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Abstract 
Low-energy reflectivity of electrons from single- and multi-layer graphene is examined both 
theoretically and experimentally. A series of minima in the reflectivity over the energy range of 0 
– 8 eV are found, with the number of minima depending on the number of graphene layers. 
Using first-principles computations, it is demonstrated that a free standing n-layer graphene slab 
produces 1−n  reflectivity minima. This same result is also found experimentally for graphene 
supported on SiO2. For graphene bonded onto other substrates it is argued that a similar series of 
reflectivity minima is expected, although in certain cases an additional minimum occurs, at an 
energy that depends on the graphene-substrate separation and the effective potential in that 
space. 
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The reflectivity of low-energy electrons from single- and multi-layer graphene has proven to be a 
very useful probe of the material. When examined over the energy range of about 0 – 8 eV, such 
spectra reveal a series of local maxima and minima. The minima in particular are important, 
since they reveal transmission maxima, i.e. transmission resonances, for the graphene. It was 
demonstrated in 2008 by Hibino et al. that, for n layers of graphene on a SiC(0001) surface, there 
are n minima in the spectra.1 This relationship has provided the basis for subsequent works in 
which the thickness variation of the graphene on SiC is mapped out over the SiC wafer.2,3,4,5,6 
Hibino and co-workers presented a simple tight-binding model in which the transmission 
resonances arise from states localized on each graphene layer, with reflectivity minima formed 
by linear combination of those states. 1 
 
The reflectivity spectra for graphene on metal substrates are found to be, overall, similar to those 
for graphene on SiC. They reveal a series of minima in the energy range 0 – 8 eV, but now it is 
generally found that n layers of graphene produce 1−n  minima in the reflectivity.7,8,9 In this 
result, however, the layer of graphene closest to the substrate is included in the count of the 
number of layers, even though this layer might have electronic properties that deviate from those 
of graphene due to its bonding to the substrate (we refer to such a layer as graphene-like, i.e. 
with structure similar to that of graphene but with different electronic properties). Such a 
graphene-like layer also exists for the SiC(0001) surface, known as the “buffer layer”,10 and this 
graphene-like layer was not included in the layer count in the work of Hibino et al.1 If we do 
include that layer, we then arrive at the result of 1−n  reflectivity for n layers of graphene on 
SiC, the same as for graphene on metals. Utilization of this revised counting, however, begs the 
question of how the interface between graphene and the substrate should be properly treated in a 
full model for the reflectivity spectra. 
 
In addition to this question, there are a number of “irregularities” in the reflectivity spectra that 
have been noted in recent works. For graphene on SiC(0001), if the graphene-like buffer layer is 
decoupled from the substrate (e.g. by hydrogenation) then an extra minimum is formed in the 
spectrum.3 Depending on the detailed treatment used for the decoupling, this minimum can have 
a position similar to one of those in the original spectra, or at a higher energy.5 The same 
behavior has been reported for graphene on the SiC )1000(  surface, prepared in disilane, for 
which a graphene-like buffer layer also exists and can be decoupled from the SiC.6 No 
theoretical understanding of the energetic locations of these additional minima presently exists. 
 
 In this work we develop a theoretical method for computing reflectivity spectra of graphene, and 
we compare those results with experimentally obtained spectra. For free-standing graphene we 
demonstrate that n layers of graphene actually produce 1−n  minima in its reflectivity spectrum. 
The reason that 1−n  minima are obtained, rather than n, is that the wavefunctions for the 
relevant scattering states are localized in between the graphene layers (not on them, as in the 
Hibino et al. model1). These states derive from the interlayer band of graphite, the structure of 
which depends sensitively on the exchange-correlation potential in the material.11,12,13 In our 
work, we employ a relatively accurate description of that potential, in 3-dimensions, from which 
we derive the reflectivity of the low-energy electrons. We argue that the pattern of 1−n  
reflectance minima for n-layer graphene persists even when the bottommost graphene layer is 
strongly bonded onto a substrate. However, for a graphene layer that is more weakly bonded 
onto a substrate we argue that an additional reflectivity is sometimes formed, arising from an 
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interlayer state formed in the space between the graphene and the substrate. The energy of this 
additional state is typically higher than those of the regular interlayer graphene states, and in this 
way, the above-mentioned irregularities in the observed spectra can be understood.  
  
For our computations we use the Vienna Ab-Initio Simulation Package (VASP), employing the 
projector-augmented wave method and the generalized-gradient approximation for the density 
functional,14,15,16 with a plane-wave energy cutoff of 500 eV. For graphite, we obtain a band 
structure which is identical to that displayed by Hibino et al.1 For free-standing graphene, we 
simulate the graphene slab surrounded by vacuum of some thickness > 1 nm on either side of the 
slab. Labeling the direction normal to the slab as z , we form linear combinations of the 
wavefunctions for 0>zk  and 0<zk  such that the waves on one side of the slab have only 
outgoing character, i.e. an )exp( zikz+  transmitted wave. Then, using the same linear 
combination on the other side of the slab permits us to determine the incident and reflected 
waves, from which we obtain the reflectivity. Details are provided in the Supplementary 
Material.  
 
Results are shown in Fig. 1 for the reflectivity spectra of free-standing graphene. We find for an 
n-layer graphene slab (0.335 nm between layers) that there are 1−n  minima in the reflectivity. 
The associated wavefunctions are peaked in between the graphene layers, as shown in Fig. 2 for 
the case of 4-layer graphene. These states derive from the image-potential states associated with 
graphene (all our computation contain two additional eigenvalues slightly below the vacuum 
level associated with symmetric and antisymmetric linear combinations of those states existing 
on both surfaces of the graphene slab).17 For the three interlayer spaces displayed in Fig. 2 there 
are three interlayer states. These interlayer states couple together to form the three transmission 
resonances seen in the 4=n  spectrum. Focusing on the real part of the wavefunctions in Fig. 2, 
the linear combinations are indicated by the labels “+”, “0”, or “ −” on the wavefunction peaks, 
in accordance with a tight-binding scheme described in detail in Ref. [17].   
 
The computed spectra of Fig. 1 show very good agreement with measured reflectivity curves for 
multilayer graphene on SiC and other substrates,1,2,7,9 aside from the occasional presence of 
higher energy features in those spectra (e.g. with decoupled bottommost graphene layers as 
discussed in the introductory paragraphs above). However, one significant exception to this 
agreement occurs for the spectra of graphene on SiO2 reported by Locatelli et al.18 Those authors 
report similar results for free-standing graphene and for graphene supported on SiO2. For a single 
layer of graphene on SiO2 their spectrum displays no strong feature in the reflectivity, in 
agreement with the 1=n  case of Fig. 1. However, their 2-layer spectrum displays two 
reflectivity minima and 3 layers displays three minima, in contradiction to the results of Fig. 1. 
This significant contradiction calls into question either the experimental or the theoretical results. 
 
Due to this contradiction, we have conducted our own reflectivity measurements of single and 
multilayer graphene on SiO2 using an Elmitec low-energy electron microscope (LEEM) III. 
Graphene was first grown on Cu foils by low-pressure chemical vapor deposition (CVD),19 and 
then two of these graphene layers were sequentially transferred onto SiO2 covered Si wafers.20 
Samples were cleaned by vacuum annealing for 8 hours at 340°C prior to LEEM study. 
Experimental electron reflectivity curves for 1 to 4 layers of graphene from these samples are 
shown in Fig. 3. The corresponding location for each spectrum is indicated in the LEEM image 
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(inset).  Identification of the number of layers is made on the basis of the preparation procedure 
and the resulting film morphology as described in Ref. [20].  For example, the top graphene layer 
used in this study was non-continuous leaving single-layer regions visible in LEEM images.  
Three- and four-layer regions come from folds and multilayer nuclei of CVD graphene.   
 
For a single graphene layer we find a somewhat sloping reflectivity, but with no clear minimum. 
For 2 layers of graphene we find a single reflectivity minimum and for 3 layers we find two 
minima. We therefore find results which are in good agreement with the theoretical predictions 
of Fig. 1, at least for 2=n  and 3=n  (the energy positions of the minima differ slightly between 
experiment and theory, but these precise locations involve the separation and interaction between 
neighboring graphene layers, which could be influenced by residual extrinsic effects in the 
transferred graphene21,22). For the single-layer case the sloping reflectivity is not reproduced in 
the 1=n  theory, but this experimental result likely again depends in detail on residual 
interactions,21 the corrugation between the substrate and the graphene as further discussed below, 
and/or the electron transmission of the LEEM due to a particular aperture setting (and, indeed, 
the spectrum for 1=n  in Ref. [18] appears much flatter). Our experimental result for 2=n , 
with a single well-defined reflectivity minimum, is in disagreement with the prior experimental 
work of Locatelli et al.18 However, these same authors in a recent re-examination of their data 
have identified a spectrum with a single reflectivity minimum,23 consistent with our 
interpretation.  
 
The multilayer graphene utilized in our experiments actually consists of twisted layers (i.e. 
without Bernal stacking). Theoretically we expect that this type of twist will produce little 
change in the reflectivity spectra, since the distance between graphene planes does not change 
significantly and also the interlayer states that form between the planes have very little (<1%) 
modulation in their wavefunctions in the directions parallel to the planes. Indeed we find the 
reflectivity of a twisted bilayer with a 2.38-77 R×  structure differs from that of untwisted 
graphene by less than 0.03 over the entire energy range examined. 
 
We now turn to briefly consider the situation for graphene on a substrate. So long as the 
bottommost graphene layer that is bonded to the substrate is not so severely distorted as to affect 
the separation (bonding) between it and the next higher graphene layer, then we expect the 
spaces between the graphene planes (and the potential therein) will be essentially the same as for 
free-standing multilayer graphene. Therefore we expect a similar set of interlayer states for the 
two situations. The only additional consideration is whether or not the space between the 
bottommost graphene layer and the substrate can itself support an interlayer state. For a 
relatively small separation d  between the bottommost graphene layer and the substrate (i.e. 
graphene that is strongly bonded to the substrate), we do not expect an interlayer state to form. 
We have made explicit computations of this situation by considering graphene on Cu(111), using 
a generalization of the above theoretical methods that will be described elsewhere.24 We do 
indeed find that for 25.0≤d nm the reflectivity spectra are essentially identical for free-standing 
graphene compared to graphene on the substrate; in both cases there are 1−n  reflectivity 
minimum for n-layer graphene (including the bottommost graphene-like layer in the count).   
 
For larger d values, i.e. more weakly bound graphene on the substrate, an additional reflectivity 
minimum occurs in the spectrum, with an energy that decreases as the separation d increases.24 
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For example, at 30.0=d  nm this minimum occurs at 9.4 eV whereas for 35.0=d  nm it is at 5.1 
eV (smaller separations produce confinement of the state, hence shifting it to higher energies). A 
single layer of graphene on SiO2 might be expected to display this type of reflectivity minimum, 
but the significant corrugation of the graphene is likely sufficient to inhibit the formation of an 
interlayer state.18,25 These numerical results for the energies will vary somewhat depending on 
the particular substrate, i.e. on the effective potential between the substrate and the bottommost 
graphene plane. In any case, a qualitative picture for the higher energy “irregular” features that 
are observed in the experiments emerges from our analysis: an interlayer state can be produced 
between a weakly bonded (e.g. decoupled) bottommost graphene layer and the substrate. This 
interlayer state couples to its neighbors, producing an additional reflectivity minimum. 
Experimentally, this extra minimum is often found to occur at somewhat higher energies 
compared to the regular series arising from the graphene-graphene separations, presumably 
because the value of d is somewhat less than a the graphene-graphene spacing of 0.335 nm 
(and/or the effective potential is higher than that between graphene planes). The situation for 
graphene decoupled from SiC(0001) by a hydrogenation appears to be a special one in which, 
coincidentally, the energy of the interlayer state that forms between the decoupled graphene layer 
and the substrate turns out to be nearly the same as the energy of a graphene-graphene interlayer 
state. 
 
In summary, we have presented first-principle theoretical results for low-energy reflectivity 
spectra from free-standing graphene, and compared those to experiment. Good agreement is 
found (utilizing new experimental results). For n-layer graphene, 1−n  minima occur in the 
reflectivity spectra over 0 – 8 eV, with these minima being associated with interlayer states that 
form between the graphene planes. Multilayer graphene with the bottommost layer strongly 
bonded to a substrate yields a very similar spectra as for the free-standing case. For graphene that 
is more weakly bonded to a substrate an additional minimum in the reflectivity occur under 
certain conditions, with an energy that depends on the separation and effective potential between 
the substrate and the graphene.  
 
Discussions with A. Locatelli, H. Petek, D. A. Stewart, and A. A. Zakharov are gratefully 
acknowledged. This work was supported by the National Science Foundation and by the Office 
of Naval Research MURI program.  The work at the Naval Research Laboratory was supported 
by the Office of Naval Research and NRL’s Nanoscience Institute. The work at Sandia National 
Laboratories was supported by the US DOE Office of Basic Energy Sciences (BES), Division of 
Materials Science and Engineering and by Sandia LDRD.  Sandia National Laboratories is a 
multi-program laboratory managed and operated by Sandia Corporation, a wholly owned 
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National 
Nuclear Security Administration under contract DE-AC04-94AL85000.   
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FIG 1.  (Color on-line) Computed reflectivity for free-standing slabs of n-layer graphene. For 
each n, a series of computation are performed with different vacuum widths; differently shaded 
(colored) data points are used for plotting the results for each width.  
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FIG 2.  (Color on-line) Wavefunctions at the energies of transmission resonances for 4=n  
layers of free-standing graphene. The real part of the wavefunction is shown by the thin solid 
line, the imaginary part by the thin dashed line, and the magnitude by the thick solid line (blue, 
red, and green, respectively, in the color version). The solid black dots indicate the positions of 
the graphene layers. The +, –, and 0 symbols indicate peaks in the wavefunctions that are 
concentrated between the graphene layers. 
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FIG 3.  (Color on-line) Measured electron reflectivity for single and multiple graphene layers 
(GL) on SiO2; curves are vertically offset for clarity. The LEEM image in the inset (acquired at 
energy 1.8 eV above the sample’s vacuum level) shows the surface from where the reflectivity 
spectra were acquired. 
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