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We address the band-structure of two-dimensional crystals above the vacuum level in the context
of discrete states immersed in the three-dimensional continuum. Scattering resonances are discovered
that originate from the coupling of the in-plane and perpendicular motions, as elucidated by the
analysis of an exactly solvable model. Some of the resonances turn into true bound states at high-
symmetry k vectors. Ab initio scattering theory verifies the existence of the resonances in realistic
graphene and shows that they lead to a total reflection of the incident electron below and total
transmission above the resonance energy.

Electronic structure of single layer crystals has at-
tracted much attention due to the discovery of graphene1

and other atomically thin systems (boron nitride2, sil-
icene3). Graphene is the most popular material because
it combines the unique electronic properties with techno-
logical robustness, which makes it especially promising
for nanoelectronics4. Its most exciting feature – the lin-
ear dispersion of the highest occupied π and lowest empty
π∗ bands – is known since 1947, when Wallace5 obtained
it analytically in a tight-binding model. The bound elec-
tronic states of the free-standing graphene have been re-
cently addressed in a number of ab initio studies6–11, so
its low energy band structure is presently well under-
stood.

At energies above the vacuum level we enter the contin-
uous spectrum due to the infinite motion perpendicular
to the layer, as shown in Fig. 1 for the band-structure of
graphene. Some of the lines entering the continuum from
below are seen to retain their individuality inside the con-
tinuous spectrum. Their origin is clear: They correspond
to the states of an in-plane motion but with the energy
above the continuum edge. However, at a deeper level,
a fundamental issue arises: An electron moving with a
sufficiently high energy within the layer and parallel to
it has, generally speaking, a non-zero probability to es-
cape into vacuum, which would impart this state a finite
life-time, i.e., turn it into a resonance. The presence
of the resonances in the band-structure of 2D crystals
above the vacuum level as exemplified by graphene is the
main message of this Rapid Communication. We argue
that those resonances are of special kind: They originate
from the coupling of two motions, of which one is across
the layer under the action of the layer’s confining poten-
tial well and another is in the layer’s plane in a periodic
2D lattice potential, each of those potentials separately

supporting no resonances. We will also show that some
of the discrete levels retain zero linewidth, by this being
true bound states immersed into continuum.

The discrete levels within the continuous spectrum de-
serve close attention because they strongly affect optical
absorption in the UV range, as well as electron photoex-
citation and propagation toward the detector in a pho-
toemission experiment. Recent experimental progress in
angle-resolved photoemission (ARPES) on epitaxial12–17

and suspended18,19 graphene, as well as in low energy
electron diffraction (LEED)20,21 calls for a detailed un-
derstanding of its electronic structure at higher energies.
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FIG. 1. (color online) Band-structure of graphene obtained
in the repeated super-cell geometry. The all-electron full-
potential linearized augmented-plane wave code Elk22 was
used for this calculation. The separation between the peri-
odically stacked layers is d = 400 bohr. The energy axis zero
is at the vacuum level at Γ point.

We start by considering a trivial case: Let us have a
quantum well V (z) in z direction with the flat potential
in xy plane. Then, if the well supports a bound state,
and since the two perpendicular motions are independent
in this case, the 3D wave-function is a product of a bound
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state in z direction and a plane wave in the xy plane. As
a result, there exist states which are bound to the well
while having an arbitrarily high energy above the vacuum
level due to the motion in xy plane. If, however, we apply
a potential that is periodic in xy plane, the variables in
the Schrödinger equation do not separate any more, i.e.,
the two perpendicular motions become coupled. To get
a better insight on how this affects the high-lying energy
bands of the in-plane motion, we first introduce a model
which is exactly solvable and at the same time retains all
the basic physics involved:
δ-function quantum well with laterally periodic poten-

tial – We are looking for a solution of the Schrödinger
equation

[

−1

2
∆ + V (z, r‖)

]

ψ(z, r‖) = Eψ(z, r‖) (1)

with the model potential being a product of a periodic
function in the xy plane and the δ-function quantum well
in z direction

V (z, r‖) =
∑

G

VGe
iG·r‖ δ(z), (2)

where G are the 2D reciprocal lattice vectors. We set
V0 < 0 to ensure the existence of a state bound to the
z = 0 plane. The solutions of Eq. (1) with the potential
(2) can be written explicitly as Bloch waves with respect
to the motion in the xy plane

ψ(z, r‖) =
∑

G

aGe
i

√
2E−(G+k)2 |z|ei(G+k)·r‖ , (3)

where k is the in-plane wave-vector within the first Bril-
louin zone, and aG are still unknown coefficients. Impor-
tantly, in Eq. (3) we have retained the exponent with one
sign only, which selects out bound and resonant states23,
if the latter exist, while omitting the scattering states
propagating in the z direction24. The jump in the wave-
function’s z-derivative ψ′(z, r‖) is obtained by the in-
tegration of Eq. (1) in z over the infinitesimal interval
[0−, 0+]

ψ′(0+, r‖)−ψ′(0−, r‖)=2
∑

G

VGe
iG·r‖ψ(0, r‖). (4)

Together, Eqs. (3) and (4) lead to the system of equa-
tions for the coefficients aG

∑

G′

V (G−G
′)aG′ = i

√

2E − (G+ k)2 aG. (5)

The crucial point is the choice of the sign of the square
roots in Eqs. (3) and (5). Denoting the generic square
root by s, the rule is: Re s > 0 if Re s2 > 0 and Im s > 0
otherwise, which choice ensures the correct asymptotic
behavior of the necessarily normalizable and the nec-
essarily non-normalizable wave-functions, of the bound
states and resonances, respectively23.

The values of E which allow for non-zero solutions of
the homogeneous system of linear equations (5) deter-
mine the band-structure of our model system. However,
in contrast to the original set-up of Eq. (1), Eqs. (5) con-
stitute a nonlinear eigenvalue problem25 for the energies
E. We emphasize that this fundamental difference comes
from the fact that the separation of the bound and res-
onant states from those of continuum has been already
achieved in Eq. (5).
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FIG. 2. (color online) Left: Band-structure of the model sys-
tem obtained with the repeated super-cell geometry calcula-
tion (blue lines) and with solving the eigenvalue problem (5)
for a stand-alone plane (red points). The calculation has been
conducted along Γ−K−M−Γ line. Right: The same for the
asymmetric direction of k along 7b1+13b2, where b1 and b2

are the primitive reciprocal vectors. The energy axis zero is
at the vacuum level at Γ point.

In Fig. 2, results of the numerical solution of the
non-linear eigenvalue problem (5), which give the band-
structure of the stand-alone layer, are presented together
with the results of calculations carried out for the same
system in the repeated super-cell geometry. The symme-
try of the 2D periodic potential is chosen that of the hon-
eycomb lattice, graphene’s lattice constant is used, and
the values of the Fourier coefficients of the potential are:
V0 = −0.7|b| and VG = 0.1|b| for the first G star, and
VG = 0 otherwise, b being the primitive vector of the re-
ciprocal lattice. In the left panel, the wave-vector varies
along the Γ −K −M − Γ lines while in the right panel
an asymmetric direction of k is chosen. For the bands
below the vacuum edge, both the repeated-geometry and
the stand-alone calculations yield the identical results re-
gardless of the symmetry of the wave-vector. In contrast,
above the vacuum edge, whether or not a particular state
localized near z = 0 survives as a true bound state is de-
termined by the symmetry of its k point. For the asym-
metric case of k, there are no such states. As can be seen
from Fig. 2, along the high-symmetry directions some of
the bound state bands do survive. Moreover, an isolated
high-lying bound state exists at the Γ point at the en-
ergy of ≈83 eV (not shown in Fig. 2). The 2D crystal,
thus, presents a simple and instructive example of bound
states in the continuum, very different from the known
cases of atoms26 or quantum dots27.
While the results in Fig. 2 establish the existence of
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TABLE I. Eigenenergies (in eV) for the model system ob-
tained with the reduced size of V (G−G′) matrix permitting
the fully analytical solution of the non-linear eigenvalue prob-
lem (5).

Γ K M

-20.3 -11.9 -13.9

5.8 -0.6 -9.5

11.0 26.0 - 0.2 i 7.7

19.6 26.8 - 0.6 i 9.8 - 0.6 i

24.3 - 1.4 i 28.5 - 0.9 i 39.4 - 0.7 i

80.1 - 0.9 i 55.9 - 0.2 i 42.1 - 0.3 i

80.9 - 0.6 i 61.6 - 0.6 i 59.6 - 0.8 i

82.4 - 0.2 i 61.6 - 0.7 i

83.2 64.6 - 0.8 i

116.5 - 0.2 i 127.7 - 0.6 i

116.8 - 0.6 i 127.7 - 0.5 i

117.3 - 1.3 i 160.8 - 0.5 i

bound states above the vacuum edge, they do not answer
the question of what happens with those that do not sur-
vive, i.e., do the latter turn into resonances by acquiring
a finite lifetime or they disappear at all. This is due to
our numerical search for the eigenvalues of the nonlinear
eigenproblem (5) having been restricted to the real axis of
E, since no decisive numerical procedure exists to either
find all complex-valued roots of this problem or to prove
their absence. To shed light on that issue, we solve the
eigenvalue problem (5) analytically for a reduced size of
the V (G−G

′) matrix to make the problem computation-
ally feasible. Using the Mathematica symbolic algebra
software, we have analytically evaluated the determinant
∆(E) of the system (5), then consecutively eliminated the
square roots in the equation ∆(E) = 0, which made it
possible to reduce it to a polynomial equation. All roots
of the polynomial (including the complex ones) were then
found with no loss of any of them guaranteed. Since spu-
rious zeros were introduced when reducing the equation
to the polynomial, the roots were finally sorted to retain
only those that satisfied the original equation ∆(E) = 0.
This has been done for Γ, K, and M points with the
matrix sizes of 19, 13, and 7, respectively. While all true
bound states, both below and above the vacuum edge,
were found to reproduce those previously obtained nu-
merically, in addition, complex eigenvalues were found.
Results of this calculation are collected in Table I.
Eigenenergies in the lower complex half-plane (res-

onances) physically manifest themselves as features in
elastic scattering spectra at the real energies in the vicin-
ity of the complex eigenvalues23. In Fig. 3(a) we plot the
coefficient of transmission of an electron incident nor-
mally onto our model system. The features in the trans-
mission spectrum clearly agree with the resonances’ po-
sitions listed in the first column of Table I (Γ point).
We note that it is resonances, not the bound states, that
underlie the singularities in the elastic scattering spec-
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FIG. 3. (color online) Energy dependence of the electron
transmission coefficient T (E) through a free standing layer
for the model system (a) and for graphene (b). The incidence
is normal to the layer. Vertical dashed lines in graph (a) in-
dicate the positions of resonances at Γ point from Table I. In
both graphs, vertical bars at kinetic energy of 33.1 eV indicate
the onset of non-specular reflected beams.

tra: Bound states are orthogonal to the scattering states
leading to the independence of the two corresponding mo-
tions.

Having established the origin of high-energy reso-
nances in the infinitely thin system let us now return
to a realistic graphene. Experimentally, the scatter-
ing resonances can be observed in low energy electron
diffraction. Figure 3(b) shows ab initio normal inci-
dence electron transmission spectrum calculated with the
augmented-plane-waves (APW) based variational em-
bedding method2829. The ab initio spectrum of graphene
is similar to that of the model system: Just below the
lowermost resonance we find a point of total reflection
followed by total transmission just above the resonance.
Total reflection from a free-standing monolayer is a rather
counterintuitive finding: unlike the well known case of
LEED from crystal surfaces, it is not caused by a gap
in the energy spectrum of the semi-infinite substrate30.
Indeed, the electron can freely propagate in the vacuum
half-space behind the graphene layer, and the reflection
is solely due to the in-plane scattering.

In both T (E) spectra, one can also see a sharp struc-
ture due to the emergence of the secondary beams. Both
in the model and in the actual graphene it appears as
a transmission minimum at the same energy EKIN =
33.1 eV, see Fig. 3. Such structures are well known in
classical LEED31,32, and, contrary to the ones found here,
they have a purely “structural” origin and do not depend
on details of the electronic structure.

By changing the incidence angle one can observe the
scattering band structure as the dispersion of transmis-
sion probability with k. The ab initio calculation of
T (k, E) in the directions ΓK and ΓM is presented in
Fig. 4(a). The resonance at Γ is seen to split at the
off-normal incidence into three branches with a pro-
nounced anisotropic dispersion, which highlights the non-
free-electron character of the graphene states at high en-
ergies. A high intensity of Umklapp bands is seen as
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FIG. 4. (color online) (a) Energy-momentum distribution of the transmission probability T (k, E) through the graphene mono-
layer. (b) Energy-dependent density distribution ρ(z,E) in the normal incidence LEED state. Graphene plane is at z = 0. The
wave is incident from the right; it is normalized as 1× exp(iq · r).

well. To visualize the scattering resonance in real space
we present in Fig. 4(b) the energy dependence of the elec-
tron density distribution in the LEED state as it comes
out of our ab initio calculation. The white stripe in the
left half-space at EKIN = 25.5 eV corresponds to the to-
tal reflection, and the vanishing beating in the right half-
space at 31.5 eV to the total transmission. The resonance
is seen as the pronounced local density enhancement at
the graphene layer at 27.5 eV. In perfect accord with
our model, it is located between the minimum and the
maximum of T (E).

The discovered resonances are, thus, typical of atomic
monolayers, and at the surfaces of 3D crystals they may
be blurred by the interlayer scattering. For example, in
graphite, the resonance falls in a wide gap in the k = 0
projected spectrum, see Fig. 6 in Ref.33.

These findings suggest important implications on
LEED and ARPES from graphene. The two techniques
are related by the one-step theory34,35, according to
which the photocurrent is proportional to the probability
of the optical transition to the time-reversed LEED state.
For the supported graphene, for a sufficiently weak inter-
action with the substrate, one can, apparently, reduce or
enhance the signal from the substrate by tuning the pho-
ton energy to the reflection or transmission point. The
resonances are rather prominent also at off-normal inci-
dence [Fig. 4(a)]. As they are associated with a strong
in-plane scattering it is especially important to be aware
of them in studying the corrugated suspended graphene
with LEED or ARPES because the resonance area is most
strongly affected by the lattice deformation.

Finally, we mention a classical-mechanical analogy of
the same effect. Classically, a particle moving along the
crystal plane may be scattered away from the plane hav-
ing collided with an obstacle. In this case, the ’lifetime’
of the particle would be the time of flight between two
collisions, which for an energetic electron is negligible.
We are, however, dealing with a perfectly periodic sys-
tem with the lattice constant of a few angstroms. The

large lifetimes of the quantum resonances we obtain are
due to the coherent quantum scattering and they cannot
be accounted for by the classical picture. Moreover, high-
symmetry pure bound-states survive, which is impossible
classically.

To summarize, we have shown that atomically thin
monolayers support resonances of special nature: they
originate from a strong coupling of the in-layer scatter-
ing to the motion perpendicular to the layer, while each
of the two motions, separately, does not support a res-
onance. For the exactly solvable model of an infinitely-
thin crystal we have found the complex eigenvalues of the
resonances and demonstrated that they lead to strong
sharp structures in the electron diffraction spectra. An-
other interesting result is that apart from the resonances
there exist true bound states immersed in the continuum
spectrum, which survive up to high energies above the
vacuum level. The purely real eigenvalues are, however,
restricted to high-symmetry directions of the 2D Bril-
louin zone, and they turn into resonances at general k
points.

These general results have found full verification in our
ab initio calculation of electron diffraction from a realistic
free-standing graphene monolayer. The resonance causes
a total reflection of the normally incident electron with an
energy just below the resonance – a unique phenomenon,
as it is caused by purely in-plane scattering.

The thickness of an atomic monolayer is much smaller
than the typical mean free path of the photoelectron, so
graphene offers a rare opportunity to get rid of the surface
sensitivity of photoemission, which is an intrinsic and un-
avoidable aspect of solid state electron spectroscopies36.
At the same time, a strong elastic multiple scattering
over a wide energy range is retained, producing a well-
defined band structure, which can be measured in an
angle-resolved experiment. Thus, the studies on the sus-
pended graphene and related structures are expected to
shed light on fundamental aspects of spectroscopy, which
are blurred in bulk crystals. This concerns, for exam-
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ple, inelastic scattering beyond the concept of mean free
path, nature of multi-photon transitions37–39, and the
laser streaking of electrons emitted from a solid40–42. In
this view, the discovered resonances may have important
implications for various fields of electron spectroscopy, as
they are a general property of atomic monolayers.
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Menteş, M. A. Niño, P. Kim, A. Morgante, and R. M.
Osgood, Phys. Rev. B 84, 115401 (2011).

20 A. Locatelli, K. R. Knox, D. Cvetko, T. O. Mentes, M. A.
Niño, S. Wang, M. B. Yilmaz, P. Kim, R. M. Osgood, and
A. Morgante, ACS Nano 4, 4879 (2010).

21 P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nat Mater 7,
406 (2008).

22 http://elk.sourceforge.net.
23 L. D. Landau and E. M. Lifshitz, Quantum Mechanics:

The Non-Relativistic Theory (Butterworth-Heinemann,
London, 1981).

24 All the solutions (3) are even in z (σ bands), which is the
consequence of the δ-potential supporting one bound state
at most.

25 G. H. Golub and H. A. van der Vorst, Journal of Compu-
tational and Applied Mathematics 123, 35 (2000).

26 H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231
(1985).

27 G. Cattapan and P. Lotti, The European Physical Jour-
nal B - Condensed Matter and Complex Systems 66, 517
(2008).

28 E. E. Krasovskii, Phys. Rev. B 70, 245322 (2004).
29 The method employs eigenfunctions of a repeated-slab

band structure as basis functions to represent the LEED
state. For the present purpose they were obtained with the
full-potential linear APW of Ref.43.

30 J. C. Slater, Phys. Rev. 51, 840 (1937).
31 E. G. McRae, Rev. Mod. Phys. 51, 541 (1979).
32 R. Jones and P. Jennings, Surface Science Reports 9, 165

(1988).
33 N. Barrett, E. E. Krasovskii, J.-M. Themlin, and V. N.

Strocov, Phys. Rev. B 71, 035427 (2005).
34 G. D. Mahan, Phys. Rev. B 2, 4334 (1970).
35 P. J. Feibelman and D. E. Eastman, Phys. Rev. B 10, 4932

(1974).
36 W. Schattke and M. A. van Hove, eds., Solid-State Pho-

toemission and Related Methods. Theory and experiment
(Wiley-VCH, Berlin, 2003).

37 H. Petek and S. Ogawa, Progress in Surface Science 56,
239 (1997).

38 W. Schattke, E. E. Krasovskii, R. Dı́ez Muiño, and P. M.
Echenique, Phys. Rev. B 78, 155314 (2008).

39 H. Husser, J. van Heys, and E. Pehlke, Phys. Rev. B 84,
235135 (2011).

40 A. L. Cavalieri, N. Mueller, T. Uphues, V. S. Yakovlev,
A. Baltuska, B. Horvath, B. Schmidt, L. Bluemel,
R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg,
P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinz-
mann, NATURE 449, 1029 (2007).

41 A. K. Kazansky and P. M. Echenique, Phys. Rev. Lett.
102, 177401 (2009).

42 E. E. Krasovskii, Phys. Rev. B 84, 195106 (2011).
43 E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev.

B 59, 10504 (1999).


