ε)] that are guaranteed to have error less
than ε in a run time of O[log2.7110 (1/ε)].27,28

Another option explored by Burrello et al.34 is braid
hashing, in which approximations of the identity braid
are used to refine crude approximations of the target
braid into more accurate solutions. This method is fast
and can produce very accurate braids, but it does not
address the problem of increasing braid length with ac-
curacy. Furthermore, the braid hashing algorithm works
only for Fibonacci anyons and it is unclear how the
method can be generalized to other systems such as Ma-
jorana fermions.

In particular, none of these methods seek to optimize
braid length in addition to accuracy except for brute-
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FIG. 1: (Color online) Minimum possible error ε for a braid
of maximum length ℓ of Fibonacci anyons. This brute-force
result for braids up to ℓ = 18 is a lower bound for the error
for all other search methods. The line corresponds to the op-
timum, i.e., any heuristic method can only produce a solution
that lies on or above the line.

force, however brute-force is slow. Below we present an
efficient algorithm that can be tuned to optimize for both
length and/or accuracy. The method has the potential
to create shorter braids than with the Solovay-Kitaev al-
gorithm. However, we note that the Solovay-Kitaev algo-
rithm is faster and can overcome some convergence prob-
lems the genetic approach faces (see below). In compar-
ison to brute force methods, the genetic approach yields
good results considerably faster. We also emphasize that
this method is applicable to any system where quantum
gates are built from a finite set of fault-tolerant gates.
Although there have been some attempts to solve this
problem generically, the approach of, e.g., Ref. 31 only
applies to single-qubit systems. The genetic method out-
lined below can be potentially applied to arbitrary sys-
tems.

IV. EVOLUTIONARY ALGORITHM

Mathematically, the problem at hand is similar to solv-
ing a Rubik’s cube: The goal is to find the shortest set
of matrix operations (cube rotations) to obtain the mini-
mum of a cost function (uniformly-colored faces of the
cube) which here represents the shortest braid or the
smallest error.
The proposed algorithm resembles a steady-state ge-

netic algorithm: A population of random solution braids
is generated in the initialization step of the algorithm.
The population then evolves in an iterative process where
different generations are developed according to prede-
fined mathematical operations on the population. Each
update on a generation is broken into two steps—culling

and breeding—described in detail below. After a pre-
defined number of generations have been executed, the
algorithm terminates and the best braid encountered by

the algorithm is presented as the solution. A “best braid”
is defined as the braid with the highest fitness, i.e., the
braid that minimizes the problem-dependent cost func-
tion (described below) for the problem.
To simplify matters, we introduce the following nota-

tion: Let B[a,b] denote the sub-braid of the braid B from
the a-th element to b-th element (inclusive), and let B[a,]

denote the sub-braid of B from the a-th element to the
end of B. Furthermore, let the concatenation of braid
variables indicate a concatenation of the actual braids.
For example, B = B1B2 means that B is a concatena-

tion of braids B1 and B2. B = B
[3,]
1 B

[2,5]
2 would indicate

that B is a concatenation of the 3rd to end sub-braid
of B1 and the 2nd to 5th sub-braid of B2. Let len() be
a function that has a braid as its argument and returns
that braid’s length, mat() be a function that has a braid
as its argument and returns the product of the braid’s
elements in matrix form, and let d() be a function that
evaluates the distance between two braids, specifically,

d(B1, B2) = |mat(B1)−mat(B2)| . (2)

Here and for the rest of the paper, the matrix norm used
is

|X | =
√

∑

ij

X2
ij . (3)

Equation (2) defines the metric used to determine the
“distance” between two braids.
A high-level view of the simulation is provided by the

following pseudo-code in which m is the population size,
generations is the number of generations to evolve the
population, and best is the current best braid:

population← new population of size m
for i = 1→ generations do

Sort population ascending by fitness
if fitness(best) < fitness(population[m]) then

best← population[m]
end if

Perform culling (least fit 10% removed)
Repopulate missing 10% with breeding
i← i+ 1

end for

It should be noted that in this pseudo-code and all follow-
ing pseudo-code, collections use one based indices (i.e.,
population[1] is the first element of population). At the
end of a generation the population is the same size as in
the beginning, however, we expect that the offpsprings
are fitter than the initial randomly-chosen parents.

A. Culling

The population is sorted according to a fitness func-
tion. The fitness can, in general, be any real-valued func-
tion of braid length ℓ and error ε. Here we use

f(ℓ, ε) =
1− λ

1 + ε
+

λ

ℓ
. (4)
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The braid error is calculated with the following metric

ε = |B −X | , (5)

where B is a braid matrix and X represents the target
matrix (gate to be emulated). The parameter λ allows
one to tune between a short braid or a more accurate
braid, i.e., for λ → 1 the system is tuned for length,
whereas for λ→ 0 the system is tuned for error reduction.
After sorting the population by fitness, the bottom

10% of the genes (braids) are removed.

B. Breeding

After a culling operation only 90% of the genes are
left in the gene pool. The remaining 10% are filled by
combining remaining braids into new braids, i.e., breed-
ing. From the 90% of the braids that survived the culling
operation—which represents the top 90% of the genes in
the population—two braids are selected as parents of a
new braid for the gene pool. [Note that values ∼90%
are typically used in the literature]. Let these parents be
denoted as P1 and P2, and let the offsprings be denoted
as C1 and C2. The way two parent braids are combined
into an offspring plays a crucial role in the efficiency of
the algorithm.
Our initial rather näıve approach was to two select two

random integers n1 and n2 such that n1 ∈ (1, len(P1)]
and n2 ∈ (1, len(P2)]. The boundaries of these ranges
are chosen to prevent duplication of the parents. The

offsprings are then formed as C1 = P
[1,n1−1]
1 P

[n2,]
2 and

C2 = P
[1,n2−1]
2 P

[n1,]
1 . Due to the noncommutativity of

matrix multiplication, this method is no better than ran-

domly generating two offsprings. To remedy this prob-
lem, we used a different recombination method, referred
to as contextual recombination. In contextual recombi-
nation the partition points n1 and n2 are chosen by min-
imizing the distance between the first halves of the two
parent braids. However, to avoid cloning, we require that
the first halves not be identical. The actual recombina-
tion method after n1 and n2 are chosen is the same as
above. To choose n1 and n2, one must first determine

m, where m is the largest integer such that P
[1,m]
1 and

P
[1,m]
2 both exist and are identical. Once m is deter-

mined, n1 and n2 are chosen such that n1 ∈ (m, len(P1)],

n2 ∈ (m, len(P2)], and d(P
[1,n1−1]
1 , P

[1,n2−1]
2 ) is mini-

mized. These values can be determined using the fol-
lowing pseudo-code:

minDistance←∞
m← 0
while m < min(len(P1), len(P2)) and P

[m,m]
1 =

P
[m,m]
2 do

m← m+ 1
end while

for i = m→ len(P1) do
for j = m→ len(P2) do

dist← d(P
[1,i−1]
1 , P

[1,j−1]
2 )

if dist < minDistance then

minDistance← dist
n1 ← i
n2 ← j

end if

end for

end for

V. RESULTS

We have run the algorithm for both Fibonacci anyons
and Majorana particles. The population sizes are 80
individuals for both cases following the recommenda-
tions by Belmont-Moreno.35 Increasing the population
size showed no significant improvement on the results
but increased the run time.
We start with Fibonacci anyons as studied in Ref. 25

with λ = 0. In this case we only optimize for accuracy
and not for length. The goal is to emulate the X-rotation
gate

X =

(

0 ı
ı 0

)

. (6)

In the two-qubit case we emulate the controlled NOT (or
CNOT) gate, namely

X =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






. (7)

Figure 2 shows the error ε as a function of the run time
of the algorithm. The method is capable of improving
solutions very quickly (after approximately 150 genera-
tions), but is unable to improve after a certain point. An
interesting example braid of the algorithm that shows its
potential can be seen in Fig. 3. This is very promising,
and we believe the minimum error problem can be solved
by introducing a clever mutation method. However, our
attempts to implement a basic mutation (i.e., changing a
generator into a random new one and inserting approx-
imations to the identity braid into the braid) rendered
the algorithm as inefficient as a random search.
Unfortunately, for two-qubit gates (Majorana

fermions) the algorithm is not efficient. Figure 2 shows
the error ε as a function of the run time (dashed line).
The data converge quickly to a plateau and cease
to improve, i.e, the accuracy of the braid cannot be
improved.
Figure 4 shows that by tuning λ in the fitness function

we are able to tune fitness against accuracy effectively for
the case of Fibonacci anyons emulating the X-rotation
gate. The squares represent averages over 100 runs and
the ellipses corresponding standard deviations. The vari-
ance for small λ is large. However, for larger values of
λ the length of the braid can be effectively constrained.
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FIG. 2: (Color online) Average error in the population for
each generation averaged over 100 sample runs of the algo-
rithm for λ = 0. The solid line represents the average error
for Fibonacci anyons when emulating anX-rotation gate. The
dashed line is for Majorana particles emulating a CNOT gate.
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FIG. 3: (Color online) Example result for a braid of Fibonacci
anyons emulating the X-rotation gate. The error of this ap-
proximation is 3.1× 10−3.

Although the spread in the accuracy is large, repeating
the simulation multiple times allows one to determine an
optimal braid with a small error and small length quickly
(less than 1h for 100 runs on an average CPU). We ex-
pect that by introducing clever mutations the spread in
the data can be reduced.
Figure 4 also shows that for high values of λ, the al-

gorithm produces results very near the best-case bound-
ary, but are constrained to the high-error region. As λ
decreases, the solutions move away from the best-case
boundary, producing longer than needed braids.

VI. CONCLUSIONS

We have introduced a generic algorithm based on evo-
lutionary methods to approximate gates using quasiparti-
cle braids. While single-qubit braids of Fibonacci anyons
can be computed efficiently, the method fails to produce
optimal braids for 2-qubit gates. The latter presents an
unresolved challenge that we will attempt to tackle in the
near future. Our results suggest that mutations might be
key in the improvement of the method.
We emphasize that the developed method is generic

and therefore can be applied to problems ranging from
general quantum compiling, to orienting devices us-
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FIG. 4: (Color online) Distribution of the output of the al-
gorithm for different values of λ. Each ellipse represents the
output distribution for a single value of λ centered on the av-
erage output with the ellipse bounds being a single standard
deviation from the mean. Averages are over 100 runs. The
dashed (red) line is an extrapolation of the graph in figure 1.

ing coarse stepper motors in industrial applications, as
well as generic optimization of problems with compet-
ing goals. It would be interesting to compare our results
to bidirectional search,32,33 which we plan to do in the
future.
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