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It is well known that screw dislocation motion dominates the plastic deformation in body-centered-
cubic metals at low temperatures. The nature of the non-planar structure of screw dislocations gives
rise to high lattice friction which results in strong temperature and strain rate dependence of plastic
flow. Thus, the nature of the Peierls potential, which is responsible for the high lattice resistance,
is an important physical property of the material. However, current empirical potentials give a
complicated picture of the Peierls potential. Here, we investigate the nature of the Peierls potential
using Density Functional Theory in the BCC transition metals. The results show that the shape
of the Peierls potential is sinusoidal for every material investigated. Furthermore, we show the
magintiude of the potential scales strongly with the energy per-unit-length of the screw dislocation
in the material.

I. INTRODUCTION

The plastic deformation of body-centered-cubic (BCC) metals is well known to be considerably different than closed-
packed metals at low temperatures1. In BCC metals, at nominally quasi-static loading rates and low temperatures,
plasticity is controlled by the motion of screw dislocations. Due to high lattice resistance, screw dislocation motion is
thermally activated which manifests in a temperature and rate dependent flow1–3.

The high lattice resistance, and hence thermally activated motion, experienced by screw dislocations in BCC metals
is a direct result of the non-planar nature of the dislocation core4–7. In contrast, dislocations in close-packed metals
on close-packed planes as well as edge dislocations in BCC metals all have low lattice resistance and high mobility7–9.
Thus, extensive work exists in establishing the nature of plastic flow in BCC metals as it relates to the structure of
the screw dislocation6,10–14.

Empirical atomistic models have been instrumental in confirming the theory of thermally activated flow in BCC
metals as well as establishing the core structure of screw dislocations. Notably, all simulations show that the screw
dislocation core is non-planar in nature, confirming early arguments based on crystal symmetry. Furthermore, these
simulations have shown that the Peierls stress of screw dislocations is high and that dislocation motion is indeed ther-
mally activated. These models have also confirmed the high mobility of edge dislocations in BCC metals, supporting
the notion that plastic flow is controlled by screw dislocation motion.

Despite the success of these models, they have not provided a consistent or clear picture of the exact screw dislocation
core structure or Peierls potential of BCC metals. Specifically, these simulations have shown two possible types of
equilibrium core structures5, the compact core which exhibits the full D3 symmetry of the 〈111〉 zone, and the
polarized core which only exhibits C3 symmetry (the three-fold rotation axis) and therefore has two degenerate
structures related through the 〈110〉 diad. In addition to the predictions of two different equilibrium core structures,
these empirical potentials often predict an additional metastable core position15, the split core16, to exist between two
equivalent compact core structures. This dislocation core lies on a specific {110} plane, only obeys the diad symmetry,
and is triply degenerate. The existence of the split core structure means there is an additional metstable state as
the screw dislocation moves from one compact core to another, which allows for the nucleation of partial kinks along
the dislocation line, results in discontinuities in the activation enthalpy as a function of stress10,15–17, and creates a
tendency for {112} slip18.

To better understand plasticity in BCC transition metals, recently density functional theory (DFT) has been used
to determine dislocation core structures, Peierls stress, and sometimes Peierls potentials. Ismail-Beigi and Arias19

used DFT to study the core structure of screw dislocations in Mo and Ta and found the core structures to be
compact. Similar results have also been found for W, Fe and V20–22 and these results do not appear to depend on
the psuedopotential or exchange-correlation function. These findings suggest that the equilibrium core structure for
pure BCC transition metals is indeed compact.

However, these results do not rule out the existence of the split core, which is a metastable state between two
compact cores. Two notable studies have addressed this question using DFT. Segall et al.22 computed the Peierls
potential using the drag method (see below for a discussion of the drag method) in Ta using Kleinman-Bylander
psuedopotential and the local density approximation (LDA), and demonstrated a metastable configuration, albeit
a small one. However, Ventelon and Williame23 used a projector-augmented-wave (PAW) psuedopotential and the
Perdew-Burke-Ernzerhof (PBE) formulation within the generalized gradient approximation (GGA) and showed that
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no metastable core structure exists in the Peierls potential in α−Fe. Similarly, Itakura et al.24 also showed a single
hump Peierls potential in α-Fe and further showed that the split core structure is unstable. This raises an important
question: Which BCC metals exhibit a metastable split core structure and which ones do not? In this paper, we will
attempt to determine the existence of the metastable split core structure in BCC metals using DFT. Furthermore,
we will use the DFT results to establish how the Peierls barrier height and shape varies across materials.

II. METHODOLGY

To compute the energy of the dislocations, we use DFT as implemented in the Vienna Ab-Initio Simulation Package
(VASP)25. Most of the psuedopotentials used are of the PAW26 type and the exchange correlation (XC) energy is
evaluated using the PBE formulation27 within the GGA. However, for Ta, we also consider the Vanderbilt ultrasoft
psuedopotentials (USPP)28 and the LDA. The lattice constants were determined using 2 atom supercells with a 400
eV cutoff and high (31×31×31) Monkhorst Pack (MK) integration scheme in k-space. The lattice constant, which is
listed in Table I, is fixed for all further calculations, while the cohesive energy and elastic constants were determined
for this configuration as well.

The number of valence electrons i.e., those that are treated explicitly in the calculations, varies for different materials.
For Mo and W, the 6B elements, we use 6 valence electrons. Thus, for Mo we use a Kr core and a Xe core for W.
For Ta, we use 5 valence electrons and hence a Xe core. However, for Nb and V we use 11 electrons; this formulation
includes the 6 p electrons from the next lowest electron shell. The reason for using a high electron count for Nb
and V is that DFT calculations tend to poorly predict C44 for all BCC transition metals, particularly for V and
Nb29–31. This inadequacy, as compared to experimental values32, is also observed for LDA calculations20. We used
the 5 valence electrons for V and found that C44 was 10.8 GPa, compared to the 22.0 GPa found with 11 electrons
and 25 GPa with 13 electrons. The origin of the failure of DFT to correctly represent C44 in certain approximations
is still undetermined30,31. However, the use of the 11 electron formulation is a good balance between accuracy and
computational cost. Furthermore, as we will show later, the Peierls potential scales strongly with the elastic constants
so the DFT estimated Peierls potential can be corrected using experimental elastic constants.

(a)

(b) (c)

FIG. 1: (a) A differential displacement map of the dislocation dipole used in all of the DFT and EAM simulations. This
particular configuration shows the compact core. (b) A close up view of the compact core and (c) the split core structures.
Note that the arrow magnitude in (a) and (b) is normalized by b/3 while the normalization in (c) is b/2.

To determine the properties of screw dislocations in the material modeled, we use a periodic supercell that contains
231 atoms as shown in Figure 1(a) and is described in detail by Li et al.33. The advantage of this particular supercell
is that it actually represents a nearly-square dislocation quadrapole. The dipole configurations are often used because
an isolated dislocation is incompatible with periodic boundary conditions. A dislocation dipole was introduced into
the simulation cell and the ions were allowed to relax to their equilibrium ground state positions using a 400 eV energy
cutoff and a MK integration scheme of 1×1×13, with high integration along the Burgers vector direction. A differential
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displacement map of the screw dislocation dipole is shown in Figures 1(a) and (b) using an empirical potential, however
the cores structure is visually indistinguishable from to those predicted by all of the DFT simulations of Ta. It is
worth noting that this structure, the compact core, was observed in every material tested, which includes Ta, Mo,
W, V and Nb. We believe this is the first report of the core structure in Nb using DFT, while our results confirm all
previous reports of the compact core in the other BCC materials.

The Peierls potential was computed by determining the transition pathway from one equilibrium dipole structure to
another with the dipole uniformly translated along the 〈112〉 direction. This represents motion along a {110} plane.
The energy pathway was determined using the drag method34 where the reaction coordinate used is the vector from
the initial to the final position. The advantage of this reaction coordinate choice is that it is easy to implement and
the reaction coordinates correlate with the physical position of the dislocation core, which will become important
for determining the shape of the Peierls potential. Furthermore, since the drag method relaxes the forces orthogonal
to the drag reaction coordinate, each replica can be run as an individual simulation. Therefore, the drag method is
easier to use on large computational clusters as compared to other methods, such as the nudged-elastic-band (NEB)
method35,36, that require simultaneous evaluations of each replica. A detailed comparison of the reaction pathways
produced by these two methods is discussed below.

III. RESULTS

A. Empirical Potentials

Prior to investigating the results from DFT, it is instructive to use an empirical potential to compare the reaction
pathway computed for a dipole configuration to an isolated dislocation, as well as to compare the drag method to
the NEB method. To this end, we analyze the energy barrier of screw dislocation motion modeled in Ta using the
EAM model parameterized by Zhou et al.37. We consider precisely three cases. First, an isolated screw dislocation is
created in a square block of atoms using the displacement field from anisotropic elasticity with the outer atoms fixed,
a procedure well outlined in the literature6,15,38. The energy barrier is computed between two equivalent compact
core structures using the NEB method, which is shown in Figure 2 (NEB-isolated). The second case (NEB-dipole) is
a dislocation dipole with 231 atoms, the same as described in Section II, whose reaction pathway is also determined
using the NEB method. Finally, the third case (drag-dipole) is the same dipole as the second case, but the reaction
pathway is determined using the drag method.
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FIG. 2: The energy barrier computed using the EAM potential parameterized by Zhou et al. using both an isolated dislocation
and a dislocation dipole. The dislocation dipole configuration energy barrier pathway was computed using both the NEB (NEB-
dipole) method as well as the drag method (drag-dipole) while the isolated dislocation reaction pathway was only computed
using the NEB method (NEB-isolated).



4

Figure 2 shows the three different reaction pathways. The isolated dislocation shows a pathway that is common
for many EAM potential that predict an equilibrium compact core: there is a clear metastable core configuration
midway along the path which corresponds to the split core16, Figure 1(c). This potential shape has been termed the
“camel hump” Peierls potential7,39,40. The two pathways for the dipole configurations also exhibit a metastable core
structure midway along the pathway. However, we note that the NEB method applied to the dislocation dipole is
able to identify additional metastable states along the path, which are not present in the path predicted by the NEB
method for the isolated dislocation or the path predicted by the drag method for the dipole.

This additional metastable state corresponds to the configuration where one of the dislocations is a compact core,
Figure 1(b), and the other is a split core structure, Figure 1(c). This can be easily understood as a result of the dipole
configuration. The final and initial configurations are screw dislocation dipoles separated by a unit lattice translation
along the 〈112〉. Midway along the reaction pathway, the metastable configuration is both dislocations exhibiting
the split core structures. The new metastable states, which occur at both the 1/4 and 3/4 reaction coordinates, are
comprised of one compact core and one split core. The mixed split core - compact core dipole has a lower separation
width, which reduces the elastic energy creating a new metastable state. Thus the motion of the compact core dipole
to compact core dipole consists of a simple path: one compact core transitions to a split core, then the other compact
core transitions to a second split core, then one of the split cores becomes compact, and finally the last split core
becomes compact. This is exactly the reaction pathway observed in the NEB simulations.

The drag method misses the mixed compact-split core structure, which can be inferred from the energy barrier
curves in Figure 2. The reason the drag method misses these additional metastable states is because relaxation only
occurs normal to the reaction coordinate, which in this cases is a linear interpolation of the dislocation positions.
Thus, the drag method will prevent the dislocation cores in the dipole from moving closer together, which is required
to capture these new metastable states. However, these additional metastable states can be considered an artifact
of the dipole configuration as they do not exist for an isolated dislocation. Since we are interested in predicting the
energy pathway as close to the isolated dislocation as possible using the dipole configuration, the drag method has
an advantage over the NEB method in this special case. The differences between these two methods as applied to the
dislocation dipole are very likely a result of the metastable split core and it remains to be seen if there is a significant
difference between the drag and NEB methods if the split core is not stable.

B. DFT Predictions

Prior to studying the Peierls potential across a number of the BCC transition metals, we first take an in-depth
look at the Peierls potential specifically in Ta. The effects of the XC function and psuedopotential are investigated
in Ta by considering three cases: PAW-PBE, PAW-LDA and USPP-LDA. In each case, the drag method was used to
compute the energy barrier. The results of these calculations are shown in Figure 3.

The first observation that can be made is that the Peierls potential shape appears independent of the XC function
and the pseudo-potential. The predicted Peierls potential shape is a single hump and appears sinusoidal. While the
height of the Peierls potential seems to vary by around 30% with the LDA predicting a larger Peierls potential, the
results seem rather consistent between the different parameterizations. However, the Peierls potential shape predicted
here appears to contradict the results of Segall et al.22 who found a metastable core along the Peierls potential pathway.
It is worth pointing out that those authors used a psuedopotential of Kleinman-Bylander form in conjunction with
the LDA approximation of the XC energy, which may predict such a metastable core configuration. While this may
suggest a Peierls potential shape dependence on the psuedopotential, the more modern PAW psuedopotentials are
expected to be more reliable in predicting the correct electronic structure, suggesting that the results obtained here
are likely more reliable.

When the EAM potential was used to describe the Peierls potential in the dipole configuration, we observed very
different reaction pathways when comparing the drag and NEB methods. To check the predictions of the Peierls
potential on the method of reaction pathway analysis, we use the NEB method once on the dislocation dipole in Ta
as described by the PAW-PBE. The results of this calculation are also shown in Figure 3. Here, we see that the two
predicted paths (drag and NEB) are very close, with the results of the NEB method showing a height that is only
about 15% lower than that predicted by the drag method. Thus, it appears that when a single hump Peierls potential
is predicted, the drag method and NEB method both show very similar Peierls potential profiles for the dislocation
dipole configuration.

In all of the previous simulations, we have used a cell containing 231 atoms and it is natural to reflect on the potential
size effects of using such a small number of atoms in a dipole configuration. For example, it has been shown in dipole
configurations that periodic images result into a conditional convergence of the long range elastic fields41. In our
work, the Peierls potential is computed as the difference between two equivalent dislocation dipoles, so this problem
is avoided as the long range elastic fields are removed. In addition to long range elastic fields, recent work42,43 has
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FIG. 3: The Peierls potential computed for Ta using DFT. The four curves represent the comparison of the Peierls potential
for different XC functions (PBE and LDA), different psuedopotentials (PAW and USPP) as well as different reaction pathway
analysis (drag and NEB). The Peierls potential shape appears universal and the height appears to vary by about 30%, with
the largest variation based on the XC function.

shown that the core fields can create errors in the computed dislocation core energies. However, the authors showed
that if a quadrapolar dislocation array is used, as is done in this work, the difference in core energies between hard and
easy cores exhibit rapid convergence42. To verify that this occurs in our simulations and thus demonstrate that size
dependent errors are unlikely, we also computed the Peierls potential in Ta using the PAW-PBE for dipoles containing
105 and 405 atoms. The Peierls potential height was computed using the drag method and the values were found to
be 92.0 meV/b and 76.1 meV/b. When compared to the 231 atom simulation, which has a Peierls potential of 75.9
meV/b, we find the 105 atom simulation overestimates the Peierls potential by ∼ 20% while the 405 atom simulation
is essentially the same. Thus, the 231 atom simulation appears to strike a balance between computational cost and
accuracy and is consistently used for the rest of the simulations.

To further investigate the Peierls potential in all of the BCC transition metals, we use the PAW psuedopotential and
the PBE formulation of the XC energy with the reaction pathway determined using the drag method. The number
of electrons treated explicitly is discussed in the Methodology but includes 6 electrons for Mo and W, 5 for Ta, and
11 for V and Nb. It is worth pointing out that we also used a 5 electron V model, and we will discuss the differences
in-depth later.

Figure 4 shows the Peierls potential shape of the 5 different BCC transition metals considered here: Mo, Ta, W,
V, Nb. The Peierls potentials are all normalized such that the maximum value is one. For comparison, we have
also plotted three different theoretical Peierls potential shapes: a sinusoidal potential, the Eshelby potential56 and
the anti-parabolic potential57; for details see2,3. From these results we can see that all of the BCC transition metals
predict a similar Peierls potential shape. At first glance, the shape appears to agree very well with the sinusoidal
potential, although the Eshelby potential is also very close. The shape of the Peierls potential computed for all of the
Ta methods in Figure 3 also fit the sinusoidal shape as well, suggesting that Peierls potential shape is independent of
the reaction pathway analysis. While this result may not appear at first to be very surprising as a sinusoidal potential
is an obvious choice, Hirth and Lothe32 have pointed out that this is a model potential and may not accurately
describe the potential shape in real materials. Furthermore, the empirical potentials, as noted here and shown in
other studies15,16, often predict a double maximum (camel hump) Peierls potential. Thus, the prediction of a common
sinusoidal potential may be regarded as quite surprising.

The height of the Peierls potential, which is related to the Peierls stress, appears to vary dramatically from material
to material as listed in Table I. Even though this value is for a dislocation dipole, it should be representative of an
isolated dislocation23. One important question to ascertain is how the Peierls potential scales across materials. We
investigate this by calculating the correlation coefficient between the Peierls potential height and several quantities
associated with the host crystal: the lattice constant, cohesive energy, C44, the cohseive energy divided by the lattice
constant and the pre-logarithmic energy factor (computed using anisotropic elasticity theory44). The computed
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FIG. 4: The Peierls potential for a number of BCC transition metals normalized by the peak value using PAW-PBE as
determined using the drag method. Three different theoretical Peierls potential shapes are plotted as well for reference: A
sinusoidal potential (solid), the Eshelby potential (dashed) and the anti-parabolic potential (dash-dot).

TABLE I: The lattice constant, cohesive energy, elastic constants, pre-logarithmic energy factor, the height of the Peierls
potential, and Peierls stress for 5 BCC metals. Note that the reported Peierls potential height is for a dipole, the value for an
isolated dislocation is half this value.

Material ao Ecoh C11 C12 C44 E Peierls Peierls

Height Stress

Å eV GPa GPa GPa eV/b eV/b GPa

W 3.172 8.48 530 204 136 2.30 188 2.4

Mo 3.151 6.36 483 161 93.7 1.75 122 1.6

Ta 3.310 8.20 269 166 70.9 1.24 75.9 0.86

Nb 3.322 6.93 247 136 17.8 0.716 59.25 0.74

V 2.997 5.37 257 144 22.0 0.470 48.7 0.66

correlation coefficients for each of these measures are: -0.03, 0.59, 0.95, 0.69 and 0.96 respectively. The BCC metals
have similar lattice constants, around 3 Å, and thus the lattice constant does not correlate with the Peierls potential.
Similarly, there is no strong correlation between the cohesive energy and the Peierls potential. There appears a much
stronger correlation if one considers the columns of the periodic table independently (5B and 6B) with the Peierls
potential increasing with increasing cohesive energy as shown in Figure 5(a). There is a also strong correlation between
the elastic constant C44 and the Peierls potential without consideration of the column of the periodic table. The one
outlier is in the case of Niobium where we can see that the computed C44 is lower than that of Vanadium but the
Peierls potential is higher.

The Peierls potential height has units of energy per-unit-length, which are not the same as the units of C44, Ecoh

or the lattice constant. Therefore, it seems more reasonable to correlate the height with quantities that share this
dimensionality, such as the cohesive energy divided by the lattice constant and the pre-logarithmic energy factor44

of a screw dislocation. There is a slight increase in the correlation of the cohesive energy divided by the Burgers
vector as compared to the cohesive energy alone. In contrast, the pre-logarithmic energy factor shows a very strong
positive correlation with the Peierls potential (as in Figure 5(b)). This result is probably not surprising as it simply
states that the Peierls potential height, i.e., the energy of the dislocation in the unstable equilibrium position, scales
with the energy of the dislocation in its equilibrium state (a notion originally suggested by Suzuki45 from simulations
using simple inter-row potentials). However, this is still a profound statement as it suggests how the Peierls potential
should scale among materials.

To further solidify this argument, it is worthwhile to compare the predictions of the 5 and 11 electron V formulations.
The relevant physical properties for 11 electron vanadium are shown in Table I and the 5 electron properties are:
ao = 2.979Å, Ecoh = 5.37 eV, C11 = 275 GPa, C12 = 142 GPa, C44 = 10.8 GPa, E = 0.282 eV/b, and the Peierls
potential height is 29.1 eV/b. The Peierls potential height goes up by a factor of 1.67 from the 5 electron to 11
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FIG. 5: The computed Peierls potential of the dislocation dipoles plotted against (a) the cohesive energy divided by the Burgers
vector and (b) the pre-logarithmic energy factor. The Peierls potential height appears to scale reasonably well with the cohesive
energy among elements in the same column of the periodic table and correlates strongly with the pre-logarithmic energy factor
of a screw dislocation.

electron formulation while the cohesive energy does not change and C44 goes up by a factor of 2.04. This suggests
that the Peierls potential height does not scale with the cohesive energy and scales approximately with C44. However,
the pre-logarithmic energy factor goes up by a factor of 1.67, the same as the increase in Peierls potential height,
providing further support for the idea that the Peierls potential height scales linearly with the pre-logarithmic energy
factor.

Given that the Peierls potential has a uniform sinusoidal shape, the Peierls stress, τp, can be directly determined
from the derivative of the Peierls potential as:

τp ≡ Max

[
1

b

(
dE

dx

)]
(1)

where E is the Peierls potential and b is the Burgers vector. If we write the Peierls potential as

E =
1

2
∆E

(
1− cos

(
2πx

h

))
(2)

where ∆E is the height of the Peierls potential and h =
√

2/3a is the kink plane height. Here, we note that since the
Peierls height computed throughout is for a dislocation dipole, one must use half this height for ∆E when computing
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the Peierls stress. The Peierls stress computed for the sinusoidal potential is:

τp = π
∆E

bh
(3)

The values computed from our simulations are listed in Table I and, as expected, scale strongly with the Peierls
potential height. These values are a bit lower than those reported in the literature21,22 which are obtained by directly
straining the lattice. One reason for the lower values is that these Peierls stress calculations are for PAW-PBE and
the literature value are for LDA, which typically predicts a higher Peierls potential and hence Peierls stress. However,
this cannot explain all of the differences and the main contribution to the low predictions is that the Peierls potential
is moderately stress dependent; a feature that is well known from the twinning–anti-twinning asymmetry that arises
in the Peierls stress6,21.

IV. COMPARISONS WITH EXPERIMENTS

In the previous section we have shown two important results: the Peierls potential in BCC metals is sinusoidal in
shape and the height of the Peierls barrier scales with the dislocation line energy. The first result determines the
relationship between the activation enthalpy and the resolved shear stress3,46 in the theory of thermally activated flow
in BCC metals. This in turn dictates the temperature and strain rate dependent flow stresses at low temperatures3,46.
In experiments47–51, the flow stress is typically fit using stress-strain rate relationships derived from kink-pair theory
assuming that the Peierls potential follows the Eshelby potential; which is very close to the sinusoidal profile that our
results support.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
k 

(e
V)

Prelogarithmic Energy Factor * a (eV)

 

 
Nb
Fe
Ta
Mo
W

FIG. 6: The experimentally determined kink energy plotted as a function of the product of the pre-logarithmic energy factor
times the lattice constant. The approximate linear trends provides experimental evidence that the Peierls potential height
scales with the pre-logarithmic energy factor as suggested by DFT calculations.

The second result is that the Peierls potential height scales with the dislocation pre-logarithmic energy factor, which
we can further check against experimental measurements of the kink formation energy of an isolated kink. According

to elasticity theory, the energy of an isolated kink in a sinusoidal potential can be written as: Uk = 23/2

π h
√
Eo∆E

where h is the kink height, Eo is the energy per unit length of a screw dislocation and ∆E is the height of the
Peierls potential. If we assume Eo = E ln(R/ro) and ∆E = CE , where C is a constant of proportionality and E is the

prelogarithmic energy factor, we can write a scaling equation for Uk as: Uk = 23/2

π hE
√
C ln(R/ro). Assuming the term

inside the square root is not material dependent, we have a scaling relationship between the kink formation energy
and the pre-logarithmic energy factor. Since the kink formation energy has been extracted from experiments47–51, we
can test this scaling relationship directly. To do this we use the kink energies reported in51 for Ta, Fe, Nb, Mo and W;
and we compute the pre-logarithmic energy factors from the elastic constants in32 and multiply them by the lattice
constants ao from52. The results of plotting Uk and aoE are shown in Figure 6, which exhibits an approximately
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linear trend. We note that in the experiments, Uk is determined without assuming a shape of the Peierls potential
or elastic constants, it can be determined directly by the strain rate dependence of the critical temperature51,53. The
good agreement between the trends observed in experiments with those predicted here illustrates the utility of the
DFT simulations conducted herein and validates the proposed general scaling relationship of the Peierls potential.

V. SUMMARY

We used DFT to determine the Peierls potential in 5 BCC transition metals. All 5 metals have a compact screw
dislocation core structure, which exhibits the full D3 symmetry of the 〈111〉 zone. The Peierls potential determined
in all the simulations was sinusoidal in shape; including both PBE and LDA XC functions, the US and PAW psue-
dopotentials and considering a variety of the number of valence electrons. No additional metastable screw dislocation
core structures were found along the slip transition pathway. This is in agreement with recent DFT calculations of
the core structure in iron23 that showed a Peierls potential that is sinusoidal in shape and lacks a metastable split
core structure. These results suggest that empirical potentials are often incorrect, as they frequently predict either a
degenerate core structure or a compact core structure along with the split core structure15. It therefore seems prudent
to use the Peierls potential as either part of interatomic potential development in BCC metals or as part of their
validation if the potentials are meant to predict properties of BCC screw dislocations, an approach recently taken for
the development of BCC iron potentials54.

Ultimately, the shape of the Peierls potential is used in the development of kink-pair theory to interpret temperature
and strain rate dependent flow stress measurements in BCC metals2,46,51. The work of Seeger46,51 has assumed an
Eshelby potential for the Peierls potential shape since this form is very close to a sinusoidal potential and admits an
analytical relationship between the flow stress, temperature and strain rate. The results presented here suggest that
assumed Peierls potential shape, even between different BCC transition metals, is reasonable.

There also appears a clear and strong trend in the height of the Peierls potential as well as the Peierls stress. The
Peierls potential height orders such that W > Mo > Ta > Nb > V as predicted by DFT and appears to scale linearly
with the energy of a screw dislocation. Despite DFT’s inability to precisely predict C44 in these materials, the ordering
of the Peierls potential heights follows the experimental scaling of the pre-logarithmic energy factor, suggesting this
is the order of scaling in the real materials. This simple result suggests that the kink formation energy should also
scale with the pre-logarithmic energy factor times the lattice constant. The kink formation energy as determined
from experiments does, in fact, scale approximately linearly with this value. This has important implications for
determining the effects of simple solid solution alloying. For example, Ta-W alloys are used because they increase the
strength and melting temperatures of pure Ta while potentially retaining the ductility of Ta. Thus, using the change
of elastic constants based on the solid solution alloy, the Peierls potential height of the alloy can be determined using
experimentally determined values of the Peierls heights for the pure elements.

Finally, it is worth pointing out that recent work suggests that mixed 〈111〉 dislocations, i.e. M111 dislocations,
also have high lattice friction and may contribute to plastic flow in BCC metals at low temperature55. We note that
these calculations are preformed using the Ackland-Thetford-Finnis-Sinclair potential for Ta that predicts a camel-
hump Peierls potential, which may be an artifact of the interatomic model. Thus, this work suggests that mixed
〈111〉 dislocations should be studied by DFT and compared to the results obtained here to better establish their
contribution to plastic flow at low temperatures.
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