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We report a one-dimensional non-local experiment, where the conductance of a section of carbon
nanotube shows regular oscillations due to phase-coherent and ballistic transport in an adjacent
section. This occurs in spite of wide strongly coupled contact electrodes, which are expected to
divide the nanotube into independent sections. Our simulations show that the electrodes can be
modeled as shallow and wide barriers which maintain quantum coherence of electron transport
between the adjacent sections for lengths of several micrometers.

PACS numbers:

I. INTRODUCTION

When conductors are reduced to dimensions smaller than the electronic coherence length, their transport properties
reveal quantum effects. A striking experiment by Umbach et al.1 showed that the conductance of a gold wire was
affected by an adjacent gold loop. Quantum interference of electrons traveling outside the contact probes and around
the loop caused Aharonov-Bohm periodic oscillations of the conductance as a function of magnetic field, thereby
unambiguously demonstrating non-local effects from regions outside the classical current path. However, non-local
interference has not been observed in one-dimensional conductors. In this paper we report the observation of non-local
coherent transport in a carbon nanotube, where the non-local interference pattern is obtained by continuously tuning
the wavelength of electrons at the Fermi level, without applying any magnetic field.
Evidence of electrons propagating beyond a carbon nanotube (CNT) section covered by a strongly coupled electrode,

such as palladium (Pd), into a neighboring section of uncovered CNT has only been seen for very narrow electrodes,
just a few tens of nanometers across2,3. In these samples, a section of CNT was biased and a non-local voltage signal
was measured across an adjacent unbiased section. The non-local voltage was due to a fraction of electrons (about
10% in ref.2) propagating from the biased section across the narrow electrode and into the unbiased section.
For strongly-coupled materials like Pd, this non-local effect is widely believed to disappear when the electrode

width is increased beyond a few tens of nanometers, especially for large diameter nanotubes, where high-transparency
contacts can more easily be achieved due to a larger CNT/metal interface4,5.
Previous experimental work6 and first-principle calculations of a CNT surrounded by Pd atoms5 argue that strongly

coupled Pd electrodes divide the nanotubes into independent sections and that the current of the nanotube segment
underneath the Pd electrode is basically shunted through the Pd.
In contrast to this picture, we show that, even in the case of large and strongly coupled contacts and large diameter

nanotubes, a significant fraction (higher than 10%) of electrons propagate across the electrode, causing phase-coherent
non-local transport extending a few micrometers beyond the electrode.

II. EXPERIMENTS AND RESULTS

Our sample is a semiconducting CNT with multiple Pd electrodes, as shown in Fig. 1 (a). The electrodes are 650
nm wide and 50 nm thick. The lengths of the CNT sections between the Pd leads are 400 nm, 6300 nm and 1200 nm,
labeled A, B and C respectively. The tube diameter, measured by AFM, is 3.0 ± 0.5 nm.
Each section can be biased in a field-effect transistor (FET) configuration, as shown in Fig. 1 (a) for section A. An

applied gate voltage shifts the Fermi energy from the gap region, where the FET is not conducting, into one of the
one-dimensional subbands of the CNT dispersion relation sketched in Fig. 2 (b).
The conductance as a function of gate voltage for section A at two different temperatures is shown in Fig. 2 (a).

The threshold gate voltage at which the conductance starts to increase, VG ≃ 2V, corresponds to the Fermi energy
crossing the edge of the valence band. When the gate voltage is lowered, the Fermi energy is pushed further down into
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FIG. 1: Color online.(a) Schematic diagram of the two-probe configuration measurement circuit combined with a SEM image
of our sample. (b) Sketch of the CNT and palladium contacts showing the wavevector for charges propagating in device A and
its component along the tube axis kx.
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FIG. 2: Color online. (a) Zero-bias differential conductance as a function of gate voltage for Device A at two different
temperatures. (b) Conduction and valence 1D subbands for a semiconducting carbon nanotube.
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FIG. 3: Color online. 2D plots of the differential conductance of device A as a function of source-drain voltage (V1−2) and gate
voltage (VG) at T = 50 mK: (a) 2D plot in large gate and source-drain voltage ranges showing typical Fabry-Perot pattern
with energy scale corresponding to the length of device A. (b) High-resolution 2D plot in a region close to zero source-drain
voltage showing fine perodic structure of a Fabry-Perot pattern corresponding to a resonant length of more than 3 µm. (c)
Enlargement of a region from (b).

the valence band, where the dispersion relation is approximately linear, as shown in Fig. 2 (b). Here the dispersion
relation of the conduction (valence) bands are approximated by the relation

E(k) = +(−)
√

(EG/2)2 + (~vF k)2, (1)

where EG and vF are the carbon nanotube energy gap and Fermi velocity, respectively7. In this region of gate
voltage, all the three CNT field-effect transistors (from section A, B and C)show extremely high on-conductances
2.8G0 < GON < 4G0 at 5K. This indicates that all the sections are free from major defects and the contacts are
highly transparent4,5,8–10.
When the temperature is lowered to temperatures T < 10K, conductance vs. VG shows large oscillation. The

origin of these oscillations can be identified by measuring the conductance as a function of source-drain and gate
voltages, clearly revealing that the oscillations are part of an interference pattern, as shown in Fig. 3. Here the color
scale represents the differential conductance measured with a standard lock-in technique. Similar patterns have been
previously observed in both semiconducting and metallic carbon nanotubes with high transparency contacts and they
can be understood as Fabry Perot resonances for the wavefunctions of electrons propagating in a carbon nanotube
waveguide4,11.
Fig. 3 (a) shows a clear periodic pattern obtained in device A at 50 mK. Here the source-drain bias is connected

to electrodes P1 and P2, whereas electrode P3 is not connected to the external circuit, as shown in Fig. 1 (a). The
maxima of differential conductance as a function of gate and source-drain voltages are due to coherent interference
of different electronic paths: In addition to the one-trip ballistic path, where electrons travel from one electrode P1
through the nanotube to the second electrode P2, there is a finite probability that electrons will be reflected at the
contacts and will be captured by P2 only after a round trip in the nanotube. The condition for phase coherence of
the two paths is satisfied for values of the wavevector
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kn = nπ/L, (2)

where n is an integer and kn2L is the additional phase shift of the electronic wavefunction along the round trip, as
in a Fabry-Perot resonator.
We can thus infer the length of the resonator by measuring the source-drain voltage corresponding to the first

maximum in the Fabry-Perot pattern11,

e∆VL = ∆E = ~vFπ/L = (1.67meV · µm)/L, (3)

where ∆E = E(kn+1) − E(kn) and we have used the linear approximation for the dispersion relation in Eq. 1.
For device A, the value V1−2 = ∆VL ≃ 4.5 mV is indicated by the black arrow in Fig. 3(b) and corresponds to a
bright spot where two (high conductance) white lines cross, at the corner of one of the diamonds in the pattern. This
value of ∆VL corresponds to a length LA = 370 nm, very close to the directly measured length of device A, 400 nm.
Notably, the discrete values of electronic energies corresponding to resonances coincide with the energy spectrum of
the carbon nanotube as a one-dimensional quantum well with length L = LA, because the same boundary conditions
are applied12.
Figures 3(b) and (c) show high resolution plots of the Fabry-Perot pattern obtained by zooming into a smaller

region of gate and source-drain voltage. Here some fine features are distinguishable as new periodic structures within
the Fabry-Perot pattern. These new structures are also Fabry-Perot patterns, but with a much smaller source-drain
voltage spacing, with the first maximum at about 500 µV , corresponding to a Fabry-Perot resonator larger than 3
µm, about ten times longer than the CNT section between electrodes P1 and P2 in device A.

III. DISCUSSION

A longer electronic path can only be obtained for electrons injected from the first electrode, P1, and propagating
across the second electrode, P2, into the adjacent section of CNT, device B, and back into P2. Analogously to the
experiment by Umbach et al.1, resonances occur when electrons following the longer path outside the contact probes

P1 and P2 are phase coherent with electrons propagating along the path in the short nanotube section A. We note
that electrode P2 is wider than the charge transfer length14,15, providing maximum transmission from the carbon
nanotube to the Pd electrode. Even in this case, the transmission from the carbon nanotube to the Pd electrode is
smaller than one and fine features due to non-local transport effects can still be measured. However, due to their small
energy scale, they can only be clearly observed at low temperature (50 mK) and with high resolution measurements
of the 2D Fabry-Perot patterns.
In Fig. 4 we test this explanation for the fine features of the pattern by applying a source-drain voltage to device B.

We indicate the potential difference between electrodes P3 and P2 as V2−3 and we set V2−3 = −V1−2 + V0, as shown
in Fig. 4(a). We then measure the differential conductance of device A as a function of the source-drain voltage V1−2,
at a fixed gate voltage, for different values of the offset V0 (see Fig. 4 (b)). When V0 = 0, V2−3 = −V1−2 and the
conductance of device A shows clear small Fabry-Perot oscillations around V1−2 = 0 mV that are superimposed onto
the large Fabry-Perot oscillations. This is expected because Fabry-Perot oscillations are symmetric as a function of
source-drain voltage, therefore a condition of constructive interference at a specific value of V1−2 will hold also at
−V1−2. When the offset V0 6= 0, then V2−3 6= −V1−2, clearly disrupting the constructive interference of the small
Fabry-Perot pattern. The small oscillations are then smeared out and eventually disappear, leaving only the large
Fabry-Perot oscillations corresponding to ∆VL ≃ 4.5 mV. The bias voltage V0 shifts the electrochemical potentials in
the two adjacent CNT sections A and B with respect to each other. If V0 6= 0, the mismatch between the electron
energies and momenta in sections A and B destroys the coherent pattern.

IV. MODELING AND SIMULATION

To obtain a detailed understanding of the picture presented in the previous section, we model the nanotube as
a multiterminal conductor, following the Landauer-Büttiker formalism13, with two sections A (short) and B (long)
separated by a common electrode (P2 in Fig. 1(b)). We assume that the contacts P1 and P2 for section A are
symmetric and that the length of the adjacent section to the right of P1 is infinite. This is because the CNT section
between P1 and the catalyst island is much longer than all the other sections, as shown in Fig. 1(a). We also assume
that electrode P3 is at the same potential as the carbon nanotube, because it is electrically connected to it and it
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FIG. 4: Color online. (a)Schematic of the equivalent biasing circuit for tuning the Fabry-Perot pattern with smaller energy
scale. (b)Differential conductance of device A as a function of source-drain voltage (V1−2) at VG = - 10.07 V and at T = 50
mK. Each curve is measured after changing the bias voltage across device B (see text), with V0 = 0, 0.55, 1.53 and 2.55 mV.
Inset: 2D plot of differential conductance for device A measured at V0 = 0, showing the fine Fabry-Perot pattern.

is disconnected from the external circuit (see Fig. 1(a)). We consider the ”clean” limit since in our experiment the
electron mean free path is larger than the lengths of the nanotube sections, therefore no electron-impurity scattering
is taken into account in our model.
The charge carriers propagating in section A towards P2 can either be reflected back into section A with probability

R, or transmitted with probability T = 1−R. There are two different paths for transmission. In the first path charge
carriers will be transmitted directly from the nanotube to the electrode P2. Here the CNT/Pd interface is modeled as
a scatterer with transmission probability of 0.85. This is consistent with the high, nearly ideal conductance measured.
In the second path, charge carriers will be transmitted along the axial CNT direction x into the adjacent section B.
Along the x-path we assume that the Fermi level in the sections of nanotube covered by the electrodes is shifted

from the Dirac point (corresponding to the middle of the bandgap for a semiconducting nanotube)14,16. This shift is
introduced in the model with the potential function U(x), which is shaped as a square barrier (see Fig. 1(b)). This
barrier acts a scatterer for electrons propagating along the carbon nanotube.
The physical origin of the Fermi level shift is the interaction of the carbon naotube with the metal forming the

electrodes. Different work functions and, in some cases, chemical bonding cause charge transfer between the metal
and the carbon nanotube, thereby shifting the Fermi level.
The width of U(x) is set to 600 nm, equal to the width (Lc) of the electrode P2, whereas the height corresponds

to the Fermi level shift caused by the interaction with the metal. This shift cannot be readily predicted because it
can vary substantially depending on the material work functions and the equilibrium distance between the carbon
nanotube and the metal, therefore we adjusted it to match the experimental data by setting the barrier height equal
to 2 meV, as discussed below. Furthermore, we assumed that the barrier height does not vary in the range of gate
voltage considered in the simulations. This is because, when a gate voltage is applied, both the Fermi level in the
uncovered nanotube and the Fermi level in the nanotube covered by the metal are shifted by the gate voltage, as
shown in Ref.14. For simplicity we assumed that the gate voltage shifts them by the same amount, keeping their
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relative shift caused by the interaction with the metal constant.
Charge carriers transmitted from section A to section B and then reflected by the electrode P3 will also have a finite

probability to be captured by P2. Therefore, the two sections A and B can be considered as two one-dimensional
quantum wells that are coupled via the potential barrier U(x) due to the common electrode P2. We account for
this coupling using the Green’s function method13. Electronic transport through this structure involves multiple
transmission and reflection processes for the electron wave functions, which are solutions of the Dirac equation17–19.
The transmission probability through the shallow barrier along the CNT axis depends on the electron energy E, on
gate voltage VG, and on the potential barrier profile U(x). Interference effects, resonant scattering and the barrier
U(x) will all affect the transmission probability TP (E,U, VG) into the electrode P2. Relevant composition rules and
calculations details of TP (E,U, VG) can be found in earlier papers (see, e.g., Refs.18,19).
The conductance G = dI/dV1−2 of section A is computed by using the Landauer-Büttiker formula13 for the electric

current

I(VG, V1−2) =
2e

h

∫

dETP (E,U, VG)[n(E, T )− n(E − eV1−2, T )] (4)

where n(E, T ) is the Fermi distribution function. In the simulations we considered a semiconducting CNT with
diameter dT = 3nm, in agreement with the value measured by AFM. Following the experimental conditions, the
Fermi level is shifted far away from the band edge, where the energy dispersion relation becomes approximately
linear, therefore we found that the simulation results depend weakly on the CNT chirality. Temperature smearing
effects are included in two ways: (i) via the distribution function n(E, T ) in Eq. 4 and (ii) via broadening of the
quantized energy levels in the wells due to inelastic electron-phonon collisions with acoustic phonons. Although the
electron-phonon scattering rate is very low (1 µeV at 4 K and 1 neV at 50 mK), it ensures that singularities of the
density of states are rounded.
In agreement with the experiment, the conductance of section A exhibits a remarkable new feature: In addition to the

Fabry-Perot pattern with e∆V A
L

= ~vFπ/LA, it contains an additional Fabry-Perot pattern with e∆V B
L

= π~vF /LB,
as shown in Fig. 5(a) (here e∆V B

L
≃ e∆V A

L
/10). The additional pattern is due to coherent coupling between sections

A and B through a wide potential barrier separating them.
Another feature clearly visible in the computed Fabry-Perot pattern is the stripe of reduced conductance

G (VG, V1−2) which is parallel to the VG axis and centered at V1−2 = 0. Within this stripe the features corre-
sponding to the Fabry Perot oscillations are darker than outside the stripe (the conductance maxima at V1−2 = 4 mV
are brighter than the conductance maxima at V1−2 = 0). The stripe width, ∆V1−2 ≃ 4 mV, centered at V1−2 = 0, is
determined by the height of the potential barrier U(x), because the higher conductance occurs for electronic energies
larger than the barrier height. We set this height to 2 meV to match the experimental data, since a low conductance
stripe with width ∆V1−2 ≃ 4 mV can be distinguished in the experimental plots (see Fig. 3(a)).
To provide further insight, we simulated the case where section B is infinitely long, leaving all the other parameters

in the model unchanged. The result is the expected simple Fabry-Perot pattern with e∆V A
L

= ~vFπ/LA, with no fine
structure, as shown in Fig. 5(b).

V. CONCLUSION

Our experiments unambiguously show that, notwithstanding the large and strongly coupled Pd electrode, non-local
effects are still present and charges can propagate phase coherently in the adjacent section. These non-local effects
produce variation of conductance that can be as high as 13% for electrode width that is two orders of magnitude
larger than the nanotube diameter. This remarkable long range of coherence is explained by our theoretical analysis,
where the Pd electrode creates a wide and shallow barrier. Electrons can propagate through such a wide, strongly
coupled electrode without being scattered, on a ballistic phase-coherent path longer than 6 micrometers.
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FIG. 5: Color online. Calculated 2D plots of the conductance G (VG, V1−2) in units of 4G0 = 4e2/h at T = 50 mK. (a)
Simulated 2D plot of the conductance of section A assuming the lengths of the short and long CNT sections to be LA = 440
nm and LB = 4400 nm, respectively. The two overlapping Fabry-Perot patterns are formed due to phase-coherent coupling of
the electron states across the middle barrier. (b) The same plot for G (VG, V1−2), assuming LB infinitely long.



8

∗ Current address: Russian Research Centre ”Kurchatov Institute”, Kurchatov sq. 1, Moscow, 123182, Russia
† Electronic address: barbara@physics.georgetown.edu
‡ Current address: MS 3B10, ATL Labs, Northrop Grumman, 1212 Winterson Road, Linthicum, MD 21090
1 C. P. Umbach, P. Santhanam, C. van Haesendonch, and R. A. Webb, Appl. Phys. Lett. 50, 1289-1291(1987).
2 A. Makarovski, A. Zukhov, J. Liu, and G. Finkelstein, Phys. Rev. B 76, 161405(R) (2007).
3 G. Gunarsson, J. Trbovic, and C. Schönenberger, Phys. Rev. B 77, 201405(R) (2008).
4 A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654-657 (2003).
5 S. Ke, W. Yang, H. U. Baranger, J. Chem. Phys. 124, 181102-181106 (2006).
6 D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Nano Lett. 3, 1541-1544 (2003).
7 M. J. Biercuk, S. Ilani, C. M. Marcus, and P. L. McEuen, Carbon Nanotubes, Topics in Appl. Physics 111, 455493 (2008).
8 J. Zhang et al. Phys. Rev. B 74, 155414 (2006).
9 Tselev, A., Yang, Y., Zhang, J., Barbara, P. and Shafranjiuk, S. E, Phys. Rev. B 80, 054504 (2009).

10 A. Tselev, K. Hatton, M. S. Fuhrer, M. Paranjape, and P. Barbara, Nanotechnology, 15, 1475 (2004).
11 W. Liang et al. Nature 411, 665-669 (2001).
12 L. C. Venema, et al., Science 283, 52 (1999).
13 S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1997).
14 F. Xia, V. Perebeinos, Y. Lin, Y. Wu, and P. Avouris, Nat. Nanotechnol. 6, 179-184 (2011).
15 A. D. Franklin and Z. Chen, Nat. Nanotechnol. 5, 858 (2010).
16 G. Giovannetti et al. Phys. Rev. Lett. 101, 026803, (2008).
17 T. Ando, J. Phys. Soc. Jpn. 74 777-817 (2005).
18 S. E. Shafranjuk, Europhys. Lett. 87, 57007 (2009).
19 S. E. Shafranjuk, Eur. Phys. J. B 80, 379-393 (2011).

Acknowledgments

The authors thank Joe Serene for fruitful discussions. This work was supported by the NSF (DMR-0907220, and
DMR-1008242). G.F. acknowledges financial support from the Russian Ministry of Science and Education (grant no.
16.516.11.6145) and the RFBR (grant no. 10-02-92671-NNF-a).


