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We study a spin model on honeycomb lattice with two types of Heisenberg exchange couplings,
J and J̃ , where J is for the conventional spin and J̃ for rotated spin. When J = 0, the system
is either in a stripy antiferromagnetic order(J̃ < 0, ferromagnetic for rotated spin) or a zig-zag

antiferromagnetic order (J̃ > 0, antiferromagnetic for rotated spin). The competition between two
ferromagnetic orders or two antiferromagnetic orders induces Kitaev’s spin liquid phase characterized
by the exactly solvable Kitaev model (J = J̃). Our model can be applied to layered Mott insulators
A2IrO3 (A=Li, Na). For a monolayer of Li2IrO3, we show that it is possible to tune the controlling
parameter into the Kitaev spin liquid regime by a link-dependent Rashba spin-orbital coupling.

PACS numbers: 71.20.Be, 75.25.Dk, 75.30.Et, 75.10.Jm

Quantum spin liquid (SL) is a long-expected new state
of matter. Kitaev model on honeycomb lattice gives
an exactly solvable theoretical example for the SL. This
model has attracted a lot of interests because of its ex-
act solvability, Majorana fermion excitation, non-trivial
topological orders, and amazing abelian and non-ablelian
anyons [1, 2].

A possible way to realize Kitaev model on optical lat-
tice has been proposed [3]. Recently, studies for the
Kitaev-Heisenberg (KH) model showed that this peculiar
quantum SL is possible to be realized in iridates A2IrO3

(A=Na, Li) because of a strong intrinsic spin-orbital (SO)
coupling of the 5d electron of iridium ions[4, 5] . A phase
transition from a stripy antiferromagnetic(AFM) order
to the Kitaev SL phase was predicted. Experiments for
the iridates, however, found a zig-zag AFM order [6–9].
These progresses drive a number of further researches
[10–18].

Either the stripy or zig-zag order implies that the in-
trinsic SO coupling is too strong for the system to be in
the Kitaev SL phase. In order to reach the Kitaev SL
phase, it was suggested to reduce the SO coupling with
a c-axial pressure for the iridates[7, 19].

In this Letter, we trace out a new perspective to tune
the SO coupling. We introduce the J-J̃ model on hon-
eycomb lattice, where J is the conventional Heisenberg
exchange and another is that for the rotated spin (See
Fig. 1(a)). This model can be mapped to the HK mode
with arbitrary couplings by a reparameterization. How-
ever, the physical origin of the various phases of the
model can be seen more clearly in the J-J̃ model [20]:
The stripy antiferromagnetic (AFM) phase in fact is the
ferromagnetic(FM) phase of the rotated spin ( J̃ < 0
and J = 0) while the zigzag AFM phase is the AFM of
the rotated spin (J̃ > 0 and J = 0). Moreover, when

J = J̃ , the J-J̃ model reduces to the exactly solvable
Kitaev model, which reveals an alternative origin of the
Kitaev SL: The competition between the conventional
AFM (FM) Heisenberg exchange J and the rotated spin
AFM (FM) Heisenberg exchange J̃ gives birth of the Ki-
taev SL phase. Microscopically, the rotated spin Heisen-
berg exchange comes from a spin-dependent hopping or
a link-dependent Rashba spin-orbital (LDR-SO) coupling
in the strongly coupled Hubbard model. For the iridates,
we consider the latter. The correction from a relevant
weak LDR-SO coupling may tune Li2IrO3 into the FM
Kitaev SL phase.
The J-J̃ model and phase diagram. The J-J̃ model is
given by

H = J
∑

〈ij〉
Si · Sj + J̃

∑

〈ij〉
S̃i · S̃j (1)

where Si is the spin- 1
2
operator at site i; 〈ij〉 denotes

the summation over all the nearest neighbor sties on a
honeycomb lattice. The rotated spin S̃i is defined as fol-
lows: Divide the honeycomb lattice into four sublattices,
keep S̃i = Si in one sublattice (black) and change in the
other three: S̃i = (Sx

i ,−Sy
i ,−Sz

i ) for the green sublat-
tice, (−Sx

i , S
y
i ,−Sz

i ) for the grey one and (−Sx
i ,−Sy

i , S
z
i )

for the red one [4]. ( See Fig. 1(a).)
We then have four magnetic ordered states: The con-

ventional FM and AFM orders for J̃ = 0; and the FM
and AFM orders of S̃ for J = 0, which are the stripy
AFM order and the zig-zag AFM order of the spin S (See
Fig.1), respectively. The phase structure of the model is
governed by the competition between these ordered mag-
netic states. There are phase transitions from the FM
(AFM) phase to rotated spin’s AFM (FM). The exactly
solvable Kitaev model appears at J = J̃ . The phase
diagram is depicted in Fig. 2(a) [20].
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(a) Stripy AFM (b) Zig-zag AFM
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FIG. 1: (Color online) (a) The stripy AFM order. Four dif-
ferent colored circles label four sublattices on each of which
a rotated spin is defined (See the text) (b) The zig-zag AFM
order.

Defining two new exchange coupling constants JH =
J − J̃ , JK = −2J̃ , the Hamiltonian (1) reads

H = JH
∑

〈ij〉
Si · Sj − JK

∑

a;〈ij〉a

Sa
i S

a
j (2)

where 〈ij〉a runs over all the a-links if we distinguish all
links of the lattice to be three types of links a = x, y, z
(See Fig. 1(b).). This is a KH model with arbitrary real
number couplings. The phase boundary below dashed
lines in Fig.2(a) now can be read out from the KH model
with JH > 0 and JK > 0. The phase boundary in the
fourth quarter is given by the line β = J̃/J = −2 accord-
ing to the result in Ref.[4]. The phase boundary in the
second quarter is then given by exchanging J and J̃ , i.e.,
the line β−1 = J/J̃ = −2. The Kitaev SL phase in the
third quarter is in between β = 3/4 and 4/3 [4].
The range of the AFM Kitaev SL phase in the first

quarter needs to be determined. A rough estimate is to
compare the ground state energies in both of the Neel
order and the Kitaev SL. The nearest neighbor spin-spin
correlation in the Neel order is 〈Si ·Sj〉 ≈ −0.37 [4] which
gives the ground state energy per site for the Neel order
eN/J ≈ (1 − β/3)〈Si · Sj〉. The upper boundary of the
ground state energy per site for the Kitaev SL is given
by eK/J <∼ (1 + β)〈Sa

i S
a
j 〉 for 〈Sa

i S
a
j 〉 = −0.13 [22]. The

critical point can be estimated by comparing the energies
per site of the two states: eN = eK , which gives the
critical value βc

<∼ 0.95.
In the positive JK and JH KH model, the critical

points of the phase transition were determined by cal-
culating the ground state expectation values of a group
of physical observables, e.g., the square of total spin, the
nearest neighbor spin correlations, and the second deriva-
tive of the ground state energy for the parameter β in ex-
act diagonalization method [4]. We also calculated these
quantities by exact diagonalization calculations. Unfor-
tunately, up to 24 lattice sites, although we can see that
all these quantities are smooth for β < 0.9 and dramati-
cally change in β ∈[0.9,1.0], we cannot determine a sharp
critical value of β according to the data for these quan-
tities.
Instead of examining the ground state, we focus on

the first excited state. In mean field approximation,

FIG. 2: The phase diagrams : (a) in the J-J̃ plane; (b) in the
JK -JH plane. The material parameters (the cross symbols) of
Li2IrO3 is located in the stripy phase and can be tuned into
the Kitaev SL phase by the LDR-SO coupling. This phase
diagram was confirmed recently in [18].

.

the low-lying excitation in the Neel order is a gapless
bosonic spin wave. The dispersion of the spin wave in
terms of the Hostein-Primakoff transformation is given

by J
√

[(3− β + 2β2)q2x + 3(1− β)q2y ]/8 for |q| → 0.

However, these spin wave excitations are in fact gapped
due to the lacking of the SU(2) symmetry away from
either J = 0 or J̃ = 0 [4]. On the other hand, the fer-
monic gapless excitation in the Kitaev SL phase can not
be gapped due to protection of the time reversal sym-
metry and is a linear combination of the A and B sub-
lattice Majorana fermion modes. The dispersion of this
Majorana fermion excitation obtained by a mean field
theory is of the form

√
3(2−β)J |q| near the Dirac points

K± = (± 4π
3
, 0).

For a finite system, the difference between these first
excited states can be revealed by considering the varia-
tion of their excitation energies as β. The critical points
can be determined by looking for the level crossing of the
first excitation state energy levels of two different phases
in a finite size (See Fig. 3). Up to 24-sites, the data from
exact diagonalization gives βc ≈ 0.93 for the phase tran-
sition from the Neel order to the Kitaev SL phase which
is close to our estimate βc

<∼ 0.95. This is also consistent
with recent result in [18].

In Fig. 2(b), we redraw the phase diagram in JK-JH
plane. The FM Kitaev SL phase is in |γ| = |JH/JK | <
0.1 and the AFM Kitaev SL phase is in |γ| < 0.038;
The stripy AFM in 0.01 < γ < 0.75; and the zig-zag in
0.038 < γ < 0.75.

Possible microscopic origins of the J-J̃ model. We dis-
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FIG. 3: (Color online) The energy levels of the first excited
states (subtracting the ground state energy) for lattice size
N = 8, 16 and 24. The level crossing points (red symbles)

determine the critical point. The solid lines labelled as J̃ ∼ 0
connect the calculation data starting from J̃ = 0 (the Neel

order). The dashed lines (J̃ ∼ 1) connect the data starting

from J̃ = J (the Kitaev model).

cuss possible microscopic origins of the J-J̃ exchange cou-
plings. We restrict our study to a single band Hubbard
model. For electron ciσ on the lattice, spin-dependent
hopping −tsc

†
iσσ

a
σσ′cjσ′ for a given a- link may cause a

rotated spin AFM exchange in large U limit. (Here σa is
Pauli matrices. For a brief discussion, see below.) How-
ever, the spin-dependent hopping is not easy to be ma-
nipulated in condensed matter systems.
Relevant to the iridates, we consider LDR-SO cou-

plings. Fig. 4(a) shows an AIr2O6 layer of A2IrO3. The
effective spin- 1

2
(Jeff = 1

2
) 5d-electron gas on the hon-

eycomb lattice of Ir4+ behaves like a Mott insulator[21].
We consider a monolayer of the compound (Fig. 4(b))
which is on the top of a substrate whose lattice struc-
ture matches the triangular lattice of the oxygens (black
p-orbitals) beneath the honeycomb lattice. Due to the
influence of the substrate, the interaction between the
effective spin- 1

2
electrons and the p-orbital states of the

oxygens in the black triangular lattice is different from
that with the p-electrons of the oxygens in the blue tri-
angular lattice on the top of the honeycomb lattice. This
asymmetry induces a field whose local direction is nab

and then a LDR-SO interaction, e.g., iλRdz×~σ ·nxy and
its xyz cyclic permutations, where the dipole moment dz

is parallel to the electron hopping direction, and λR is
the Rashba SO coupling strength. We identify the links
labelled by dij = da with the a-links. In second quanti-

zation, this reads iλRνijc
†
iσσ

a
σσ′cjσ′ for link a (i, j label

the lattice sites connected this link) where νij = −νji = 1
since dij = −dji = da.
The LDR-SO Hubbard model and the large U limit. The
Hamiltonian of the LDR-SO Hubbard model on honey-
comb lattice reads

HLDR−SO = HT +HR +HU = −t
∑

〈ij〉
c†iσcjσ (3)

FIG. 4: (Color online) Top: AIr2O6 layer in A2IrO3 (dab
states for Ir4+ ). The superexchange orbital configuration of
Ir4+ (dab) and O2− (pa) are depicted at the position of these
ions. The white-grey triangular lattice of oxygens is on the
top of the honeycomb lattice of indiums ; the red-pink one is
beneath the honeycomb. The vectors nxy=[110]; dz = [−110]
etc. Bottom: Monolayer of A3 (AIr2O6) on substrate.

+ iλR

∑

a;〈ij〉a

νijc
†
iσσ

a
σσ′cjσ′ + U

∑

i

ni↑ni↓

where the Jeff=1/2 ’spin’ is labelled by σ =↑, ↓; HT is the
direct electron hopping between iridium sites; HR is the
external LDR-SO coupling and HU is on-site Hubbard
repulsion.
Take HT and HR as the perturbations in the large U

limit. To second order for a given link a with dij = νijda,
the effective Hamiltonian for the half filling case is given
by,

JtSi · Sj + JR[S
a
i S

a
j − Sb

iS
b
j − Sc

i S
c
j ] + 2νijJtR(S

b
iS

c
j − Sc

iS
b
j )

where Jt = 4t2

U
, JR =

4λ2

R

U
and JtR = 4tλR

U
; a 6= b 6= c

(e.g., a = x, b = y and c = z etc.) and S = 1
2
c†σ~σσσ′cσ′ .

Compactly, the LDR-SO Hubbard model reduces to

Htλ = Jt
∑

〈ij〉
Si · Sj + JR

∑

〈ij〉
S̃i · S̃j

+ 2JtR
∑

a,〈ij〉a

(nbc × dij) · Si × Sj , (4)

where the last term is a link-dependent Dzyaloshiskii-
Moriya coupling.
Tuning into Kitaev SL phase in the iridates. The zig-
zag AFM order was found in experiments for the iridates
[6–9]. This zig-zag order phase in the phase diagram
appears in the third quarter of Fig. 2(b), which might
originate from the inter-orbital t2g-eg hopping [18]. An-
other origin of the zig-zag order is from the contribution
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of J2 and J3 Heisenberg couplings to the positive JK and
JH KH model by considering the intrinsic SO coupling
[10]. As discussed before, for a monolayer of the iridates,
the LDR-SO coupling needs to be added and then the
two-dimensional strong coupling Hamiltonian reads

HIr = JH
∑

〈ij〉
Si · Sj +HKDM + [J2] + [J3], (5)

HKDM = −JK
∑

a;〈ij〉a

[Sa
i S

a
j + νijγtR(S

b
i S

c
j − Sc

iS
b
j )] (6)

where JH = Jt − JR, JK = Jin − 2JR and γtR = 2JtR

JK

.
[J2] and [J3] denote the second and third nearest neigh-
bor Heisenberg exchange terms [10] as they are not neg-
ligible in A2IrO3 [6–9]. HKDM is no longer exactly
solvable. With Majorana fermion’s representation [1],
i.e., (bx)2 = (by)2 = (bz)2 = c2 = 1 as well as anti-
commutation between different fermions, we have

HKDM = iJK
∑

a;〈ij〉a

(ibai b
a
j + νijγtR(ib

b
ib

c
j − ibcib

b
j))cicj .(7)

A mean field theory with parameters 〈(ibai baj +

iνijγtR(b
b
ib

c
j−bcib

b
j))〉 and 〈cicj〉 decouples c-fermions and

b-fermions. While the c-fermions give Kitaev model, the
b-fermions are gapped if γtR < 1. Therefore, HKDM

with γtR < 1 can adiabatically drive to Kitaev model
(γtR = 0). In other words, when HKDM dominates, the
system is in the Kitaev SL phase. If γtR ≥ 1, b-fermions
become gapless, e.g., for γtR = 1, b-fermions are gapless
at Dirac points (± 4π

3
, 0), (0,± 2π√

3
), (±π,± π√

3
). This will

not be relevant as we will see.
We parameterize the Hamiltonian (5) by JH = (1−α)A

and JK = 2αA where A = (JK + 2JH)/2 [4]. Define
αir = Jin/(Jin + 2Jt) which is a material parameter of
the iridates . Comparing with the material parameter
αir, the model controlling parameter α is enhanced, i.e.,

α = αir

1− βRin

1− 2αirβRin

(8)

where βRin = 2JR/Jin < 1. There is a divergence at
2αirβRin = 1 if αir > 0.5. Thus, α can be tuned to
exceed any finite critical value.

J2

JH

J3

JH

αc (JH

JK

)c (βRin)c (λR)c (JR)c γtR

0 0 0.8 0.125 0.38 51.45 3.53 0.57

0.6 0.6 0.83 0.102 0.42 54.08 3.90 0.62

0 0 0.93 0.038 0.50 - 0.93Jt -

Table I: The critical value αc for J2 = J3 = 0.6 is from Ref.[7].

The unit of (λR)c and (JR)c is meV.

For Jt and Jin > 0, the typical values of Jt ∼ 5meV,
U ∼ 3eV, and αir

>∼ 0.65 in the bulk Li2IrO3 [7]. Assum-
ing that the bulk parameters is still valid for the mono-
layer iridate, α may be tuned into the Kiatev phase (The

cross symbols in Fig. 2). In Table I (first two lines),
we list the critical values αc, the corresponding values of
JH/JK , βRin, λR, JR and γtR to αc for Li2IrO3 with two
sets of different J2 and J3. ( Since the b-fermions are
gapped, the correction to αc from them is negligible. )

The critical LDR-SO coupling strength is of the order
(λR)c ∼ 50meV which is about a factor 1/10 weaker than
the intrinsic SO coupling (<∼ 500meV). γtR < 1 insures
the SL phase is the Kitaev SL.

For Jt and Jin < 0, i.e., the t2g-eg inter-orbital cou-
pling is taken into account [18], it is also possible to tune
into the Kitaev SL phase as shown in last line of Table I
if one takes Eq. (6) as the effective model and αir = 0.65.
However, the microscopic origin of JR is not studied in
this case.

For Na2IrO3, due to a small αir
<∼ 0.25 [7], α can only

be tuned to a smaller value 0 < α <∼ 0.25 by a weak JR.

In conclusion, we studied the phase diagram of the
J-J̃ model. We showed that the Kitaev SL phase can
be a result of competition between two Landau-type or-
dered states. We studied the microscopic origin of this
J-J̃ model within a single band Hubbard model. We
showed that this model can be applied to the iridates by
introducing the LDR-SO coupling. We suggest to put
a monolayer Li2IrO3 on top of a substrate and predict
that the Kitaev phase is reachable by tuning the LRD-
SO coupling.
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