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We introduce a universally applicable method, based on the bond-algebraic theory of dualities,
to search for generalized order parameters in disparate systems including non-Landau systems with
topological order. A key notion that we advance is that of holographic symmetry. It reflects situations
wherein global symmetries become, under a duality mapping, symmetries that act solely on the
system’s boundary. Holographic symmetries are naturally related to edge modes and localization.
The utility of our approach is illustrated by systematically deriving generalized order parameters
for pure and matter-coupled Abelian gauge theories, and for some models of topological matter.
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Introduction.— Landau’s concept of an order parame-
ter (OP) and spontaneous symmetry breaking are central
in physics [1]. In systems with long-range Landau orders,
two-point correlation functions of an OP field O(r), in
their large distance limit, tend to a finite (i.e., non-zero)
value, lim|r−r′|→∞ limNd→∞〈O(r)O†(r′)〉 6= 0, where N
is the linear size of the d-dimensional system, and O(r)
is local in the (spatial) variable r. It is in Landau’s spirit
to use the OP as a macroscopic variable characterizing
the ordered phase and as an indicator of a possible phase
transition (classical or quantum) to a disordered state
where the OP becomes zero.

There is much experience, including systematic meth-
ods [2, 3], for deriving Landau OPs and their effective
field theories [1]. Landau’s ideas of a (local) OP cannot
be extended to topological states of matter as, by defini-
tion [4, 5], these lie beyond Landau’s paradigm. However,
the notion of long-range order, or the design of a witness
correlator (i.e., a correlator discerning the existence of
various phases and related transitions), can be extended
to topological phases - phases that can only be mean-
ingfully examined by non-local probes [5]. Topological
orders appear in gauge theories, quantum Hall and spin
liquid states (when defined as deconfined phases of emer-
gent gauge theories [6]), including well-studied exactly
solvable models [7, 8].

In this paper we demonstrate that generalized non-
local OPs may diagnose topological phases of matter.
Most importantly, we outline a method based on bond-
algebraic duality mappings to search systematically for
generalized OPs. Dualities have the striking capability of
mapping Landau to topological orders and viceversa for
essentially two reasons. First, dualities in general rep-
resent non-local transformations of elementary degrees
of freedom [9] and may even perform transmutation of
statistics [10]. Second, bond-algebra techniques [10–12]
allow for the generation of dualities in finite and infinite
size systems. As we will show, in systems with a bound-
ary, dualities realize a form of holography [13] capable
of transforming a global symmetry that may drive spon-

taneous symmetry breakdown into a boundary symme-
try. We term these distinguished boundary symmetries
holographic. They are under suitable further conditions
connected to edge (boundary) states. To illustrate the
method, we derive explicitly a (non-local) witness corre-
lator and a generalized OP, suited to diagnose the transi-
tion between deconfined and confined phases of matter-
coupled gauge theories, undetectable by standard OPs or
Wilson loops. Other examples are reported in Ref [18].

The search for generalized order parameters.— A nat-
ural mathematical language to describe a physical system
is that for which the system’s degrees of freedom couple
locally. This simple observation is key to understanding
that topological order is a property of a state(s) relative
to the algebra of observables (defining the language) used
to probe the system experimentally [5]. In the language
in which the system is topologically ordered, it is also
robust (at zero temperature [16]) against perturbations
local in that language. Spectral properties are invari-
ant under unitary transformations of the local Hamilto-
nian H governing the system, H 7→ UHU †. If UHU †

corresponds to a sensible local theory then the unitary
transformation U establishes a duality [10]. A duality
may map a system that displays topological order to one
that does not [5]. Dualities for several of Kitaev’s models
[7, 8, 17] epitomize this idea [5, 12, 16].

Since dualities are unitary transformations (or, more
generally, partial isometries) [10] they cannot in general
change a phase diagram, only its interpretation. This
leads to a central point of our work: A duality mapping
a Landau to a topologically ordered system must map the
Landau OP to a generalized OP characterizing the topo-
logical order. Our method for searching for generalized
OPs, combines this observation with the advantages of
the bond-algebraic theory of dualities [10]. In this frame-
work, dualities in arbitrary size (finite or infinite) systems
can be systematically searched for as alternative local
representations of bond algebras of interactions associated
to a Hamiltonian H . Hence it is possible for any system
possessing topological order to systematically search for
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a duality mapping it to a Landau order. When a dual
Landau theory is found, the dual system’s OP can be
mapped back to obtain a generalized OP for the topo-
logically ordered system. In what follows and in Ref.
[18], we study various quantum gauge and topologically
ordered theories, and their duals, to illustrate our ideas.

Holographic symmetries and edge states: the gauged
Kitaev wire.— We next illustrate the concept of holo-
graphic symmetry and its relation to generalized OPs
and edge modes. Consider the Kitaev wire Hamiltonian
[17] with open boundary conditions, here generalized to
include a Z2 gauge field (termed the gauged Kitaev wire),

HGK = −ih

N
∑

m=1

bmam −

N−1
∑

m=1

[iJbmσz
(m;1)am+1 + κσx

(m;1)],

(1)
where am = a†m, bm = b†m denote two Majorana fermions
({am, an} = 2δmn = {bm, bn}, {am, bn} = 0) placed on
each site of an open chain with N sites. The Pauli matri-
ces σα

(m;1), α = x, z, placed on the links (m; 1) connecting
sites m and m + 1 represent a Z2 gauge field. For the
gauged Kitaev wire, fermionic parity is obtained as the
product of the local (gauge) Z2 symmetries ib1a1σ

x
(1;1),

σx
(N−1;1)ibNaN , and σx

(m;1)ibm+1am+1σ
x
(m+1;1) (m =

1, · · · , N − 2). Just like the standard Kitaev wire,
HGK[h = 0] has two free edge modes a1 and bN .

The gauged Kitaev wire holds two important dualities.
It is dual to the one-dimensional Z2 Higgs model [19]

HH = −h
N
∑

i=1

σx
i −

N−1
∑

i=1

[Jσz
i σ

z
(i;1)σ

z
i+1 + κσx

(i;1)], (2)

with Pauli matrices σα
i placed on sites i. Moreover, the

gauge-reducing [10] duality mapping Φd

ibmam
Φd−→ σz

mσz
m+1, m = 1, · · · , N, (3)

ibmσz
(m;1)am+1

Φd−→ σx
m+1, m = 1, · · · , N − 1,

σx
(m;1)

Φd−→ σz
m+1, m = 1, · · · , N − 1,

transforms HGK into a spin-1/2 system

HD
GK = −h

N
∑

m=1

σz
mσz

m+1 −

N
∑

m=2

[Jσx
m + κσz

m]. (4)

defined on (N + 1) sites. The fermionic parity P maps
to a holographic symmetry under this duality, since

P =
∏N

m=1 ibmam
Φd−→ σz

1σ
z
N+1, i.e., the product of

two (commuting) boundary symmetries. Holography is
a relational phenomenon (see [18]). A duality that un-
covers a holographic symmetry links a global (higher-
dimensional) symmetry of a system to a boundary (lower-
dimensional) symmetry of its dual. Boundary symme-
tries need not in general be duals of global symmetries.

What is the physical consequence of having an holo-
graphic symmetry? Consider the not uncommon situa-
tion in which the holographic symmetry is supplemented
by an additional (non-commuting) boundary symmetry
in some region of the phase diagram. By definition, holo-
graphic symmetries are boundary symmetries which are
dual to global symmetries. Thus, global symmetries link-
ing degenerate states (and properties in the broken sym-
metry phase) in the dual system have imprints in their
holographic counterparts. Then, the many-body level de-
generacy of the ground state may be ascribed to bound-
ary effects. If the couplings are now changed, the ground
state degeneracy may get removed, together with some
boundary symmetries. However, so long as the system re-
mains in a topological phase dual to the (broken symme-
try) ordered phase, the low energy state splitting will be
exponentially small in the system size, so that in the ther-
modynamic limit ground state degeneracy is restored.

The language providing the most local operator de-
scription of the ground-state manifold is the one realiz-
ing the edge modes, which are expected to be exponen-
tially localized to the boundary. Thus, as long as the
thermodynamic-limit degeneracy remains, a suitable lo-
cal probe will detect localization on the boundary for
those states. Conversely, non-commuting edge mode op-
erators in a gapped phase reflect the existence of low-
energy many-body states with energy splittings vanish-
ing exponentially in the system size. Many-body (zero-
energy) edge states are thus simply a natural consequence
of a degenerate ground state manifold in a gapped sys-
tem. They are witnesses of an ordered (degenerate) phase
described in a most local language. Note that boundary
operators that commute with the Hamiltonian at special
values of the coupling(s) are a necessary but not sufficient
condition to realize exact (zero-energy) edge modes.

The duality HH → HGK maps a global symmetry of
HH[κ, h = 0] to a boundary symmetry of HGK[κ, h = 0],
i.e., σx

1 · · ·σ
x
N−1σ

y
N → bN , and one boundary symmetry

to another, σz
1 → a1. If we now turn on h < J , keeping

κ = 0, the edge mode operators a1, bN , evolve respec-
tively into Γ1 =

∑N

m=1(−h/J)m−1am(
∏m−1

s=1 σz
(s;1)) and

Γ2 =
∑N

m=1(h/J)
N−mbm(

∏N−1
s=m σz

(s;1)). These modes
are exponentially localized as long as the system is in
the ordered gapped phase within a gauge sector [23].
The Majorana language affords a local boundary de-
scription of these (partly non-local in the Higgs lan-
guage) zero-energy modes. For h > J , and/or κ > 0,
the ground state is unique, even in the thermodynamic
limit, as we learn from the phase diagram of the one-
dimensional Higgs model [19]. Hence the zero-energy
modes disappear together with the ground-state degen-
eracy. For κ > 0, they disappear despite the fact that
fermionic parity remains an exact symmetry and can-
not be spontaneously broken [21]. Consider now HD

GK
of

Eq. (4). At h = 0, it has zero-energy edge mode oper-
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ators σz
1 , σ

x
1 , σ

z
N+1, σ

x
N+1. For h > 0, and κ = 0, two of

these remain unchanged, and the other two evolve into
Σ1 = σx

1 +
∑N−1

m=1(h/J)
mσy

1 (
∏m

s=2 σ
x
s )σ

y
m+1 and Σ2 =

σx
N+1 +

∑N

m=2(h/J)
mσy

m(
∏N

s=m+1 σ
x
s )σ

y
N+1. These be-

have just as their Majorana relatives, yet they are recog-
nized as non-local. The Majorana language distinguishes
itself as the most local one for zero modes.
To obtain a generalized OP for the gauged Ki-

taev wire, notice that HD
GK

[κ = 0] reduces to the
transverse-field Ising (TI) chain. Hence it exhibits
a second-order phase transition at J = h, κ = 0.
For HD

GK
[κ = 0], this transition is witnessed by the

Landau OP correlator lim|i−j|→∞〈TI|σz
i σ

z
j |TI〉. (From

now on |label〉 represents the ground state of Hlabel).
Our duality maps this correlator back to a generalized
OP for the gauged Kitaev wire, the string correlator
lim|i−j|→∞〈GK|ibiaiibi+1ai+1 · · · ibjaj |GK〉.
Generalized OPs in higher-dimensional theories— We

next show how to systematically derive generalized OPs
in higher space dimensions. Our main goal is to illus-
trate the methodology in the challenging case of the
Abelian (U(1)) matter-coupled gauge (Higgs) theory.
Previous works [14, 15] conjectured generalized OPs for
matter-coupled gauge theories and were numerically im-
plemented, for instance, in Ref. [6]. Unfortunately, a
systematic mathematical derivation was missing and this
is what our work is about. Our (non-local) witness cor-
relator for the Higgs model turns out to be the one con-
jectured in Ref. [14]. In Ref. [18], we study several other
examples (displaying also holographic symmetries), in-
cluding Ising and Zp gauge and Higgs theories, the Zp

extended toric code [20] as an interesting example of
topological order, and the XY model on the frustrated
Kagome lattice. Non-Abelian extensions of our ideas
based on Ref. [11] are currently under investigation.

j = 1

2

3

4

X(1,5;1)

e2

i = 1 2 3 4

e1

FIG. 1. The Z gauge theory exactly dual to the quantum XY
model must satisfy special boundary conditions and possesses
a boundary symmetry. The lattice corresponding to the XY
model is shown in thick lines, for N = 4.

To derive the generalized OP for the Abelian Higgs the-
ory, our starting point is the XY model defined in terms

of continuous U(1) degrees of freedom sr ≡ e−iθr , θr ∈
[0, 2π), placed at sites r = ie1 + je2 = (i, j) of a square
lattice. The model’s Hamiltonian reads

HXY = h

N
∑

i,j=1

L2
(i,j) (5)

+
J

2

[

N−1
∑

i=1

N
∑

j=1

S(i,j;1) +

N
∑

i=1

N−1
∑

j=1

S(i,j;2) + h.c.
]

,

with Lr ≡ −i∂/∂θr, and S(r;µ) ≡ srs
†
r+eµ

. The XY
model is dual to a Z (solid-on-solid like) gauge theory also
defined on a square lattice, but with degrees of freedom
X and R associated to links (r;µ = 1, 2). (In matter-
coupled gauge theories we will also have operators act-
ing on sites r.) These operators satisfy X |m〉 = m|m〉,
R|m〉 = |m−1〉, R†|m〉 = |m+1〉, with m ∈ Z, and com-
mute on different links (and/or sites). Then, the exact
dual of HXY for open boundary conditions reads

HZG = h

N
∑

i,j=1

b2(i,j) (6)

+
J

2

[

N
∑

i=2

N
∑

j=1

R(i,j;2) +

N
∑

i=1

N
∑

j=2

R(i,j;1) + h.c.
]

.

We will call system indices the link indices (i, j;µ = 1, 2)
labeling R operators that explicitly appear in HZG, and
extra indices the remaining link indices. In the bulk, the
plaquette operator b(i,j) reads

b(i,j) ≡ X(i,j;1) +X(i+1,j;2) −X(i,j+1;1) −X(i,j;2). (7)

On the lattice boundary, the plaquette operators are set
by two rules: (i) b(1,N) = X(1,N ;1)−X(2,N ;2)−X(1,N+1;1).
Thus, b(1,N) involves one degree of freedom X(1,N+1;1) la-
belled by an extra link index. (ii) The remaining bound-
ary plaquettes are determined by Eq. (7) provided opera-
tors labelled by extra link indices are omitted. With these
definitions in tow, the mapping of bonds

b(i,j)
Φd−→ L(i,j), 1 ≤ i, j ≤ N, (8)

R(i,j;1)
Φd−→ S†

(i,j−1;2), 1 ≤ i ≤ N, 2 ≤ j ≤ N,

R(i,j;2)
Φd−→ S(i−1,j;1), 2 ≤ i ≤ N, 1 ≤ j ≤ N,

implements the duality transformation HZG

Φd−→ HXY.
As the operators R(1,N+1;1), R

†
(1,N+1;1) do not appear in

HZG, the operatorX(1,N+1;1) constitutes a boundary sym-
metry of HZG. Similar to the duality between the one-
dimensional theories of Eqs. (1) and (4), this is a gauge-
reducing duality. The gauge symmetries of HZG, given by
A(i,j) = R(i,j;1)R(i,j;2)R

†
(i−1,j;1)R

†
(i,j−1;2), 2 ≤ i, j ≤ N ,

are removed by the mapping since A(i,j)
Φd−→ 1.

In the thermodynamic (N → ∞) limit, the strongly-
coupled (J ≫ h) phase of the XY model displays sponta-
neous symmetry breakdown of its global U(1) symmetry
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with generator LXY =
∑N

i,j=1 L(i,j), as evinced by a non-

vanishing 〈XY|srs
†
r′ |XY〉 in the limit |r − r

′| → ∞. By
virtue of being dual to the XY system, the gauge theory
displays a non-analyticity in its ground state energy as h
is varied and its symmetry is broken. However, the phase
transition in the gauge theory cannot be characterized
by a local OP. So, how can the duality connecting the
two models bridge the drastic gap separating the physi-
cal interpretation of their common phase diagram? The
answer lies in our notion of holography, since

−X(1,N+1;2) =

N
∑

i,j=1

b(i,j)
Φd−→ LXY. (9)

Thus, the global symmetry of the XYmodel is holograph-
ically dual to the (local) boundary symmetry X(1,N+1;2)

of its dual gauge theory and cannot be spontaneously bro-
ken in this dual theory [21]. This is how holographic sym-
metries explain the non-Landau nature of critical tran-
sitions in the Z gauge theory. There are no edge modes
nor localization associated with this holographic symme-
try as the ordered phase of the XY model is gapless.

We now derive a generalized OP for the Z gauge theory.
Let Γ be an oriented path from r to r

′ made of directed
links l ∈ Γ, and we adopt the convention that Sl ≡ S(r;µ)

if l points from r to r + eµ, or Sl ≡ S†
(r;µ) if l points

oppositely from r+eµ to r. Then srs
†
r′ =

∏

l∈Γ Sl. Also
let Γ∗ denote the set of links l

∗ such that Φd(Rl∗) = Sl

(Γ∗ need not be continuous, see Fig. 2). Then

〈ZG|
∏

l∗∈Γ∗

Rl∗ |ZG〉
Φd−→ 〈XY|srs

†
r′ |XY〉, (10)

and so the string correlator on the left-hand side is a gen-
eralized OP for the Z gauge theory, displaying long-range
order in the ordered phase. On a closed path,

∏

l∗∈Γ∗ Rl∗

reduces to a product of gauge symmetries.

Γ

Γ
∗

Φ

FIG. 2. Dual sets of links Γ∗ and Γ.

Finally, we couple the Z gauge theory to a Z matter
field (defined on sites r), HZH = HZG +HM, with

HM =
∑

r

[

λ(Rr +R†
r) + κ

∑

µ=1,2

l2(r;µ)

]

, (11)

and l(r;µ) ≡ Xr+eµ
−qX(r;µ)−Xr. The resulting matter-

coupled theory HZH is dual to the Abelian Higgs model

[19] with Hamiltonian

HAH=
∑

r

[

λ(Br +B†
r) + hL2

r (12)

+
∑

µ=1,2

(

κL2
(r;µ) +

J

2
(S

(q)
(r,µ) + S

(q)†
(r,µ))

)]

.

Here S
(q)
(r,µ) ≡ srs

q

(r;µ)s
†
r+eµ

includes a coupling with in-

teger charge q to the U(1) gauge field s(r;µ) ≡ e−iθ(r;µ) ,

sq(r;µ) ≡ e−iqθ(r;µ) , and Br ≡ s(r;1)s(r+e1;2)
s†(r+e2;1)

s†(r;2).

The correspondence between the two models, established
by the mapping of bonds

Rr
Φd−→ B†

r−e1−e2
, br

Φd−→ Lr

R(r;1)
Φd−→ S

(q)†
(r−e2;2)

, R(r;2)
Φd−→ S

(q)
(r−e1,1)

l(r;1)
Φd−→ L(r−e2;2), l(r;2)

Φd−→ −L(r−e1;1),

(13)

which holds only on physical gauge-invariant states. The
reason is that Φd preserves all commutation relations
while “trivializing” all gauge symmetries. More pre-
cisely, HZH’s gauge symmetries Gr = RrAr map to
Φd(Gr) = 1, while HAH’s gauge generators gr = L(r;1) +

L(r;2) −L(r−e1;1) −L(r−e2;2) − qLr map to Φ−1
d

(gr) = 0

as follows from Eqs. (13) (Φ−1
d

is the mapping obtained
from Eqs. (13) by reversing all the arrows).
If the Z matter field is weakly coupled to the Z gauge

field, the string correlator of Eq. (10) will still change an-
alytic behavior across transitions. Then from Eqs. (13)

〈ZH|
∏

l∗∈Γ∗

Rl∗ |ZH〉
Φd−→ 〈AH|srs

†
r′

∏

l∈Γ

sql |AH〉, (14)

we obtain a witness correlator for the Abelian Higgs
model that reduces to a Wilson loop on closed contours
(r = r

′) (here sql = sq(r;µ) if a link l points from r to

r+eµ and sql = sq†(r;µ) otherwise). This non-local correla-

tor is directly related to intuitively motivated generalized
OPs like 〈AH|srs

†
r′

∏

l∈Γ s
q
l |AH〉/〈AH|

∏

l∈ΓC
sql |AH〉 con-

jectured in earlier work [6, 14, 15] (ΓC denotes a closed
loop roughly twice as long as Γ and containing it).
Outlook.— As demonstrated, holographic symmetries

and generalized OPs appear in numerous systems once
boundary conditions are properly accounted for in the
framework of bond-algebraic dualities. By providing a
systematic methodology and many examples, our results
might bring the theory of generalized OPs and topolog-
ical orders to a new level of development closer to that
of Landau’s theory. More key problems need to be tack-
led. First, the sufficient conditions under which a given
topological order may be mapped to a Landau order and
viceversa should be understood. Second, the problem
of associating effective field theories to generalized OPs
should be studied systematically.
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