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Quantum criticality of reconstructing Fermi surfaces in antiferromagnetic metals

Junhyun Lee, Philipp Strack,∗ and Subir Sachdev
Department of Physics, Harvard University, Cambridge MA 02138

We present a functional renormalization group analysis of a quantum critical point in two-dimensional met-
als involving Fermi surface reconstruction due to the onset of spin density wave order. Its critical theory is
controlled by a fixed point in which the order parameter and fermionic quasiparticles are strongly coupled, and
acquire spectral functions with a common dynamic critical exponent. We obtain results for critical exponents,
and for the variation in the quasiparticle spectral weight around the Fermi surface. Our analysis is implemented
on a two-band variant of the spin-fermion model which will allow comparison with sign-problem-free quantum
Monte Carlo simulations.

PACS numbers: 74.40.Kb, 75.30.Fv, 75.40.Gb

I. INTRODUCTION

Quantum phase transitions between two Fermi liquids, one
of which spontaneously breaks translational symmetry and
so reconstructs its Fermi surface, have been of long stand-
ing theoretical and experimental interest. Important new ex-
amples of experimental realizations have emerged in the past
few years1–3, and so a full theoretical understanding is of
some urgency. Next to immediate relevance for a class of
strongly correlated electron materials, the spin-fermion model
has evolved into a minimal model for itinerant lattice elec-
trons with strong, commensurate magnetic fluctuations that
are believed to destroy the Fermi liquid behavior when tuned
to the critical point. How the compressible electron liquid,
without Lorentz symmetry and without particle-hole symme-
try, behaves when its correlations become singular, could pro-
vide some direction in the search for new universality classes
beyond, for example, the better known Gross-Neveu model
of Dirac fermions which enjoys more symmetries. However,
despite several decades of theoretical work, key questions re-
main open especially in the important case of two spatial di-
mensions.

Early theories4–9 for such quantum phase transitions fo-
cused on effective models for the quantum fluctuations of the
order parameter, while treating the Fermi surface reconstruc-
tion as an ancillary phenomenon. However, it has since be-
come clear10 that such an approach is inadequate, and the
Fermi surface excitations are primary actors in the critical
theory. Ref. 11 postulated a critical theory for Fermi sur-
face reconstruction, in which the Fermi surface excitations
and the bosonic order parameter were equally important and
both acquired anomalous dimensions. These excitations were
strongly coupled to each other by a ‘Yukawa’ coupling of uni-
versal strength, and their correlators scaled with a common
dynamic critical exponent, z. Explicit computations were per-
formed in the context of a 1/N expansion, where the physi-
cal number of fermion flavors is generalized to N. Taking N
large, one can formaly reorganize Wick’s theorem in powers
of 1/N and then extrapolate results to the physical number of
fermion flavors. For the hot spot field theory at the onset of
spin density wave order, no such critical theory appeared at
the two-loop level. Indeed, it was pointed out that at higher
loops11–13 there is a breakdown of the 1/N expansion, and so

it remained unclear whether the postulated fixed point existed.
Here we will address the problem of Fermi surface recon-

struction at the onset of spin density wave order by an analysis
based on a formally exact functional renormalization group
(fRG) approach14,15. This RG approach allows a computa-
tion of correlation function as a function of a continuous cut-
off scale Λ; from the “UV” at energies of the order of the
bandwidth down to “infrared” excitations at and in the vicinity
of the Fermi surface. Non-universal quantities and crossover
scales can be extracted from the same solution which also
yields the critical exponents in the limit Λ → 0. Combined
with the potential to resolve the momentum (-and frequency)
dependence or correlators along the Fermi surface, the fRG
offers much more than the field theoretic RG or conventional
ε-expansion which is typically used to extract the leading sin-
gularities only.

In this paper, we solve a set of coupled flow equations
which treats the electrons on equal footing to the collective,
order-parameter fluctuations. We truncate the flow equations
to a set of discrete points on the Fermi surface. When project-
ing our correlators onto the hot spot as a function of momenta,
we establish the existence of a fixed point with the scaling
structure postulated in Ref. 11, describing the quantum phase
transition between two Fermi liquids: from the metal with pre-
served SU(2) spin symmetry to the metallic antiferromagnet
which spontaneously breaks spin symmetry. A significant fea-
ture of our truncation is that it ties the parameters controlling
the order parameter fluctuations to those associated with the
fermion excitations, and this is important for a proper descrip-
tion of the scaling structure. We present numerical estimates
for the critical exponents of the boson and fermion spectral
functions, and for the variation in the fermionic quasiparticle
residue around the Fermi surface. During our computations,
we keep the shape of the Fermi surface fixed. In principle,
one would have to allow for a flowing Fermi surface and con-
sequently a flowing hot spot. In such a truncation, the singu-
lar manifold becomes a “moving target” and this significantly
complicates the analysis.

The rest of our results are presented in section IV. In sec-
tion II, we introduce the recently developed two-band spin-
fermion model that has the additional appealing feature that
it does not suffer from the sign problem in quantum Monte
Carlo simulations16. In section III, we present the functional
RG setup, the truncation, and the cutoff functions. In section
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V, we conclude and suggest interesting future directions re-
sulting from this paper.

II. MODEL

Our computation will be carried in the context of the ‘spin-
fermion’ model of antiferromagnetic fluctuations in a Fermi
liquid9. This involves a spin density wave order parameter
~φ at wavevector K = (π, π) coupled to fermions Ψ moving
on a square lattice. The analytic analyses have focused on
the vicinity of the ‘hot spots’ on the Fermi surface: these
are the 8 points on the Fermi surface which can generically
be connected to each other by K. The fermion dispersions
were linearized and truncated around the hot spots. However
a complete analysis requires that we avoid the spurious sin-
gularities associated with truncated Fermi surfaces, and deal
only with continuous Fermi surfaces. Here, we will choose
the Fermi surface configurations of a recent analysis16 which
allowed Monte Carlo studies without a sign problem. The
present work may be seen as complementary to Ref. 16: here
we especially focus on the universality class and critical prop-
erties. This paves the way for an eventual comparison of our
renormalization group results with Monte Carlo. Our present
method applies also to general Fermi surfaces, and provides
access to real-time spectral functions which are not easily ob-
tainable from imaginary-time Monte Carlo.

The model of Ref. 16 contains fermions in two bands, or
two flavors, Ψα, α = 1, 2 (although our present method can
also be applied to single band models) coupled to ~φ in the
effective action

ΓΛUV
[
ψ̄, ψ, ~φ

]
=

∫
k

∑
α=1,2

Ψα(k)
(
−ik0 + ξk,α 0

0 −ik0 + ξk,α

)
Ψα(k)

+

∫
q

1
2
~φ(−q)

(
q2 + r

)
~φ(q) (1)

+

∫
k,q
λ ~φ(q)

(
Ψ1(k + q)~σΨ2(k) + Ψ2(k + q)~σΨ1(k)

)
where

∫
k represents integrals over spatial momenta k = (kx, ky)

over the Brillouin zone, and over frequencies k0. The fermion
spinors are defined by Ψα(k) =

(
ψ̄α,↑(k) ψ̄α,↓(k)

)
, α = 1, 2.

We already introduce here the cutoff Λ along which we later
integrate our renormalization group flow toward Λ→ 0. With
Λ = ΛUV we have the bare lattice action. The boson quadratic
terms consists of the control parameter r and a spatial gradient
squared to account for spatial variations of the order parameter
field ~φ. The quantum dynamics of ~φ will be generated in the
RG flow; putting a q2

0 term into Eq. (1) does not change our
results. The fermion dispersions for nearest-neighbor hopping
are

ξk,α = −2tα,x cos kx − 2tα,y cos ky − µα. (2)

A consistent mapping to “physical” fermions can be achieved
with an anisotropic choice of hoppings16, t> = 1, t< = 0.5,
µα = −0.5 and: t1,x = t>, t2,x = −t<, t1,y = t<, t2,y = −t>

FIG. 1: (Color online) Reconstructing Fermi surfaces (ξk,1 = 0,
black-dashed line; ξk,2 = 0, blue-solid line for Eq. (2)) from the para-
magnetic phase (a) to the zeros of the quasi-particle energies in the
antiferromagnetic (SDW) phase (b). Gaps open at the ‘hot spots’,
that is, where the Fermi surfaces of the two flavors intersect. In this
paper, we focus on the SDW transition that is the singular point right
when the Fermi surfaces reconstruct. The C4 lattice symmetry of the
original fermions is preserved.

yielding the Fermi surfaces shown in Fig. 1. An important
distinction of this paper to the previous work (Ref. 9–13,18)
is that we do not truncate the Fermi surface as patch models
around hot spots.

A mean-field analysis of Eq. (1) predicts an antiferromag-
netic spin-density wave (SDW) ground state at r = 1.34 which
spontaneously breaks the spin SU(2) symmetry of Eq. (1).
The Fermi surface topology “reconstructs” and gaps open at
the hot spots as shown in Fig. 1. On a mean-field level, the
SDW transition at zero temperature of Eq. (1) is first order, as
was also found in related single-band models for electronic
antiferromagnets17,18. At present, it is not clear which ef-
fects such as fluctuations or competing instabilities could po-
tentially drive the transitions continuous or even change the
ground state. The same is true for the formation of spin-
density waves with periods incommensurate with the under-
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lying lattice. In the present paper, we shall ignore this compli-
cations and focus our attention continuous SDW transitions at
zero temperature.

III. FUNCTIONAL RENORMALIZATION GROUP

Our RG analysis is based on the (formally exact) flow equa-
tion for the effective action ΓΛ

R

[
ψ̄, ψ, ~φ

]
, the generating func-

tional for one-particle irreducible correlation functions in the
form derived by Wetterich14,15. The regulator R introduces a
cutoff dependence into the effective action so that ΓΛ

R smoothly
interpolates between the bare action, Eq. (1), at the ultra-
violet scale Γ

Λ=ΛUV
R

[
ψ̄, ψ, ~φ

]
= ΓΛUV

[
ψ̄, ψ, ~φ

]
and the fully

renormalized effective action in the limit of vanishing cutoff:
limΛ→0 ΓΛ

R

[
ψ̄, ψ, ~φ

]
= Γ

[
ψ̄, ψ, ~φ

]
. The Wetterich equation has

a one-loop structure and in a vertex expansion the β-functions
for the n-point correlators are determined by (cutoff deriva-
tives of) one-particle irreducible one-loop diagrams with fully
dressed propagators and vertices. Upon self-consistent inte-
gration of the coupled set of β-functions, contributions of arbi-
trary high loop order are generated. As we will explain below,
we truncate the effective action to the full fermion two-point
function (including a fermion self-energy ΣΛ

f (k0,k)), the full
bosonic two-point function (including a bosonic self-energy
ΣΛ

b (q0,q)), and the Yukawa coupling λΛ.
Our results are obtained from the renormalization group

flow of the action Eq. (1) at the quantum-critical point (r = 0)
under the formally exact evolution equation14

d
dΛ

ΓΛ
R
[
χ, χ̄

]
=

1
2

Str
{
ṘΛ

[
Γ

(2)Λ
R

[
χ, χ̄

]
+ RΛ

]−1
}
. (3)

Γ
(2)Λ
R is the second derivative with respect to the fields defined

below. RΛ is a matrix containing Λ-dependent cutoff func-
tions that regularizes the infrared singularities of the fermion
and boson propagators. The dot is short-hand notation for a
scale-derivative ṘΛ = ∂ΛRΛ. Both sides of this equation are
projected onto a “super”-field basis χ, χ̄ containing fermionic
and bosonic entries:

χ(k) =



φx(k)
φy(k)
φz(k)
ψ1,↑(k)
ψ1,↓(k)
ψ̄1,↑(k)
ψ̄1,↓(k)
ψ2,↑(k)
ψ2,↓(k)
ψ̄2,↑(k)
ψ̄2,↓(k)



(4)

and its conjugate-transposed χ(k). Str is a “super” trace over
frequency, momenta, and internal indices and installs an addi-
tional factor of −1 for contributions from the purely fermionic
sector of the trace of Grassmann-valued matrices. We will
solve Eq. (3) in a vertex expansion truncating any generated

Bare action 

Renormalized, 
effective action 

FIG. 2: (Color online) Illustrative flow trajectory in cutoff space. At
each step ∆Λb of the integration over bosonic momenta along the
vertical axis the entire range of fermionic momenta is swept over
(grey-striped box).

vertices beyond the Yukawa vertex. The flowing fermion
self-energy ΣΛ

f (k0,k) and the boson self-energy ΣΛ
b (q0,q) are

parametrized in a derivative expansion keeping the Fermi sur-
faces fixed.

The cutoff matrix in Eq. (3) is given by

RΛ = diag
(
RΛb

b,x,R
Λb
b,y,R

Λb
b,z,R

Λ f

f 1,↑,R
Λ f

f 1,↓,−RΛ f

f 1,↑,−RΛ f

f 1,↓,

RΛ f

f 2,↑,R
Λ f

f 2,↓,−RΛ f

f 2,↑,−RΛ f

f 2,↓

)
, (5)

where one is in principle free to choose the fermion and bo-
son cutoff scales Λb and Λ f and associated regulator functions
Rb, f independently19,20. The corresponding “flow trajectories”
in cutoff space (in the plane of Fig. 2) from the bare action
(red dot) to renormalized, effective action (green dot) will be
different. We will choose the trajectory along the arrows il-
lustrated in Fig. 2, that is we take Λ f → 0 and R f → 0 be-
fore integrating out order parameter fluctuations which are ex-
cluded for momenta smaller than Λb. The fermions are how-
ever not discarded as in the Hertz theory5, but coupled self-
consistently into the flow for all Λ ∈ {ΛUV

b , 0} thereby impos-
ing important boundary conditions for the integration of order
parameter fluctuations down the vertical axis in Fig. 2. This
makes the flow non-local in the cutoff scale in that the purely
fermionic contractions with Yukawa vertices and are treated
as a total scale derivative that also acts on the self-energy on
the internal lines and the Yukawa vertices. This is similar in
spirit to the Katanin scheme where this can be shown to lead
to the inclusion of higher n-point vertices in the flow21.

For the bosons, we use a Litim cutoff for momenta

RΛb
b,x = RΛb

b,y = RΛb
b,z = RΛ

b = AΛ
b

(
−q2 + Λ2

)
θ
(
Λ2 − q2

)
, (6)

where AΛ
b is bosonic momentum renormalization factor to be

specified below. In the following, we will set Λb = Λ. The
fermionic entries in Eq. (5) are zero.

The fermionic matrix elements of the generalized matrix
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propagator
[
Γ

(2)Λ
R

[
χ, χ̄

]
+ RΛ

]−1
occurring in Eq. (3) become:

GΛ
f 1,σ(k) = −〈ψ1,σ(k)ψ̄1,σ(k)〉R

= −

 −→
δ

δχ(k1)
ΓΛ

R [χ, χ]
←−
δ

δχ(k2)
+ RΛ


−1

f 1,σ
χ=χ=0

k1=k2=k

=
−1

−ik0 + ξk,1 + ΣΛ
f 1(k0,k)

, (7)

and analogously for the other flavor and spin components.
The explicitly cutoff-dependent boson spin fluctuation

propagators are

DR(q) ≡ DR
x (q) = −〈φx(q)φx(−q)〉R

= −

 −→
δ

δχ(q1)
ΓΛ

R [χ, χ]
←−
δ

δχ(q2)
+ RΛ


−1

b,x
χ=χ=0

q1=q2=q

=
−1

q2 + r + ΣΛ
b (q0,q) + RΛ

b

=


−1

q2+r+ΣΛ
b (q0,q) |q| > Λ

−1
Λ2+r+ΣΛ

b (q0,Λ) |q| < Λ
, (8)

and analogously for the other spin projections y, z. The func-
tional derivatives are evaluated at zero fields here, as we ap-
proach the QCP from the paramagnetic phase.

The flow equation for the fermion self-energy (depicted di-
agrammatically in Fig. 3 (a)) is

∂ΛΣΛ
f 1[k0,k] = 3

(
λΛ

)2
∫

q,R
GΛ

f 2(k + q)DR
b (q) , (9)

and similarly for flavor 2 upon interchanging 1↔ 2. We use a
short-hand notation encapsulating frequency, momentum in-
tegrations and a cutoff derivative with respect to the bosonic
cutoff function:

∫
q,Rb

=
∫ dq0

2π

∫ d2q
(2π)2

[
−ṘΛ

b ∂RΛ
b

]
.

The prefactors and signs of the flow equations are computed
by comparing coefficients between the left-hand-side and the
right-hand-side of Eq. (3) as outlined in Sec.II of Ref. 22. The
11×11 Grassmann-valued (super-) matrices are evaluated us-
ing the GrassmannOps.m package in Mathematica. How to
take a supertrace can be found in Ref. 23.

The boson self-energy is determined self-consistently from
the particle hole bubble (Fig. 4) at all stages of the flow:

ΣΛ
b (q0,q) = −

(
ΠΛ(q0,q) − ΠΛ(0, 0)

)
(10)

= 2
(
λΛ

)2
∫

k

[ (
GΛ

f 1(k + q) −GΛ
f 1(k)

)
GΛ

f 2(k)

+ GΛ
f 1(k)

(
GΛ

f 2(k + q) −GΛ
f 2(k)

) ]
The following ansatz captures the leading frequency and
momentum-dependence of the particle-hole bubble:

ΣΛ
b (q0,q) = ZΛ

b |q0| + (AΛ
b − 1)q2 . (11)

At the yellow dot in Fig. 2, the Fermi propagators are still
Fermi-liquid like (ΣΛUV

fα = 0) because we have not yet inte-
grated out any order parameter fluctuations which, by Fig. 3
(a), generate a finite fermion self-energy. At that point, the co-
efficients ZΛUV

b , AΛUV
b take finite numerical values. At all stages

of the flow, when integrating the flow down the vertical axis
of Fig. 2, the bosonic Z-factor and A-factor are determined
self-consistently according to the prescription:

ZΛ
b = −

ΠΛ(q0, 0) − ΠΛ(0, 0)
q0

∣∣∣∣
q0=Λ

AΛ
b = 1 −

ΠΛ(0,q) − ΠΛ(0, 0)
q2

∣∣∣∣
qx=Λ,qy=0

. (12)

This allows them to pick up potentially singular renormaliza-
tions during the flow. The boson momentum factor is isotropic
in momentum space; interchanging qx ↔ qy delivers the same
value for AΛ

b .

The flow equation as per Fig. 3 (b) for the Yukawa coupling

FIG. 3: Diagrammatic representation of the flow equation for the
fermion self-energy ΣΛ

f (k0,k) (a) and the Yukawa coupling (b).
Straight lines denote Fermi propagators of flavor 1 and 2, wiggly
line boson propagators are endowed with a regulator RΛ. Intersec-
tions of wiggly with straight lines represent the Yukawa coupling.
The cutoff-derivative with respect to RΛ is implicit. All propagators
and vertices are “dressed” self-consistently and are functions of Λ.
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FIG. 4: Particle-hole bubbles used for the flow of the boson self-
energy in Eq. (11). All propagators and vertices are “dressed” self-
consistently and depend on Λ.

is

∂Λλ
Λ = −

(
λΛ

)3
∫

q,R
GΛ

f 1(k + q)GΛ
f 2(k + q)DR

b (q)
∣∣∣∣
k0=0,k=kHS

.

(13)

The explicit expressions of the flow equations and the nu-
merical parameter used are given in the appendix.

IV. RESULTS

We now describe the key results obtained from a solution
of the flow equations. (i) We find an infrared strong-coupling
fixed point for the Yukawa-coupling λΛ which governs the
RG flow of the coupled Fermi-Bose action down to the low-
est scales Λ → 0. This induces scaling relations among the
anomalous exponents for the Fermi velocity, the quasi-particle
weight and the Yukawa vertex. (ii) Both the quasi-particle
weight and the Fermi velocity vanish as a power-law when
scaling the momenta toward the hot spot; the Fermi velocity
slower than the quasi-particle weight. (iii) The (quantum) dy-
namical scaling of the electronic single-particle and collective
spin fluctuations follows from an emergent dynamical expo-
nent attaining the same (fractional) value for both, fermions
and boson.

The centerpiece of our analysis is the flow equation for the
Yukawa coupling:

Λ∂Λλ̃
Λ =

(
1
4

(
ηZ f 1 + ηZ f 2 + ηA f 1 + ηA f 2

)
− ηyuk −

1
2

)
λ̃Λ ,

(14)

where
(
λ̃Λ

)2
=

(
λΛ

)2
/(Λ

√
ZΛ

f 1ZΛ
f 2

√
AΛ

f 1AΛ
f 2) is rescaled by

the frequency (ZΛ
f 1) and momentum (AΛ

f 1) derivatives of the
fermion self-energy generated under the RG flow as per Fig. 3
(a). The power-law divergences as well as all other non-
universal contributions to the flow of the two fermion self-
energy factors and the Yukawa coupling itself are absorbed
into the anomalous exponents:

ηZ f 1 = −
d log ZΛ

f 1

d log Λ
, ηA f 1 = −

d log AΛ
f 1

d log Λ
, ηyuk = −

d log λΛ

d log Λ
.

(15)

ηyuk is driven by the direct contribution to the flow of λΛ

exhibited in Fig. 3 (b). All couplings are projected to zero
fermionic frequency, a discrete set of fermionic momenta on
the Fermi surfaces, and zero bosonic frequency and momenta.
This is where the most singular renormalizations occur.

Specifically, the inverse quasi-particle weight is computed
from the flowing self-energy by24

ZΛ
f 1 = 1 −

∂

∂ik0
ΣΛ

f 1(k0,k)|k0=0,k=kF (16)

where kF is a momentum on the Fermi surface and the initial
condition is ZΛUV

f 1 = 1. The momentum renormalization factor
is obtained from a momentum gradient of the fermion self-
energy

AΛ
f 1 = 1 +

|nk,1 · ∇ΣΛ
f 1(k0,k)|

|∇ξk,1|

∣∣∣∣
k0=0,k=kF

, (17)

with the initial condition AΛUV

f 1 = 1. Here, ∇ =
(
∂kx , ∂ky

)
and

nk,1 is unit normal vector onto the Fermi surface of flavor 1.
We shall see below that the momentum gradient scales dif-
ferently than the frequency derivative at the quantum critical
point. In a different context, for Fermi systems with van Hove
singularities, this asymmetry was established to all orders in
perturbation theory by Feldman and Salmhofer25. Necessary
conditions to discover this are: (i) the co-dimension of the
Fermi surface manifold is greater than zero (it is zero in a
one-dimensional Fermi systems) and (ii) one includes the ad-
ditional, relevant transversal momentum direction parallel to
the Fermi surface into the analysis.

With these definitions, the scale-dependent “dressed”
fermion propagator which occurs self-consistently in all RG
equations becomes

GΛ
f 1(k) =

−1
−ik0 + ξk,1 + ΣΛ

f 1(k0,k)
=

ZΛ
f 1

ik0 − |υ
Λ
f 1|ξk,1

, (18)

with ZΛ
f 1 = 1/ZΛ

f 1 resembling the quasi-particle weight at
low energies and the effective modulus of the Fermi velocity

|υΛ
f 1| =

AΛ
f 1

ZΛ
f 1

.

A self-consistent numerical solution of the flow equations
for the Yukawa vertex λΛ, the fermion self-energy ΣΛ

f (k0,k)
and the boson self-energy ΣΛ

b (q0,q) is attracted toward an in-
frared strong-coupling fixed point. As can be read off from
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FIG. 5: (Color online) Quantum critical RG flows of the Yukawa
coupling and the anomalous exponents at the hot spot kHS. The fixed-
point values are λ̃Λ = 2.38, ηZ f = 0.78, ηA f = 0.44 and ηyuk = 0.11.
The scaling plateaus for s & 6 depicted over ∼ 4 orders of magnitude
would be attained indefinitely but are limited by the numerics only.
The infrared is to the right of the plot (Λ = ΛUVe−s).

Fig. 5, the β-function for the Yukawa coupling, Eq. (14), van-
ishes for s & 6 resulting in a scaling relation for the fermion
and Yukawa anomalous exponents:

d log λ̃Λ

d log Λ
= 0 ⇔

1
2

(
ηZ f + ηA f

)
= ηyuk +

1
2
, (19)

where we dropped the flavor index as they become degener-
ate at the hot spot. A similar strong-coupling fixed-point and
scaling relations (without singular vertex corrections) have re-
cently been obtained at the QCP of Dirac cone toy model be-
tween a semimetal and a superfluid26.

The numerical values of the exponents (see Fig. 5) deter-
mine the scaling behavior of the fermion propagator Eq. (18)
and the associated dynamical exponent z f . The Yukawa vertex
diverges as a power-law

λΛ→0 ∼
1

Ληyuk
=

1
Λ0.11 . (20)

Λ can be associated with the momentum distance from the hot
spot; at Λ = 0 the hot spots are resonantly connected by the
ordering wave vector K of the incipient spin-density wave. At
the hot spot, the fermionic quasi-particle weight vanishes as a
power-law:

ZΛ→0
f ∼ ΛηZ f = Λ0.78 (21)

destroying the Fermi liquid character of fermionic quasi-
particle excitations. In a non-selfconsistent calculation we
can also compute the fermion self-energy from Eq. (16) away
from the hot spot by solving the flow equations evaluated at
general fermionic momenta k. The result for a momentum
cut along the Fermi surface is exhibited in Fig. 6. The renor-
malization of the quasi-particle weight is strongly peaked

FIG. 6: (Color online). Infrared values of the momentum resolved in-
verse quasi-particle weights ZΛ→0

f 1 [k0 = 0, kx, ky] non-selfconsistently
computed from Eq. (16) along the Fermi surface. Fig. 7 exhibits
flows of the corresponding exponents for the six data points closest
to the maximum/hot spot on the right flank. Here the hot spot is
located at kHS,y = 2.0944 and kHS,x = 1.0472.

around the intersection of the Fermi surfaces at the hotspot.
Away from the hot spot, the suppression of the quasi-particle
weight is less pronounced leading to asymptotically vanish-
ing anomalous exponents in the infrared Λ → 0 (Fig. 7).
Nevertheless, in the vicinity of the hot spot, magnetic fluctua-
tions are still very strong leading to sizable non-Fermi liquid
scaling regimes at intermediate scales with the maximum pro-
gressively approaching the hot spot value ηZ f 1 [k0 = 0, kx =

kHS,x, ky = kHS,y] = 0.78 for momenta closer to it.
In the numerics for Fig. 6, we stopped the flow at s = 7

(recall that Λ = ΛUVe−s) leading to finite (but very large) val-
ues of Z f 1 even at the hot spot. We used a momentum cut of
100 points producing for each grid point in Fig. 6 the scale-
resolved flows shown in Fig. 7.

The Fermi velocity vanishes as well but with a smaller ex-
ponent

|υΛ→0
f | ∼ ΛηZ f−ηA f = Λz f−1 = Λ0.34 , (22)

so that the dynamical exponent for the fermions is

z f = 1 + ηZ f − ηA f = 1.34 . (23)

An important ingredient to the scaling laws above is the
self-consistently flowing boson propagator (Eq. 8, 11). The
asymptotic static and dynamic scaling of the spin fluctuation
propagator is given by

lim
Λ→0

[
DR(q0,q)

]−1
∼ ΛηZb |q0| + q2 ∼ |q0|

1.66 + q2 . (24)

with ηZb = 0.66. Remarkably, the boson dynamical exponent

zb = 2 − ηZb = 1.34 = z f , (25)
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FIG. 7: (Color online). Non-fermi liquid regimes at intermedi-
ate scales of the anomalous exponent for the quasi-particle weight
ηZ f 1 [k0 = 0, kx, ky] for six choices of momenta progressively ap-
proaching the hot spot (corresponding to the 6 data points closest to
the maximum/hot spot on the right flank of Fig. 6). The momentum
k6 is furthest from the hot spot and k1 is closest to it. The infrared is
to the right of the plot (Λ = ΛUVe−s).

takes the same value as the fermion dynamical exponent. It
is a distinguishing feature of this infrared fixed-point of elec-
trons in metals at a spin-density wave transition that the dy-
namical exponent attains fractional value different from 1
(which is the exact value for quantum-critical fermion systems
with Lorentz-symmetry, see Ref. 27 and references therein)
and different from 2 (which is the mean-field value of the
Hertz theory5). Our fermion anomalous dimensions and z can
be mapped to those of Ref. 11 for values of the Fermi velocity-
anisotropy in a range around α ≈ 0.5, and upon ignoring the
marginal RG flow of α (which is implicitly assumed in (17));
our boson anomalous dimension renormalizing the q2 term in
the propagator is essentially zero, and we trace this to differ-
ences in the RG scheme from Ref. 11.

V. CONCLUSION

This paper was dedicated to the critical behavior of com-
pressible, electronic quantum matter in two-dimensional lat-
tices interacting with self-generated, singular antiferromag-
netic fluctuations. We generalized previous hot spot theo-
ries to full “UV-completed” Fermi surfaces free of spurious
edge singularities in a model that can also be analyzed with
quantum Monte Carlo. This should enable a cross-fertilizing

comparison of results obtained with different methods for this
problem. We provided first, quantitative estimates for the crit-
ical exponents of the single-particle and spin fluctuations cor-
relators which deviate strongly from the Hertz-Millis values.
The solution of our RG equations was attracted toward a sta-
ble, strong-coupling fixed point resulting in a common dy-
namic exponents for the fermions and the bosons.

It would be interesting to classify all relevant operators to
our fixed point, and investigate the stability of our strong-
coupling fixed point further. As a first simple step in this
direction, we have extended the truncation for the fermion
dispersions to allow for changes in the Fermi surface curva-
ture (keeping the position of the hot spot fixed). A scale-
dependent α̃Λ that modifies the hoppings, t1,x/y → t1,x/y + α̃Λ

and t2,x/y → t2,x/y − α̃Λ, does the job. We found only relatively
small, finite renormalizations of α̃Λ. However, a proper self-
consistent investigation of a flowing Fermi surface with the
full dispersion used in this paper requires an advanced trunca-
tion and likely also a self-consistent determination also of the
position of the Fermi surfaces and the hotspots as a function
of Λ. Potential tendencies toward magnetic ordering at in-
commensurate wave vectors might also be captured that way.
Such a state-of-the-art truncation was recently presented for
self-energy flows in the repulsive Hubbard model close to van
Hove filling28.

Other promising future directions are the inclusion of (d-
wave) superconductivity29, an extension to the quantum-
critical regime at finite temperatures, and the exploration of
the antiferromagnetic phase with broken symmetry close to
the quantum critical point31.
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Appendix: Explicit form of flow equations

We here give the explicit expressions of the flow equations
(9,10,13). To that end, it is convenient to use the rescaled
variables Z̃Λ

b =
ZΛ

b
Λ

, ξ̃k,1 =
ξk,1
Λ

as well as rescaled momenta:
k̃0 =

k0
Λ

, q̃0 =
q0
Λ

, q̃x =
qx
Λ

, and q̃y =
qy

Λ
.

For the the fermionic frequency exponent, there is

ηZ f 1 = 3
(
λ̃Λ

)2 √
|υΛ

f 1| |υ
Λ
f 2|

∫ 1

−1

dq̃y

2π

∫ +
√

1−q̃2
y

−
√

1−q̃2
y

dq̃x

2π

∫ ∞

−∞

dq̃0

2π
2AΛ

b
1(

iq̃0 − |υ
Λ
f 2|ξ̃kHS+q̃,2

)2

1(
Z̃Λ

b |q̃0| + AΛ
b

)2 , (A.1)

and similarly (1 ↔ 2) for flavor 2. The frequency integral over q̃0 can be performed analytically so that at each step of the



8

flow, two-dimensional integrations over q̃x and q̃y have to be performed numerically. The Yukawa anomalous exponent contains
fermion propagators of both flavors:

ηyuk = −
(
λ̃Λ

)2 √
|υΛ

f 1| |υ
Λ
f 2|

∫ 1

−1

dq̃y

2π

∫ +
√

1−q̃2
y

−
√

1−q̃2
y

dq̃x

2π

∫ ∞

−∞

dq̃0

2π
2AΛ

b
1

iq̃0 − |υ
Λ
f 1|ξ̃kHS+q̃,1

1
iq̃0 − |υ

Λ
f 2|ξ̃kHS+q̃,2

1(
Z̃Λ

b |q̃0| + AΛ
b

)2 . (A.2)

For the flow of the fermionic momentum factors we use the
projected kx and ky derivatives of Eq. (9)

∂ΛAΛ
f 1,x = nkx,1∂kx∂ΛΣΛ

f 1[k0,k]
∣∣∣∣
k0=0,k=kHS

∂ΛAΛ
f 1,y = nky,1∂ky∂ΛΣΛ

f 1[k0,k]
∣∣∣∣
k0=0,k=kHS

(A.3)

with the initial conditions AΛUV

f 1,x = AΛUV

f 1,y = 1. The Fermi sur-
face normal projector is (similarly for flavor 2)

nkx/y,1 =
2t1,x/y sin kx/y√(

2t1,x sin kx/y

)2
+

(
2t1,y sin ky

)2
. (A.4)

The flow equations for the rescaled variables are ÃΛ
f 1,x =

AΛ
f 1,x

ZΛ
f 1

,

ÃΛ
f 1,y =

AΛ
f 1,y

ZΛ
f 1

. With ηZ f 1 given in Eq. (A.1), these take the form

Λ∂ΛÃΛ
f 1,x =

(
ηZ f 1 − ηA f 1,x

)
ÃΛ

f 1,x

Λ∂ΛÃΛ
f 1,y =

(
ηZ f 1 − ηA f 1,y

)
ÃΛ

f 1,y , (A.5)

with the exponents ηA f 1,x = −
d log AΛ

f 1,x

d log Λ
, ηA f 1,y = −

d log AΛ
f 1,y

d log Λ
.At

every step of the flow, we compute then per Eq. (6)

|υΛ
f 1| =

√(
ÃΛ

f 1,x

)2
+

(
ÃΛ

f 1,y

)2

|∇ξ1,k|k=kHS

. (A.6)

Expressions for the exponents:

ηA f 1,x = −nkHS,x,1 3
(
λ̃Λ

)2 √
|υΛ

f 1| |υ
Λ
f 2|
|υΛ

f 2|

Ã f 1,x

∫ 1

−1

dq̃y

2π

∫ +
√

1−q̃2
y

−
√

1−q̃2
y

dq̃x

2π

∫ ∞

−∞

dq̃0

2π
2AΛ

b
2t2x sin

(
kHS,x + q̃xΛ

)(
iq̃0 − |υ

Λ
f 2|ξ̃kHS+q̃,2

)2

1(
Z̃Λ

b |q̃0| + AΛ
b

)2

ηA f 1,y = −nkHS,y,1 3
(
λ̃Λ

)2 √
|υΛ

f 1| |υ
Λ
f 2|
|υΛ

f 1|

Ã f 1,y

∫ 1

−1

dq̃y

2π

∫ +
√

1−q̃2
y

−
√

1−q̃2
y

dq̃x

2π

∫ ∞

−∞

dq̃0

2π
2AΛ

b

2t2y sin
(
kHS,y + q̃yΛ

)
(
iq̃0 − |υ

Λ
f 2|ξ̃kHS+q̃,2

)2

1(
Z̃Λ

b |q̃0| + AΛ
b

)2 . (A.7)

Finally, the (rescaled) boson frequency factor and momentum factor are self-consistently determined from

Z̃Λ
b = 2

(
λ̃Λ

)2 √
|υΛ

f 1| |υ
Λ
f 2|

∫ π

−π

dkx

2π

∫ π

−π

dky

2π
1

Λ2

∫ ∞

−∞

dk̃0

2π


 1

i(k̃0 + 1) − |υΛ
f 1|ξk,1

−
1

ik̃0 − |υ
Λ
f 1|ξk,1

 1
ik̃0 − |υ

Λ
f 2|ξk,2

+ (1↔ 2)


ÃΛ

b = 2
(
λ̃Λ

)2 √
|υΛ

f 1| |υ
Λ
f 2|

∫ π

−π

dkx

2π

∫ π

−π

dky

2π
1

Λ2

∫ ∞

−∞

dk̃0

2π


 1

ik̃0 − |υ
Λ
f 1|ξk+qx,1

−
1

ik̃0 − |υ
Λ
f 1|ξk,1

 1
ik̃0 − |υ

Λ
f 2|ξk,2

+ (1↔ 2)


qx=Λ

.

(A.8)

Eqs. (14, A.1, A.2, A.5, A.7, A.6, A.8) are solved numeri-
cally as a function of flow parameter Λ = ΛUVe−s so that s = 0
corresponds to the UV (ΛUV = 1). The hotspot coordinates
are kHS,x = 1.0472, kHS,y = 2.0944. As initial conditions, we

choose λΛUV = 0.25, ZΛUV
f 1 = ZΛUV

f 2 = 1, and AΛUV
f 1 = AΛUV

f 2 = 1.

The initial values for the boson propagator are Z̃ΛUV
b = 0.052

and ÃΛUV
b = 1.011.
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