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The field theory of the semimetal-superconductor quantum phase transition for graphene and
surface states of topological insulators is presented. The Lagrangian possesses the global U(1) sym-
metry, with the self-interacting complex bosonic order-parameter and the massless Dirac fermions
coupled through a Yukawa term. The same theory also governs the quantum critical behavior of
graphene near the transition towards the bond-density-wave (Kekule) insulator. The local U(1)
gauged version of the theory which describes the quantum semimetal-superconductor transition in
the ultimate critical regime is also considered. Due to the Yukawa coupling the transitions are found
to be always continuous, both with and without the fluctuating gauge-field. The critical behavior
is addressed within the dimensional regularization near four space-time dimensions, and the calcu-
lation of various universal quantities, including critical exponents and the universal mass-ratio is
reported.
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Dirac quasiparticles represent low-energy excitations
in various low-dimensional condensed-matter systems,
such as graphene and topological insulators (TIs). In
graphene, pseudorelativistic Dirac quasiparticles emerge
from hopping of the electrons on the underlying honey-
comb lattice,1,2 while on a surface of a strong (crystalline)
TI, they result from an odd (even) number of band in-
versions in the bulk of the system.3 In all these cases,
the linearly dispersing Dirac quasiparticles give rise to a
semimetallic ground state, stable against weak electron -
electron interactions.4

When the repulsive interactions are sufficiently strong,
however, a plethora of insulating phases can in principle
be realized in graphene.4–6 Furthermore, Dirac fermions
in graphene can also condense into four different gapped
superconducting states, if the net interaction acquires an
attractive component.6,7 The simplest of them, which
will be the subject of the present study, is the uni-
form, spin-singlet s-wave pairing, favored by a sufficiently
strong on-site attractive interaction.8 Two of the re-
maining pairing gaps are spatially inhomogeneous spin
triplets, which break the translational symmetry of the
honeycomb lattice into Kekule patterns.7 They are fa-
vored by the sufficiently strong nearest-neighbor attrac-
tion. Finally, yet another triplet pairing with an f -
wave symmetry can be stabilized by a strong second -
neighbor attraction.9,10 On the other hand, due to their
reduced number of fermionic components, the massless
Dirac fermions residing on the surface of TIs with a
single surface Dirac cone can acquire a superconduct-
ing gap only by pairing into an s-wave superconducting
state. Possible inhomogeneous7 and chiral d + id super-
conducting states in doped graphene,11,12 as well as pro-
posed realizations of Majorana fermions in graphene and
TIs,13–15 make the study of superconducting instabilities

of Dirac fermions in low-dimensional condensed-matter
systems theoretically and experimentally interesting and
timely.16–19

The bosonic order parameters (OPs), characterizing
both the insulating and the superconducting states, are
composite objects of Dirac fermions, and may exhibit
different symmetries. Besides the usual self-interaction,
the OPs here are also coupled to the massless Dirac
fermions via Yukawa term.20 Previously, we studied the
Ising and Heisenberg universality classes of the transi-
tion into charge-density-wave and spin-density-wave in-
sulators, respectively. The Cooper pairs are of course
charged, and consequently the corresponding field the-
ory possesses a global U(1) symmetry. We therefore here
develop the U(1)- symmetric field-theoretical description
of the quantum semimetal-superconductor transition in
graphene and surfaces of TIs. All the coupling constants
in this effective theory are marginal in d = 4 space-
time dimensions, which enables us to perform the ǫ−
expansion with ǫ = 4 − d to address its critical behav-
ior. We find that the semimetal-superconductor transi-
tion is always continuous, and compute the critical ex-
ponents associated with the transition; in particular, the
correlation-length exponent and the anomalous dimen-
sions for both the OP and the fermion fields are ob-
tained. Besides describing the semimetal-superconductor
quantum phase transition, the U(1) field theory should
also pertain to the quantum phase transition from the
semimetallic into an insulating state with the dynami-
cally generated Kekule mass, which breaks the transla-
tion symmetry of the lattice.21 Motivated by this physi-
cal problem, as well as by the theoretical possibility of a
fully Lorentz invariant semimetal-superconducting tran-
sition in these Dirac systems, we extend our theory to in-
clude a fluctuating U(1) gauge field, that would describe



the coupling of the electromagnetic field to the bosonic
OP and the Dirac fermions near the critical point.22 The
Lorentz-symmetric critical point describing the continu-
ous transition in this theory is charged, and also turns out
to be stable for any physical number of fermion flavors
(that is, for Nf ≥ 0.142).
To set up the problem, we first consider the

pairing of the the gapless excitations in graphene,
around the two inequivalent Dirac points, at
±K, described by an eight-component Dirac-

Nambu spinor Ψ†(k) = [Ψ†
+(k),Ψ

†
−(k)], where

Ψ†
σ(k) =

[

u†
σ(k), v

†
σ(k), σu−σ(−k), σv−σ(−k)

]

.23 Here,

K = (1, 1/
√
3)(2π/a

√
3), with a being the lattice con-

stant. k ≡ (ω,k) is the three-momentum and k = K+q,
|q| ≪ |K|. σ = ± is the spin projection along the z-axis.
uσ and vσ are the Grassmanian fields on two sublattices.
The free Dirac Lagrangian in this representation assumes
relativistically invariant form L0

f = iΨ̄(x)σ0 ⊗ γµ∂µΨ(x),

where Ψ(x) =
∫

d3keikxΨ(k), µ = 0, 1, 2, x ≡ (τ, r)
with τ as the imaginary time and summation over the
repeated indices assumed. The γ-matrices are defined as
γ0 = σ3 ⊗ σ3, γ1 = σ0 ⊗ σ2, γ2 = σ0 ⊗ σ1, γ3 = σ1 ⊗ σ3,
and γ5 = σ2 ⊗ σ3, where {σ0,σ} form the Pauli basis
for two-dimensional matrices, and we take Ψ̄ ≡ Ψ†γ0, as
usual. The s-wave superconducting OP reads

Φ(x) = 〈Ψ†(x)σ0 ⊗ (iγ0γ3 cosϕ+ iγ0γ5 sinϕ)Ψ(x)〉, (1)

with ϕ as the phase of the superconducting OP. The OP
anticommutes with the particle number operator N =
σ0 ⊗ iγ3γ5 and commutes with all the three generators
of the spin rotations, S = σ⊗ I4, and hence represents a
spin-singlet. Moreover, it is even under the exchange of
the sublattices, or of the Dirac points.
In terms of Nambu’s (particle-hole doubled) spinor ba-

sis, Ψ† = (c†~k↑
, c†~k↓

, c
−~k↓,−c

−~k,↑), the Lagrangian for the

gapless surface states of TIs also adopts the relativistic
form L0

f = iΨ̄(x)γµ∂µΨ(x), with the γ-matrices defined
as γ0 = σ3 ⊗ σ3, γ1 = −σ0 ⊗ σ1, γ2 = σ0 ⊗ σ3, γ3 =
σ2 ⊗ σ3, γ5 = σ1 ⊗ σ3. The s-wave superconducting OP
and the number operator for the surface states of TIs as-
sume identical form as for graphene, only without the σ0

in the first block. Due to Nambu’s particle-hole doubling,
the true number of fermionic degrees of freedom on the
surface of a TI is a quarter of the one in graphene, how-
ever. In this special case the critical theory acquires the
supersymmetry, and the one-loop ǫ-expansion is known
to be exact.24

Next we wish to study the quantum phase transition
from the semimetallic into the s-wave superconducting
phase. Since we want to formulate an ǫ(= 4 − d)-
expansion near four space-time dimensions, we need
first to define a spinor basis in which the theory can
be formally extended from the physical three, to four
space-time dimensions. We therefore rotate the spinor
Ψ → UΨ, where, in graphene, U = exp

[

iπ4σ0 ⊗ γ3
]

. Af-
ter this unitary transformation, the s-wave OP reads

Φ(x) = 〈Ψ†(x)(σ0⊗γ0 cosϕ+σ0⊗iγ0γ5 sinϕ)Ψ(x)〉, (2)

while leaving the relativistically invariant free Dirac La-
grangian, L0

f , unchanged. The number operator is then

N̂ = σ0 ⊗ γ5. Similarly, in TI, the analogous trans-
formation is performed by choosing the simpler U =
exp

[

iπ4 γ3
]

.
For generality, we consider the U(1) gauge theory for

Nf flavors of four-component Dirac fermions coupled to
the bosonic OP with Nb complex components via the
Yukawa coupling in the presence of a fluctuating gauge
field, with the complete Lagrangian L = Lf +Lb+Lbf +
LEM . The coupling of the fermions to the U(1) gauge
field reads

Lf = Ψ̄(x)γµ(∂µ − ieγ5Aµ)Ψ(x). (3)

The matrix γ5 appearing in the minimal coupling is then
the number operator, and e is the U(1) charge. The cou-
pling of the OP to the massless fermions has the Yukawa
form

Lbf = g[(ReΦ)Ψ̄Ψ + (ImΦ)Ψ̄iγ5Ψ]. (4)

On the other hand, the dynamics of the OP coupled to
the U(1) gauge field can be described by the standard
Ginzburg-Landau Lagrangian

Lb = |(∂µ + 2ieAµ)Φ|2 +m2|Φ|2 + λ

2
|Φ|4, (5)

where m2 is the tuning parameter of the transition. The
U(1) gauge field is described by the usual Maxwell La-
grangian

LEM =
1

4
FµνFµν , (6)

with Fµν = ∂µAν − ∂νAµ. We will use the transverse
(Landau) gauge ∂µAµ = 0, in which the general gauge-
invariant OP becomes local.22 The above theory is con-
structed to be invariant under the following local U(1)
gauge transformation Ψ → eieθγ5Ψ, Φ → e−2ieθΦ, Aµ →
Aµ + ∂µθ.
Without the gauge field (e = 0), the above field theory

for Nf = 2 and Nb = 1 also governs the critical behavior
of graphene close to the transition to spin-singlet Kekule
insulator. However, in the latter case, the Dirac spinor

needs to be redefined as Ψ = [Ψ+,Ψ−]
⊤
, where Ψσ =

[uσ(K+ q), vσ(K+ q), uσ(−K+ q), vσ(−K+ q)], with
σ = ± as the spin projections, and with the frequency
label suppressed.25 We have set the Fermi velocity and
the velocity of the bosonic excitations to be equal, since a
weak anisotropy in the velocities is irrelevant.20 The local
(e 6= 0) U(1) gauge theory describes the ultimate critical
behavior at the superconducting transition, at which all

the velocities in the theory are equal to the velocity of
light. In graphene and on a surface of TIs, however, such
a fixed point is experimentally inaccessible, since the bare
Fermi velocities are ∼ 106m/s.
Next, we proceed with the analysis of the U(1)-

symmetric Yukawa field theory. The couplings λ, e and



g are all dimensionless in (3+1) space-time dimensions,
suggesting the ǫ-expansion about d + 1 = 4 as a tool
of choice for a study of the quantum critical behavior.
Define then the action Sren =

∫

dτ
∫

ddxLren, where the
renormalized Lagrangian is

Lren = ZΨLf + ZΦ|(∂µ + 2ieAµ)Φ|2 + Zmm2|Φ|2

+ Zλ
λ

2
|Φ|4 + ZgLbf + ZALEM . (7)

The computation of the self-energy diagrams for the
fermions, the order-parameter, and the gauge field using
minimal-subtraction scheme then yields the renormaliza-
tion constants to the one-loop order

ZΨ = 1− 1

2
g2

1

ǫ
, ZΦ = 1− g2Nf

1

ǫ
+ 12e2

1

ǫ
, (8)

ZA = 1− e2
4

3
(Nf +Nb)

1

ǫ
, (9)

where ǫ = 4 − d and the dimensionless couplings Q =
{e2, g2, λ} are rescaled as QSd/(2π)

d → Q, with Sd =
2πd/2/Γ(d/2). (See Supplementary Material). The com-
putation of the vertex diagrams to the same order gives
the following renormalization conditions for the coupling
constants:

ZΨZ
1/2
Φ g0µ

−ǫ/2 + 3e2g
1

ǫ
= g, (10)

Z2
Φλ0µ

−ǫ − λ2(Nb + 4)
1

ǫ
− 96e4

1

ǫ
+ 2g4Nf

1

ǫ
= λ. (11)

The renormalization of the tuning parameter (m2) can
be extracted from the self-energy diagrams of the OP,
leading to

ZΦm
2
0µ

−ǫ − λ(Nb + 1)
1

ǫ
m2 = m2. (12)

Here, the couplings with subscript “0” are the bare cou-
plings, and the ones without the subscript are the renor-
malized couplings, and µ is the renormalization scale.
Dimensional regularization explicitly preserves gauge in-
variance of the theory implying µ−ǫZAe

2
0 = e2, to any

order.22,26 In conjunction with this identity and Eq. (9),
one can write the (ultraviolet) beta-function of the charge
as

βe2 ≡ de2

d lnµ
= −ǫe2 +

4

3
(Nf +Nb)e

4. (13)

The renormalization group flow of the remaining two cou-
plings can be obtained from Eqs. (10) and (11)

βg2 = −ǫg2 + (Nf + 1)g4 − 18e2g2, (14)

βλ = −ǫλ+ 2Nfg
2(λ− g2)− 24e2(λ− 4e2)

+ (Nb + 4)λ2. (15)

The above beta-functions, besides the trivial, yield
the following neutral (e = 0) fixed points: (i) the
Wilson-Fisher fixed point at g2∗ = 0 and λ∗ =
ǫ/(Nb + 4); (ii) the neutral Gross-Neveu fixed point:
(g2∗, λ∗) = (ǫ/X, (a+ b)ǫ) , where a = (1−Nf)/2XW, b =
√

(Nf − 1)2 + 8NfW/2XW , with X = Nf + 1,W =
Nb + 4. Ignoring the gauge coupling e for the mo-
ment, this fixed point is critical, and it controls the
transition towards the s-wave superconducting state, or
into the spin-singlet Kekule insulator. Weak charge e2

is, however, a relevant coupling at this critical point.
(iii) the bicritical point in the e2 = 0-plane:

(

g2∗, λ
)

=
(ǫ/X, (a− b)ǫ), located in the unphysical region (λ < 0)
of the Φ4-interaction. Therefore, our one-loop results
suggest that the semimetal-superconducting transition
is of the second order in the absence of the fluctuating
gauge field. The result is qualitatively similar to the in-
sulating Ising and Heisenberg universality classes.20 The
correlation-length exponent (ν) can readily determined
from Eqs. (8) and (12), yielding

ν =
1

2
+

1

4
(Nb + 1)λ∗ − 3e2∗ +

Nf

4
g2∗ (16)

with e2∗ = 0 and (g2∗, λ∗) corresponding to the neutral
Gross-Neveu critical point. Since the Lorentz-symmetry
breaking perturbations are irrelevant near the critical
point20 the dynamical critical exponent is z = 1, and
the Fermi velocity (vF ) is non-critical. Near the neutral
critical point both the order-parameter and the fermion
fields acquire a non-trivial anomalous dimensions, which
read, respectively,

ηb =
(

g2∗ Nf − 12e2∗
)

ǫ+O(ǫ2), ηf =
g2∗
2
ǫ+O(ǫ2). (17)

The residue of the quasiparticle pole of the fermions
Z ∼ mzνηf ∼ mǫ/4X , and they cease to exist as sharp
excitations at the critical point. Moreover, as the system
approaches the critical point from the superconducting
side both the mass of the superconducting OP and the
fermion mass vanish with the universal ratio

m2
b

m2
f

=
2λ∗

g2∗
. (18)

In order to extract the critical exponents and amplitudes
for graphene one needs to substitute Nf = 2, Nb = 1,
while for surface states of TIs one should use Nf = 1/2,
Nb = 1. In the latter case, we obtain ηb = ηf = ǫ/3 and
ν = 1/2 + ǫ/4 in agreement with Ref. 24.

In the fully gauged theory with e 6= 0, the
charged Wilson-Fisher fixed points are at

(

e2∗, g
2
∗, λ

±
∗

)

=
(

3
4Y , 0,

18+Y±
√

(18+Y )2−216W

2YW

)

ǫ, where Y = Nf + Nb.

On the other hand, previously discussed neutral Gross-
Neveu fixed point is unstable in the charge direction, and



a pair of charged fixed points is located at

(

e2∗, g
2
∗, λ

±
∗

)

=





3

4Y
,
27 + 2Y

2XY
,

[

∆1 ±
√

∆2
1 +∆2

]

2X2Y 2W



 ǫ,

(19)
where ∆1 = XY [XY + 18X −Nf (27 + 2Y )] ,∆2 =
−4WX2Y 2

[

54X2 − 2Nf(13.5 + Y )2
]

. However, only
the fixed point with λ+

∗ > 0 is stable in the critical plane
(m2 = 0). This fixed-point is therefore critical, and con-
trols the behavior in the vicinity of the quantum phase
transition in the full Lorentz-invariant U(1) gauge the-
ory. Furthermore, for any physical number of flavors this
critical point describes the second-order phase transition,
since the quantity ∆2

1+∆2 is positive for any Nf ≥ 0.142.
However, since all the velocities in this theory are set to
be equal to the velocity of light, this critical point may
be reached only in the deep infrared regime.27 The other
fixed-point at (e2∗, g∗, λ

−
∗ ) lies in the unphysical region

(λ < 0) of the Φ4-interaction for any Nf . On the other
hand, when Nf = 0, we obtain the standard one-loop
result for the critical number of the complex components
of the OP above which the superconductor transition is
of the second order, N crit

b ≃ 182.952, and the transition
is controlled by the charged Wilson-Fisher fixed point,
with g2∗ = 0.22,26 It is worth observing that without the
Yukawa interaction, N crit

b reduces to 3.47 if one takes
only into account the coupling of fluctuating gauge fields
with the massless Dirac fermions.28 The Yukawa coupling
therefore appears to be crucial for the stabilization of the
criticality in the theory, and for the suppression of the
possible discontinuous transition, which occurs in related
theories.22

The superconducting coherence length (ξ) diverges as
ξ ∼ m−ν , and the correlation length exponent (ν) can
be computed readily from Eq. (16). The boson and
the fermion fields in the vicinity of this charged critical
point acquire anomalous dimensions, which can be found
from Eq. (17). One can also compute the flow for the
Ginzburg-Landau parameter κ2 = λ/(2e2) characterizing
the transition, reads

βκ2 = e2
[

2Wκ4 − 2

{

2

3
Y + 12

}

κ2 + 48

+ 2Nf

(

g2

e2

){

κ2 − 1

2

(

g2

e2

)}]

. (20)

At the charged Gross-Neveu critical point, this flow equa-
tion has fixed points at κ2

− < 0 and κ2
+ > 0, for ar-

bitrary Nb and Nf ≥ 0.142. The residue of the quasi-
particle pole vanishes at the charged critical point as

Z ∼ m
27+2Y
8XY

ǫ+O(ǫ2).
Topological crystalline insulators, such as recently ob-

served SnTe in Ref. 29, and Sn-doped PbTe and PbSe in
Refs. 30, host four Dirac cones on the surface amounting
to Nf = 4 × 1/2 = 2 species of four-component Dirac
fermions. The possibility of the superconducting tran-
sition on the surface of topological crystalline insulators

makes our theory relevant for this problem as well. The
critical behavior in this case is captured within our the-
ory upon substituting Nf = 2 and Nb = 1.
The optical conductivity in the entire semi-metallic

phase remains constant and universal, while it becomes
infinite (zero) in the superconducting (Kekule) phase.
Right at the quantum critical point it is also expected
to be universal, but different from the one in the semi-
metallic phase.5 The universal conductivity at the Gross-
Neveu (neutral or charged) critical point is also expected
to be different from one found in a pure bosonic theory.31

The computation of its value is an interesting problem
left for future research.
To summarize, by employing a U(1)-symmetric

Gross-Neveu-Yukawa theory, we here studied the zero-
temperature semimetal-superconductor (Kekule insula-
tor) transition in graphene and surface of TIs, and
showed that it is continuous for any number of Dirac fla-
vors. The full U(1) gauge theory exhibits a charged crit-
ical point also for an arbitrary number of Dirac flavors,
and may be relevant for the semimetal-superconducting
transition in the deep infrared regime.
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