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We present first principles calculations of the phonon dispersions of Bi2Te3 , along with calculations of the
sound speed anisotropy for a number of materials, and discuss these in relation to the acoustic phonon interface
scattering in ceramics. The Bi2Te3 phonon dispersions show agreement with what is known from neutron
scattering for the optic modes, while we find a difference between the generalized gradient approximation and
local density results for the acoustic branches. This is a consequence of an artificial compression of the van
der Waals bonded gaps in the Bi2Te3 structure when using the generalized gradient approximation. As a result
local density approximation calculations provide a better description of the phonon dispersions in Bi2Te3. A
key characteristic of the acoustic dispersions in several materials studied is the existence of a strong anisotropy
in the velocities. Such an anisotropy may be a significant consideration in the reduction of lattice thermal
conductivity by nanograin boundary scattering. This is a well-known technique commonly employed to improve
thermoelectric performance. We develop a model to quantify the effect of this anisotropy for this interface
scattering in ceramics and apply this to Bi2Te3 and compare with PbTe and several other semiconductors.
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I. INTRODUCTION

Thermoelectric performance is commonly quantified in terms of a dimensionless parameter ZT, defined as follows:

ZT =
S2σT

κ
(1)

Here S is the Seebeck coefficient, σ the electrical conductivity, and κ the thermal conductivity. It is usually a good approxima-
tion to treat κ as being comprised of a lattice portion and an electronic portion. The electronic portion is directly related to the
electrical conductivity by the Wiedemann-Franz relation (usually a good approximation for the heavily doped semiconductors
that are useful thermoelectrics), leading to the point that, from a standpoint of materials optimization, the lattice thermal conduc-
tivity represents wasted heat transfer and should be as small as possible. One realization of this is the “phonon glass electronic
crystal” (PGEC) concept of Slack1, in which phonons are strongly scattered, leading to low lattice thermal conductivity, while
the charge carriers are not strongly scattered. The filled skutterudites2–4 represent an apparent realization of the PGEC concept.
Another approach towards the PGEC concept is the use of nanostructuring from compaction and sintering of a nanosize powder
into a ceramic. The mean free path for phonons in bulk crystalline thermoelectrics is often one to two orders of magnitude larger
than that for electrons, so the use of grain sizes in between these two mean free paths will tend to strongly scatter phonons, but
not electrons. This approach has been successfully applied to Bi2Te3

5,6, raising the ZT values near room temperature from the
previously found value of 1.0 to an impressive 1.5. A similar scenario could also apply to hole-doped Bi2Se3

7. Note that there
are various types of grain boundary scattering that can reduce the thermal conductivity, such as insulating interstitial material,
but typically these destroy the electrical conductivity, preventing good thermoelectric performance. In this respect, the sintering
of polycrystalline samples (as opposed to simply compressed powder) is important as it assures good electrical contact between
the nanograins, while maintaining interface scattering. Understanding interface phonon scattering at such electrically conducting
interfaces is therefore of importance.

One factor as yet unaddressed, however, is the role of phononic anisotropy in producing phononic scattering. Consider by
analogy, for example, the case of light propagation in dense ceramics. In that case it is known that fine-grained ceramics of
optically isotropic materials can be made transparent8, while this is not the case for anisotropic materials with random grain
orientation. In the former case, despite the small grain sizes, light is able to pass through the material because there is not
significant scattering at the grain boundaries. The reason for this is that the light speed does not change at the grain boundary,
so there is no impedance (or velocity) mismatch. While the acoustic case differs from the optical case due to the presence of the
longitudinal mode, the velocity mismatch still applies.

We note also that, unlike in optics where there is no optical anisotropy in cubic materials, a cubic material can have a rather
anisotropic elastic response tensor (the tensor of elasticity Ci jkl) and hence sound speed - a good example of such a material
is PbTe, as described in more detail in the last section. This material shows comparable anisotropy to Bi2Te3 despite being
cubic. The reason for this is that the response tensor for optics - the dielectric constant tensor - is a second rank tensor whose
off-diagonal elements must necessarily vanish due to the cubic symmetry. However, no such restriction applies to the fourth
rank-tensor of elasticity, and indeed the sound velocity in a cubic material can vary significantly by direction, as will be evident
for PbTe.

Note that for heat transport in crystalline solids it is the longer wavelength acoustic modes that dominate heat transport due
to the presence of a significant group velocity - the sound speed. The main point of this paper is that it is this sound velocity
mismatch that is ultimately responsible for the efficacy of grain boundary scattering, and that this mismatch can be quantitatively
assessed by considering the sound velocity anisotropy. We are here working in the limit in which the phonon mean free path is
larger than the nanograin size, so that transport within a grain is in the ballistic limit, as was considered in a different context
in Ref. 9. In this limit the lattice thermal conductivity will be predominated by the size of the nanograins and not the diffusive
scattering as was considered in Ref. 10.

We provide a definition, and examples of, simple dimensionless parameters R and S, easily computable if the elastic constants
are known, that should provide valuable information about the ability of nanostructuring (of a type that yields grains in intimate
contact) to reduce lattice thermal conductivity.

We will make direct application of our findings to Bi2Te3, which as already mentioned has already shown substantial per-
formance benefits from nanostructuring, and in addition PbTe and several other semiconductors. One conclusion to be drawn
from our work is that, unlike in electronic transport, where anisotropy can be destructive to thermoelectric performance, in
phononic transport anisotropy is generally beneficial by enhancing the effects of nanostructuring in reducing the lattice thermal
conductivity.

II. PHONON AND ELASTIC CONSTANT CALCULATIONS FOR BI2TE3

With an eye towards the effects of nanostructuring in reducing κlattice and enhancing ultimate performance we have computed
the phonon dispersions and density-of-states for Bi2Te3, the best known and most studied thermoelectric. Our calculations are
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TABLE I. Calculated elastic constants (in GPa) for Bi2Te3

Approximation c11 c12 c13 c33
LDA 83.8 3.8 32.1 54.5
GGA 97.4 21.4 — 90.4

based upon density functional theory in the framework of Blöchl’s projector augmented-wave (PAW) method11 within the local
density approximation (LDA) as implemented in VASP12. We also did generalized gradient approximation calculations but
found that they are not as accurate as the LDA results (see below). A 3x3x3 k-point grid in a 3x3x3 supercell was used, along
with an energy cutoff of 300 eV. Cell parameters ( and internal coordinates were both relaxed until internal forces were less than
2 meV/Å. From the computed electronic structure one performs several supercell calculations incorporating “frozen-phonons”,
or atomic displacements dictated by the rhombohedral crystal symmetry. By evaluating the forces on the displaced atoms one
may generate a basis set of force constants from which the phonon band structure and density-of-states are generated. We depict
these in Figure 1. Previous Bi2Te3 lattice dynamics calculations were performed in Refs. 13–16. Spin orbit coupling was not
included and we therefore cannot assess the claim of Ref. 15 for evidence of a spin-orbit coupling-related lattice instability.
Experimentally the material is known to be stable. Our calculations generally reproduce the non spin-orbit coupling phonon
dispersions of these authors.

One notes upon examination of the central region (the portions Z-Γ and Γ-L) that the three acoustic modes differ significantly
in these two directions (respectively c-axis and in-plane). In particular, the highest velocity acoustic mode, the longitudinal
acoustic, has significantly lower velocity in the c-axis direction Γ− Z than the nearly planar direction Γ− L; quantitatively,
the c-axis longitudinal velocity is 1811 m/sec and the planar is 2394 m/sec, a difference of about 30 percent. In addition, the
transverse acoustic modes are degenerate from Γ-Z but not so in plane; here the velocities are significantly different as well,
with the single c-axis value of 1774 m/sec and the two planar velocities of 1395 and 1728 m/sec. These velocities are low and
generally typical of good thermoelectric materials. Note also that in the frequency range at and above 1 THZ the optic modes
intersect with the acoustic modes, so that the primary region of heat transport is limited to less than 1 THZ, which in turn limits
the phonon momenta that contribute to transport to locations relatively near the Γ point.

Turning to the phonon density of states, one finds three regions of interest. Highest in frequency, as expected given the
lighter mass, are the primarily Te optic modes between 2.3 and 4 THZ. As noted previously, these modes are not the primary
contributors to phononic transport due to the very small group velocities (see left hand panel of Fig. 1), although they do make
some contribution. A similar statement applies to the primarily Bi optic modes between 1 and 2.3 THZ ,although these may be
important contributors to phononic scattering due to anharmonic scattering of the lower frequency acoustic modes, which are at
frequencies less than 1.5 THZ. As noted above, only a fraction of these modes - those less than 1 THZ - contribute to thermal
transport as the higher frequency acoustic modes are strongly scattered by the adjacent optic modes, and also have smaller group
velocities. For example, in the Γ−L direction only those acoustic phonons less than half the L-point momentum will strongly
contribute to heat transport, while in the Γ−F direction this cut-off frequency occurs at a momentum roughly sixty percent
of the F-point momentum. It is to be noted that the later discussion of sound speed anisotropy as a contributor to nanograin
scattering is an approximation which effectively assumes that all phononic transport derives from the acoustic modes, which is
clearly somewhat simplified compared to reality, as the optic modes in Figure 1 do in fact exhibit some dispersion and hence
heat transport. Nevertheless it is likely that the majority of transport indeed derives from the acoustic modes.

The original lattice dynamics calculations for this work employed the standard GGA17,18. However, these results produced
longitudinal sound speed velocities which were higher in the Γ-Z direction (the c-axis) than in the planar directions. This
result persisted even when a relatively fine 4x4x4 k-point mesh was used. Similarly, we initially found from first principles
calculations of the elastic constants of Bi2Te3 using WIEN2K19 and the GGA that the elastic constant c11 and c33 are very nearly
equal. All these results are contrary to the elastic constant data of Jenkins20, which produces higher longitudinal sound speeds
in-plane (see the next section), as well as the measured planar and c-axis thermal conductivity21, where the c-axis value is less
than half the planar value, indicating lower c-axis sound speeds. Our calculational discrepancy was likely due to the common
GGA overestimation of lattice constants. It was for this reason that we performed these lattice dynamics calculations within the
LDA, which often gives structural and elastic properties in better agreement with experiment22,23. These results suggest that for
anisotropic layered semiconductors such as Bi2Te3, use of the LDA to compute elastic and lattice dynamics properties may be
desirable.

For a direct comparison with experiment, included in Figure 1 are plots of the phonon dispersions deduced by Jenkins. While
exact in-plane comparisons are not possible due to Jenkins’ choice of Γ−X and Γ−Y dispersion directions, we note that as in our
calculated results the Γ−Z sound speed is lower than the planar values. In general there is a reasonable correspondence between
Jenkins’ results and ours, with the Γ−Z acoustic modes reaching values of ∼ 0.8−1 THZ in both cases (note that Jenkins’ data
is presented in rad/sec whereas ours is in Hertz). AT the Z point, Jenkins’ optic mode frequencies are 7,9, 17, 21, 23 and 27
×1012 rad/sec, which compare rather well with our values of 1.2,1.6, 2.7, 3.3, 3.5 and 4.5 THZ. At the Γ point, Jenkins’ optic
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FIG. 1. The computed phonon dispersions (top left) and associated density-of-states (top right) of Bi2Te3. Coordinate momenta (units of
reciprocal rhombohedral lattice vector) : L : (1/2,0,0); F : (1/2,0,1/2) Z: (1/2,1/2,1/2). The heavy black line in the left figure indicates the upper
frequency limit of the predominant heat carrying acoustic modes. Bottom: the measured phonon dispersions, in THZ, from Ref. 20 and a
picture of the physical structure of Bi2Te3. Phonon dispersions from left: Γ−X ,Γ−Y,Γ−Z. In structure picture, Te1 is in blue (located at
top and bottom) and Te2 in grey (second layer from top and bottom).

mode frequencies are approximately 9.5, 13.5, 16,17.7, 22,22.5,24 and 26.5 ×1012 rad/sec, which again compare well with our
values (in 1012 Hz) of 1.3,2,2.2,3,3.1,3.4,3.8 and 4.2. The experimental sound speeds from Γ−Z are also approximately equal
to our calculated values, from comparison of the figures. All in all the good agreement suggests the accuracy and applicability
of our lattice dynamics calculations on Bi2Te3.

For the lattice dynamics calculations LDA-optimized internal coordinates and lattice parameters (4.35 Åplanar, 29.82 Åc-axis)
were used, while for the elastic constant calculations experimental lattice parameters of 4.386 Åplanar and 30.50 Åc-axis (but
LDA-optimized internal coordinates) were employed. As is well known, van der Waals interactions can be important for layered
materials such as Bi2Te3, and while these are not included in our functionals we do find good agreement with the experimental
properties in the lattice dynamics calculations, as indicated. The elastic constant calculations (see Table 1) exhibit somewhat
larger discrepancies with experiment (see Table 3), even with usage of the LDA, with (for example), the value of c12 calculated
as 3.8 GPa, much smaller than the experimental value of 22.0 GPa. We ascribe this to the difficulty of incorporating all bonding
effects in layered materials such as Bi2Te3 into the simple LDA. For these calculations we used between 182 and 770 k-points
in the irreducible portion of the Brillouin zone (note that the elastically distorted Brillouin zone need not retain the hexagonal
symmetry), employed spin-orbit coupling except for the optimizations, and LAPW sphere radii of 2.5 Bohr radii.

Since above we describe the effect of using the LDA for structural properties of layered semiconductors such as Bi2Te3, it is
worthwhile to ask about the effect of using the LDA for electronic properties of Bi2Te3. Therefore in Figure 2 we present the
calculated electronic structure of Bi2Te3 within both the GGA and LDA approximations (calculated using WIEN2K) where all
other relevant quantities such as LAPW sphere radii (2.5 Bohr radii for all atoms), k-points (2000 in the full Brillouin zone), and
lattice parameters (4.386 Åplanar and 30.50 Åc-axis) and atomic coordinates are assumed identical. We have used spin-orbit
coupling for these calculations as this generally affects electronic structure much more substantially than structural properties.
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FIG. 2. The computed band structure of Bi2Te3 within the LDA and GGA approximations. Note the relatively small differences in the
bandstructures.

As the plot indicates, there is only a very small difference between the two electronic structures, mainly concerning the exact
value of the gap at the conduction band minimum.

III. SOUND SPEED ANISOTROPY AND NANOSTRUCTURING EFFECTIVENESS PARAMETERS

The discussion of the previous section makes plain the significant anisotropy in the phonon transport of Bi2Te3. Here we find
a way to assess the quantitative impact of this anisotropy in reducing lattice thermal conductivity and make a comparison with
another well-studied thermoelectric material, PbTe, as well as diamond and several other semiconductors

In this discussion we will implicitly assume that the grain boundary scattering is in the ballistic regime, which will obtain
when the average phonon mean free path (that would occur in the absence of grain boundaries) becomes comparable to or larger
than the grain size. More specifically, we will assume that at least a significant fraction of the distribution of these phonon mean
free paths is larger than the nanograin size, so that there is significant ballistic scattering at the grain boundaries. In this limit the
well-established acoustic mismatch theory24–27 describing heat conduction at interfaces of crystalline solids can be applied, as
is described below.

Our method is the following. From published calculated values of the elastic constants for Bi2Te3 one may generate the
associated Christoffel28 elastic tensor stiffnesses and solve the resulting secular equation for the three sound velocities (one
longitudinal and two transverse) as a function of wave propagation direction. The relevant equations may be found in Ref 29,
and are summarized in the Appendix. We have plotted up the sound speeds, as a function of propagation direction, in Figure
3. The sound speed plots differ significantly from a spherical shape, underscoring the anisotropy already apparent from the
calculated phonon bandstructure.

We turn now to the impact of the anisotropic sound speeds on the lattice thermal conductivity. As is well known, the lattice
thermal conductivity κl is given as

κl = ∑
q,i

Cq,ivq,i`q,i (2)

where Cq,i is the specific heat attributable to a phononic mode with momentum q and polarization i, v the sound speed of that
mode and ` the mean free path of that mode, and a sum over the modes of significant group velocity is taken. In general, the
fraction R of elastic energy reflected at a grain boundary interface at normal incidence is given by the impedance mismatch
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formula:

R =

(
(Z1−Z2)

(Z1 +Z2)

)2

(3)

Here Z1 and Z2 are the acoustic impedances of the two adjoining grains, given by Zi = ρivi, where ρ is the density of a grain
and v the sound speed (of a given polarization) within the grain. Since we expect ρ to be constant within a nanostructured
sample, the energy fraction reflected depends on the sound speeds v1 and v2 in the two grains, at the directions of incidence and
transmission, and in addition on the polarization of the incoming wave. Note also30 that an incident wave of one polarization
may induce scattered waves of other polarizations, complicating the issue further. Furthermore, in a nanostructured sample we
do not expect oriented grains. Hence to work out the effective grain boundary scattering rate one must consider grain orientation
as well as the intrinsic anisotropy of the sound speeds. This becomes a rather difficult, and even difficult to formulate, problem
when one realizes that the grains are not likely to be exactly randomly oriented, and that the degree of randomness will likely
depend on the exact synthesis and nanostructuring techniques applied, unknown in this work.

Given that one purpose of this paper is to propose computationally simple nanostructuring effectiveness parameters, we
therefore make a simple ansatz based upon the (relatively) random nature of the problem at hand. Since the incident and
transmitted velocities v1 and v2 are essentially uncorrelated, it is a fair approximation to replace v2 in the above impedance
mismatch expression by its average value (a similar assumption in a different context is made in many “mean-field” theories)
and integrate over all angles of incidence. As with mean-field theories, the simpler expression is most quantitatively accurate
when v1 does not vary too much from its average. The gross features of anisotropy, however, should be reasonably well captured
by this expression. The expression for Rtotal is a simple two-dimensional integral:

Rtotal =
1

4π

∫
sin(θ)dθdφ

(
v(θ,φ)− vavg)

(v(θ,φ)+ vavg)

)2

(4)

where the above integral is computed for each of the two transverse modes and the longitudinal mode and then averaged over the
modes. One could argue, based on phase space considerations, that the various terms should be weighted by the sound speeds, or
sound speeds squared, or some other factor, of the various modes , but it is usually unclear in any given system what fraction of
heat transport separately results from transverse and longitudinal modes31, so we have retained the simplest possible expression.

The above expression yields a single number Rtotal which gives in essence the average impedance mismatch reflected energy at
normal incidence for a single scattering event. It is typically fairly small - of the order of 0.01 or less even for highly anisotropic
media, as depicted below. However, there is an important additional scattering effect created by the velocity anisotropy. As
with propagation of electromagnetic waves, there is a form of Snell’s law, vincoming/vtransmitted = sin(θincoming)/sin(θtransmitted),
relating incoming and outgoing propagation angles (relative to the normal) to the relative sound speeds, and a version of total
internal reflection, in which for certain angles of incidence there is no energy transmission across the interface, applies. To put
this quantitatively, for a 20 percent smaller sound speed (in a given direction) in the receiving material, angles of incidence
greater than 53 degrees - forty percent of the possible angles of incidence - result in total internal reflection, even though the
impedance mismatch reflection coefficient at normal incidence is only 0.012. This point is described well quantitatively in the
reference of Little9. Since the average sound speeds in the two nanograins are of course equal, what one needs is a measure
of the average deviation of the velocity from its average, which in essence is what the individual Ri measures (more precisely
speaking Ri ' (∆vi)

2

4v2
i,average

, where ∆v is the standard deviation of vi and vaverage,i the angular average sound velocity of a mode of

polarization i.)
To give examples of velocity anisotropy and Rtotal we have computed and present in Figures 3, 4 and 5 the sound speed

anisotropy for three well known semiconducting materials: Bi2Te3, diamond and PbTe respectively. Diamond is included
to demonstrate a material with very low elastic anisotropy, while PbTe and CoSb3 are well known thermoelectrics. We will
see that as expected, Bi2Te3 shows significant potential for nanostructuring reductions of κlattice. As mentioned previously,
despite its cubic structure, PbTe also shows large velocity anisotropy. As asserted previously, while its cubic nature ensures
isotropic conductivity, there is no such requirement on the elastic properties. Its elastic anisotropy might therefore also be
expected to allow good reductions of lattice thermal conductivity due to nanostructuring, but recent work32 shows that for PbTe
these nanostructures must be smaller than 10 nm to have a significant effect, as the phonon mean free path is already very
short. Conversely, although diamond shows very low anisotropy, its phonon mean free path is so long (well over 100 nm) that
small-grain nanostructuring would likely have a significant impact on its lattice thermal conductivity (noting nevertheless the
impracticality of this material for thermoelectric applications). We have taken account of this additional effect by defining a
“scattering potential coefficient” Stotal as Rtotalκlattice,bulk/κmin, where κlattice,bulk is self explanatory (values for Bi2Te3 and PbTe
taken from Ref. 21) and κmin is the “minimum thermal conductivity”33, which we simply take as 0.5 W/m-K for all materials
studied.

In an attempt to quantify the anisotropy presented in Figs. 3-5, in Table 2 we present the average impedance mismatch
scattering reflection coefficient R for each of the three materials, along with CoSb3, GaAs and Si. As expected, diamond has
by far the lowest impedance reflection coefficient, with an average R between one and two orders of magnitude less than PbTe
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FIG. 3. The computed sound speed anisotropy of Bi2Te3. Distance from origin represents sound speed, in km/sec, for that direction of
propagation. Transverse modes T1 and T2 left and center, respectively, longitudinal mode right. Elastic constants taken from Ref. 20.
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FIG. 5. The computed sound speed anisotropy of PbTe. Elastic constants taken from Ref. 35. Transverse modes left and center, longitudinal
mode right.

and Bi2Te3. The large values for PbTe suggest that, as with Bi2Te3, nanostructuring may yet be effective in reducing κlattice, if
sufficiently small nanograins can be formed. WIth regards to CoSb3, note that while this material shows significant potential
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TABLE II. Average impedance mismatch reflection coefficients (multiplied by 100), scattering potential coefficients, and experimental lattice
thermal conductivity reductions, for several materials. L refers to the longitudinal mode and T 1 and T 2 to the transverse modes. The
skutterudite values in parentheses indicate typical values for a high performance thermoelectric skutterudite.

Compound RL RT 1 RT 2 Rtotal κlattice,bulk (W/m-K) Stotal κlattice reduction from nano/polycrystalline
Bi2Te3 0.153 0.429 0.437 0.340 1.7 (planar) 1.16 1.46

PbTe 0.187 0.544 0.850 0.527 2.3 2.42 —
CoSb3 0.0234 0.0623 0.133 0.0703 9 (3) 1.26 (0.42) 737

diamond 0.00627 0.0151 0.00537 0.0089 2200 39.16 10043

GaAs 0.02621 0.04247 0.1436 0.0706 4644 6.51 3845

Si 0.01668 0.1436 0.04247 0.06766 15646 21.11 14247

TABLE III. Elastic constants (in GPA) used in the calculation of sound speed anisotropies. All compounds except for Bi2Te3, are cubic and
hence have only three independent elastic constants.

Compound c11 c12 c33 c44 c13 c14
Bi2Te3 74.4 22.0 51.6 31.4 29.2 15.4
PbTe 128.1 4.4 — 15.1 — —

CoSb3
36 202.0 55.8 — 42.2 — —

diamond 1076 125 — 576 — —
GaAs44 118.4 53.7 — 59.1 — —

Si48 166 64.0 — 79.6 — —

for nanostructuring lattice thermal conductivity reduction (since Stotal is substantial), this reduction would be proportionately
smaller for a high performance skutterudite such as a triple-filled material, since the lattice term has already been reduced
substantially by the ‘rattling’ effect. Hence high performance skutterudites would be expected to show smaller performance
benefits from nanostructuring than PbTe and Bi2Te3. Conversely, as observed in Ref. 37, substantial κlattice reductions - as
much as 80 percent - occur in nanostructured CoSb3 without added ‘rattlers’. The very small values of R for diamond provide
a natural explanation for why polycrystalline diamond is such a good heat conductor. We have not included the thermoelectric
half-Heusler compounds due to a paucity of data and a great variability38–42 in anisotropy in the few data that do exist. For
Bi2Te3 the lattice thermal conductivity given is the planar value; the c-axis value is roughly half this.

IV. DISCUSSION AND PROPOSED EXPERIMENTAL TEST OF THEORY

The results of the previous section attempt to define a nanostructuring “figure-of-merit”, the scattering potential coefficient
Stotal which we hypothesize will correlate with the ability of nanostructuring to reduce lattice thermal conductivity. In the last two
columns of Table 3 we present the parameters Stotal and the measured reduction in thermal conductivity, relative to single-crystal
values, of nanostructuring or, in the absence of such data, of polycrystalline samples. There is an obvious correlation between
the two parameters, but it is not clearly better49 than a simple correlation between the measured thermal conductivity reduction
and the single crystal thermal conductivity values; in particular, Bi2Te3 and CoSb3, show very different κlattice reductions despite
nearly equal Stotal values. The reason for this, we believe, is simply that the grain sizes in the nanostructured (or for that matter,
polycrystalline) samples are not the same from one material to another, so that this is not an “apples-to-apples” comparison.

To make such a comparison, let us consider the thermal conductivity of a nanostructured sample with two sources of scattering:
the phonon-phonon scattering commonly dominating κlattice for temperatures above the Debye temperature, and grain boundary
scattering from the nanograins. One may then write the total scattering rate, using Matthiesen’s rule, as

τ
−1 = αT +βvs/d (5)

Here α and β are material specific constants, d the mean grain size, and vs a suitably averaged sound speed. β describes the
efficacy of grain boundary scattering in a given material and α the effectiveness of phonon-phonon scattering. The sound speed
appears in this expression because higher sound speeds imply shorter times to traverse a nano-grain and undergo a scattering
event. Then one may write the thermal conductivity as

κlattice =
Cv2

s

α(T + βvs
αd )

(6)
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Here C is the specific heat, which we assume to be known. We may readily identify the quantity β/α with the scattering
potential coefficient Stotal , since in our theory β expresses the relative effect of impedance mismatch scattering, and α the effect
of phonon-phonon scattering, which predominates κlattice in bulk materials.

To test this assertion, what is needed are two or more sets of thermal conductivity measurements on materials with rather
different Stotal values, with each set comprising a series of tests of samples with nanograins of different sizes d. This would
allow determination of the values of α/β for each of the two materials, which could then be compared with the calculated Stotal
values. One caveat is that the above expression for the scattering time fails as one approaches the minimum thermal conductivity,
so that measurements at lower temperatures (say 300 K) would likely be more accurate since κ is larger at low temperature.

This represents an attempt to isolate the effects of velocity anisotropy scattering from the numerous other factors affecting
phononic transport in a real nanostructured sample, including (for example) the means of sample preparation and other mi-
crostructural properties. In addition, other forms of scattering, such as by soft interstitial material between grains, could be a
significant contributor to reducing thermal transport. We do think, however, that the impedance and velocity mismatch associ-
ated with grain boundary scattering in nanostructured samples, as depicted here, can be a significant contributor to the reduction
of thermal conductivity by nanostructuring, and that the quantitative parameters presented may give an indication of the likely
effectiveness of nanostructuring in reducing the lattice thermal conductivity of a given material.

V. SUMMARY AND CONCLUSIONS

We present calculated phonon dispersions for Bi2Te3 and discuss ceramic grain boundary scattering in terms of acoustic
impedance mismatch. We find that as expected grain boundaries may lead to strong interface scattering in Bi2Te3 nanostructured
material. Interestingly, this is also expected to be the case in materials such as PbTe, which although cubic does have substantial
acoustic wave anisotropy. This is in contrast to the optical case, where a cubic material would have no such scattering. In any
case, the implication of the present results is that dense sintered ceramics of anisotropic material such as Bi2Te3 or PbTe will
have reduced thermal conductivity provided that the appropriate grain size is used; we develop a method for quantifying this
velocity anisotropy. In the case of more isotropic materials other strategies for producing scattering at grain boundaries, such as
the introduction of second phases (as studied in Refs. 50 and 51) may be needed.
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VI. APPENDIX

In this section we describe in somewhat more detail the method for extracting sound speeds from the elastic constants. For
the sake of brevity we will only demonstrate the most complex case depicted in the manuscript, that of rhombohedral Bi2Te3.
In general, solving the Christoffel equations requires the solution of a 3x3 determinant equation, det[Γ− λ1] = 0. Here the
eigenvalues λ are equal to ρv2

i,θ,φ, where ρ is the material density and vi,θ,φ the sound speed of given polarization and propagation.
The matrix Γ is the elastic stiffness matrix. For Bi2Te3 there are six nonzero elastic constants: c11,c12,c13,c14,c33 and c44. Then
the components of the symmetric Γ matrix are given as follows28 (here n1, n2 and n3 are the direction cosines along the x, y and
z axes which we take in spherical coordinates):

Γ11 = n2
1c11 +

n2
2

2
(c11− c12)+n2

3c44 +2n2n3c14 (7)

Γ22 = n2
2c22 +

n2
1

2
(c11− c12)+n2

3c44−2n2n3c14 (8)

Γ33 = n2
2c44 +n2

2c44 +n2
3c33 (9)

Γ23 = Γ32 = (n2
1−n2

2)c14 +n2n3(c13 + c44) (10)
Γ13 = Γ31 = n1n3(c13 + c44)+2n1n2c14 (11)
Γ23 = Γ32 = n1n3c14 +n1n2(c11 + c12)/2 (12)

Diagonalization of Γ then directly yields the eigenvalues λ and associated sound speeds vi,θ,φ.
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