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Ordered Loop Current States in Bilayer Graphene

Lijun Zhu, Vivek Aji, Chandra M. Varma
Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA

While single-layer graphene shows extraordinary phenomena which are stable against electronic
interactions, the non-interacting state of bilayer graphene is unstable to infinitesimal interactions
leading to one of many possible exotic states. Indeed a gapped state is found in experiments but
none of the states proposed so far can provide full accounts of its properties. Here we show that
a Magneto-Electric (ME) state is consistent with the experimental observations. This state breaks
time-reversal symmetry through a pair of spontaneously generated current loops in each layer, and
has odd-parity with respect to the two layers. We also suggest further experiments to check whether
the ME state is indeed the gapped state found in experiments.

PACS numbers: 73.22.Pr, 72.80.Vp, 71.10.-w

I. INTRODUCTION

The non-interacting electronic state in bilayer
graphene with AB (Bernal) stacking, whose lattice struc-
ture is illustrated in Fig. 1, has a pair of degenerate
valence and conduction bands at two momentum points
K,K ′ = (0,±4π/3

√
3) in the Brillouin zone. The energy

varies quadratically with the momentum about these
points, in contrast with the linear dispersion in the single-
layer graphene1. With hopping energy t⊥ between the
stacking carbon atoms in different layers, the other two
pairs of conduction and valence bands have energy at
±t⊥ at the degeneracy points. Such a state with chem-
ical potential at the charge neutrality point is unstable
to infinitesimal electron-electron interactions. In weak-
coupling approximation, in which the interaction energies
are small compared to t⊥, one may look for instabilities
restricting the Hamiltonian to the set of lowest energy
conduction and valence bands. In such a reduced basis, a
wide variety of symmetry-breaking states have been pro-
posed as possible ground states 2–14 including nematic
state3–8, anomalous quantum Hall effect (AHE) state2,3,
and layered quantum antiferromanget (AFM)3–5,11–13.
However, the conductance experiments15–20, done with
high mobility samples and with both a top and a bottom
gate to ensure that the chemical potential is at the charge
neutrality point15,16, show an insulating state with char-
acteristics which are not met by the proposed states21.
The two most important experimental findings can be

summarized as follows:
(1) The state at charge neutrality shows a gap in two-
terminal conductance measurements with a conductance
G smaller than the limit of measurement . 10−2e2/h for
voltage V < Eg0, above which

G ∝ (V 2 − E2
g0)

−1/2, V & Eg0, (1)

with Eg0 ≈ 2meV , indicating an insulating state.
(2) In small magnetic fields, the gap increases monoton-
ically with a field, the conductance is consistent with a
gap

Eg(H) ≈
√

E2
g0 + ω2

c , ωc = eB/m∗c (2)

B1

A2

(b)
(a)

A1(B2) δv
~

δµ

FIG. 1: (Color online) (a) Schematic plot of the bilayer
graphene lattice (top view). Bonds in layers 1 and 2 are indi-
cated by solid and dashed lines, respectively. Here, A atoms
in layer 1 (A1) and B atoms in layer 2 (B2) are stacked on
top of each other. (b) is a unit cell in layer 1. Here δv and

δ̃v represent the bonds between the nearest (nn) and the next
nearest (nnn) neighbors, respectively.

with m∗ ≈ (1/20)m, m the free-electron mass, indicating
an orbital effect.
The AFM state has a gap above which the conductance

has the form of Eq. (1), but its gap is insensitive to the
external finite magnetic field in the mean-field approxi-
mation. A self-consistent calculation by interpolating the
B=0 insulating state to high-B quantum Hall ferromag-
net state could give a linear B dependence of the gap at
high magnetic fields11,12 (this has also been pointed out
in Ref.2). But the extension to low fields produces addi-
tional features which are not observed in experiments12.
The authors argue that this may relate to experimental
limitations. The AHE state has a gap in the bulk whose
variation with field is also of the form (2)2,23(see also
Fig. 6). In addition, it has a surface band with a quan-
tized Hall conductance of 4e2/h. This contributes to the
two probe conductance measurements and therefore is
not consistent with the observations.
In this paper, we propose a Magneto-Electric (ME)

state, with spontaneously generated current loops from
next nearest neighbor electron interaction (Vnnn), which
has properties consistent with the above experimental
observations. This state [see Figs. 3d-f] breaks the time-
reversal symmetry and has an odd parity with respect
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to two layers. As the product of time-reversal and inver-
sion symmetries is preserved, it does not have the topo-
logically protected surface bands as in AHE state. In
contrast, the loop current state which has an even par-
ity with respect to two layers [see Figs. 3a-c], is an AHE
state24,25. However, in weak coupling, the ME state is a
semi-metal with hole (electron) pockets atK (K ′) points.
We show that when the coupling is larger (Vnnn & t⊥/5),
the ME state becomes gapped and is energertically fa-
vored over the AHE state. This regime demands the
full four band basis and is beyond the weak-coupling ap-
proaches. In addition to showing that the dependence
of the gap with magnetic field is consistent with the ex-
perimental observations, we also illustrate new properties
of this state and propose experiments to differentiate it
from other theoretical proposals.
The rest of paper is organized as follows. We introduce

a theoretical model for bilayer graphene in Sec. II, which
includes a long-range (next nearest neighbor) Coulomb
interaction term in addition to the tight-binding Hamilto-
nian. We show by a mean-field analysis, in Sec. III, time-
reversal symmetry breaking states with ordered loop cur-
rent arise due to the long-range interaction. They can
furtherly be classified by the inversion symmetry with
respect to two layers as AHE and ME states. We fur-
ther study the energertics, topological properties, as well
the properties under an external magnetic field of these
states by numerical analysis, in Sec. IV. Some details of
the calculations as well as additional results are presented
in appendices.

II. MODEL

We consider the Hamiltonian for bilayer graphene,

H = H1 +H2 +H12 +Hint, (3)

Hl = t
∑

i,δµ

(

a†libli+δµ

)

+t1
∑

l,δ̃ν

(

a†liali+δ̃ν
+ b†libli+δ̃ν

)

+ h.c.,

H12 = t⊥
∑

i

a†1ib2i + h.c.,

Hint = Vnnn
∑

l,i,δ̃ν

nlinli+δ̃ν
,

where l is the layer index taking the values (1, 2), and i la-
bels the honeycomb lattice sites. Hl is the tight-binding
Hamiltonian on each layer, with nearest (t ≈3eV) and
next nearest (t1=0.1-0.3eV) neighbor hoppings. (δ1 to
δ3) are the three vectors connecting the nearest neigh-

bor sites on each layer and (δ̃1 to δ̃6) are the 6 vec-
tors connecting the next nearest neighbor sites (see Fig.
1b). H12 is the tight-binding part between two layer, for
which we only keep the hopping between stacked atoms
t⊥ ≈ 0.4eV . To focus on the time-reversal symmetry

breaking states through orbital loop currents, we only
consider the next nearest neighbor interaction Vnnn in

Hint. nli = a†liali or b
†
libli is the charge density operator.

We assume that other interactions such as onsite interac-
tion are not strong enough to generate an order and only
renormalize the parameters for the states we consider.
In particular, we show in Appendix A that the near-
est neighbor interaction Vnn

∑

l,i,δµ
nlinli+δµ need not be

considered even though Vnn ≈ 2Vnnn. We also assume
the degeneracy in spin degrees of freedom and therefore
the spin index is dropped.

III. MEAN FIELD ANALYSIS

The mean field analysis of the model starts with the
decomposition of the diagonal in spin part of the density
interactions between sites as was done to derive time-
reversal breaking ME states in cuprates26

nlinl,i+δ̃v
= −

(

O†

li,i+δ̃v
Oli,i+δ̃v

/2 + nli + nl,i+δ̃v

)

,

Oli,i+δ̃v
= ıa†liali+δ̃v

+ h.c. or ıb†libli+δ̃v
+ h.c.. (4)

The one particle terms can be dropped. Now a mean-field
approximation is made with Vnnn〈Oli,i+δ̃v

〉 ≡ r. This
leads to a mean-field Hamiltonian in tight-binding form
but with complex hopping between next nearest neighbor
sites:

(t1 + ir)
∑

l,δ̃ν

(

a†liali+δ̃ν
+ b†libli+δ̃ν

)

+ h.c., (5)

as well as an energy term r2/2Vnnn. r is determined by
minimization of energy.
When r is finite and has the same sign (loop cur-

rents) along the triangular loop of the next-nearest neigh-
bor bonds for one sublattice, an ordered flux pattern
is formed with alternating orientations (signs) between
neighboring enclosed triangular areas (see Fig. 2). Clas-
sified by the sign combinations of two sublattices on two
layers, four kinds of ordered loop current states can be
generated through Vnnn which break time-reversal with-
out breaking translational symmetry. (1) Within each
layer, the triangles of A sublattice and B sublattice have
the same or opposite signs of flux (see Fig. 2). (2) Be-
tween two layers, the triangles of the unstacked atoms
(B1, A2) centered at the stacked atoms (A1,B2) have
the same or opposite signs of flux as well [see Fig. 3(a-
b,d-e)]. Of these the two states which break inversion
through having flux in the stacked and unstacked triangle
of atoms in a given layer in opposite direction [Fig. 2(b)]
always have a higher ground state energy than the other
two constructed from Fig 2(a) and will not be considered
further. We are then left with two possibilities, with flux
in the stacked and unstacked triangle of atoms in a given
layer in the same direction. They can be further classi-
fied by the second condition, and are
(i) The Haldane or AHE state of the bilayer in which the
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FIG. 2: (Color online) The pattern of net fluxes in one layer
(the top layer is illustrated as an example). The red and blue
colors represent the positive (counterclockwise) and negative
(clockwise) fluxes, respectively. For each layer, there are two
possible loop-ordered states generated through Vnnn: the tri-
angles enclosed by bonds connecting A1, B1 sublattices and
with the same center have the same (a) or opposite (b) signs
of fluxes. (a) corresponds to the Haldane’s AHE flux pattern
for a single-layer honeycomb lattice23. Here, the inversion
symmetry is preserved because the center of the honeycomb
lattice is the inversion point. However, the inversion symme-
try is always broken for (b).

orientations of the flux in the loops atop each other in
the two layers are the same. The flux patterns are shown
in Fig. 3(a-c).
(ii) The Magneto-electric (ME) phase with the opposite
orientations of the flux in the loops atop each other in
the two layers, Fig. 3(d-f). In both cases the net flux
through a unit-cell is zero.

+ =

+ =

(d) (e) (f)

(a) (b) (c)

FIG. 3: (Color online) The pattern of fluxes in the bilayer
as viewed from above. (a-c) represent the AHE state while
(d-f) represent the ME state, as discussed in the text. For
each state, the flux patterns for the top layer (a and d), the
bottom layer (b and e), and the net fluxes (c and f) are shown.
The color representation is the same as in Fig 2. In (f), we
use light red (blue) to represent weaker strenghes of fluxes
compared to the regions with regular red (blue) colors.

We calculate numerically the ground states energy for
the mean-field Hamiltonian in the space of all the four
bands. We assume the magnitude of r to the same for
both stacked and unstacked atoms in each layer. Taking

t⊥ = 0.2t and t1 = 0, we find the leading dependence in
energy at zero-temperature on the order parameter r for
the AHE and the ME states to be, respectively,

E(r)ME/t =

(

1

2Vnnn
− 9.056

)

r2 + 228.5r4

E(r)AHE/t =

(

1

2Vnnn
− 9.422

)

r2 + 306.4r4. (6)

Eq. 6 gives the interesting result that for Vnnn & 0.05t,
where the saddle point values of r are finite for both
states, the ME state has a lower ground state energy in
such mean-field calculation. As the critical value of Vnnn
is smaller for the AHE state, it also suggests that as tem-
perature is decreased, the first state to arise through a
transition with Ising symmetry is the AHE state (with a
first order transition), and then to the ME state at a lower
temperature. We calculate the temperature dependence
of the ground state energy, from which we estimate the
transition temperature to the ME state is Tc ∼ 10−2t (for
Vnnn = 0.1t). The transition temperature to the AHE
state is 5% higher. The value of the transition temper-
ature is expected to be depressed from these estimates
when fluctuations are included.

IV. NUMERICAL ANALYSIS

We proceed to examine the properties of ME and AHE
states from band structures, density of states and topo-
logical structures. The calculational details are provided
in Appendices B and C. The bandstructures of these
two states are shown in Fig. 4. For the AHE state,
any finite order parameter r ∝ Vnnn will open up a gap
∆ ≈ 6

√
3r. As indicated by the crossing behaviors of the

edge modes, it has a quantized Hall conductance at zero
magnetic field. We verify this by calculating the Chern
numbers for the 4 bands, which are C = (0, 2,−2, 0) in
sequence of energy for r < O(t⊥) [for r > O(t⊥), the
Chern numbers are C = (2, 0, 0,−2) instead]. This gives
a quantized Hall conductance σxy = 4e2/h. While there
is a direct gap at K, K ′ for infinitesimal r, the ME state
has an indirect gap (see the bottom panel of Fig. 4) only
for r > O(t⊥). For small r, one obtains a semi-metal.
The insulating ME state is not accessible within the two-
band low-energy approximation. As shown in Fig. 4, the
edge modes do not cross; so the ME state does not carry a
net Hall current at zero field. This is again verfied by the
Chern number calculations. The density of states (DOS)
of the ME state is shown in Fig. 5. The vanishing DOS
near ω = 0 is associated with the indirect bandgap. We
expect that the density of states of the ME state at the
edge of the gap becomes much sharper because the exci-
tonic effects are not included in our calculation. There
are two jumps of DOS at high energies (ω ≈ 0.2t and
0.4t in Fig. 5). This feature is associated with the direct
bandgap which is the order of t⊥ and is a signature of
the ME state.
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FIG. 4: The bandstructures with edge modes (assuming an
open boundary condition along the zig-zag edge) for AHE
(top panel) and ME (bottom panel) states. For the non-
interacting bilayer graphene, there are four bands: two low-
energy valence and conduction bands touch each other at two
momentum points K and K’. The other two high-energy bands
are split with a scale of t⊥. In the AHE state, band gaps
are opened at both K and K’ due to the order parameter r,
∆ ≈ 6

√
3r. In the ME state, there are also direct band gaps

at K and K’, ∆d ≈ 3
√
3r. But the center of the direct gaps

shift in different directions of energy for K and K’. When
∆d & t⊥, an indirect gap opens. For illustration purposes, we
take t⊥ = 0.2t and r = 0.04t here, which are slightly bigger
than realistic values.

We now examine the property of ME state in a finite
magnetic field. The density of states is shown in Fig. 5.
Unlike the AHE state, where the lowest Landau level
is pinned to the edge of the gap23, the lowest Landau
level(s) shifts up in energy, leading to a larger gap. The
magnetic field dependence of the gap is shown in Fig. 6,
and agree with experiments when extrapolated to low
fields of the experiments.
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FIG. 5: (Color online) The density of state of ME state with-
out and with a magnetic field. Here t⊥ = 0.2t and r = 0.04t.
The zero-field DOS has been multiplied by a factor 5. The
magnetic field strength is specified by the flux per unit cell
φ = 2π/M where M is an integer, proportional to the lattice
size.
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FIG. 6: (Color online) The gap as a function of the external
magnetic field. Here t⊥ = 0.2t. B ∝ φ = 2π/M , and M has
been chosen as 128, 256, . . . , 2048.

V. CONCLUSIONS

In summary, we have shown that a magneto-electric
state, with loop currents ordered in each layer as in Hal-
dane’s phase but with odd parity combination of two lay-
ers, is the ground state of interacting bilayer graphene. It
has a gap which increases monotonically with the applied
magnetic field, which is in agreement with the experimen-
tal observations on a gapped state in bilayer graphene.
We have also considered the possibility of the actual

realization of the Haldane AHE state in a single layer
graphene by our mean-field procedure. Again the nearest
neighbor interactions are ineffective and need a very large
value to get any change in symmetry but a next nearest
neighbor interaction Vnnn larger than about 0.1t leads to
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the Haldane state. This requires a dielectric constant to
be smaller than about 10, which appears to be close to
what experiments report.
We discuss further experiments which test the appli-

cability of our proposed ME state, to differentiate from
other proposed states from weak-coupling. (1) The ME
state is characterized by not only an indirect gap (across
K, K’ points), which is related to the observed gap
∼ 2meV , but also a direct gap (at K, K’ points), pro-
portional to the loop current order parameter, of the
order of the interlayer hopping. This is different from
other weak-coupling proposals where only a low-energy
gap exists. The direct gap leads to sharp features at
high energies, such as the jumps in the density of states
around t⊥ as shown in Fig. 5. We suggest optical ab-
sorption measurements on high mobility, dual-gated sus-
pended bilayer graphene samples to check these features.
(We note however, previous optical absorption measure-
ments of bilayer graphene on a substrate, which do not
realize an insulating state, have not observed a direct
bandgap at the nodes27.) (2) The ME state breaks not
only time-reversal symmetry through loop current pat-
terns in each layer, but also inversion symmetry across
the layers. The former leads to a monotonically increas-
ing gap in a magnetic field similar to AHE state which
has even parity across the layers. We note that an in-
version symmetry breaking term, such as an electric field
perpendicular to the layers, introduces a linear coupling
of AHE and ME order parameters (∼ E⊥ψMEψAHE).
This promotes the AHE state when the ME order pa-
rameter is finite. The two-terminal probe indeed showed
a finite conductance ∼ 4e2/h when a finite perperdicular
electric field is applied15,16, which may be interpreted as
a signature of the AHE state. We suggest a four-terminal
experiment to verify this mechanism, and therefore, pro-
vide further proof for the existence of the ME state at
charge neutrality.
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Appendix A: Ordered Loop Current States

generated through Vnn

For the nearest neighbor interaction Vnn, the generated
loop currents flow around the perimeter of a hexagonal
cell with net flux. If we allow flux (positive or negative)
in any unit-cell, we run into the problem of frustration
of an Ising model in a triangular lattice. This in gen-
eral is not a possible ground state because unlike with
spins, alternate arrangements with lower energy are pos-

sible. The simplest is a
√
3a×

√
3a structure of hexagons

depicted in Fig. 7 in which a hexagonal cell with zero
net flux is surrounded by six hexagonal cells, each with a
Kekule pattern of currents in the links with alternate net
positive and negative flux. This state breaks the transla-
tional symmetry while the unit cell is enlarged to include
3 × 3 unit cells of a translational invariant honeycomb
lattice.

+ −

0 +

+−

−

0

0

FIG. 7: A possible ordered loop-current state generated
through Vnn. Only one layer is shown. The red, blue and
white colors represent the net positive (clockwise), negative
(anticlockwise), and zero fluxes in a hexagonal cell.

We assume that the flux pattern in the top layer follows
Fig. 7, which takes a sequence (+,-,0) from left to right.
The bottom layer could follow the same pattern, or takes
another pattern (-,+,0). Therefore, there are two types
of ordered loop current states (the other combinations
are equivalent to either of these two states by rotation).
We carry out a mean-field calculations on the ground
states energy for these states, and find that the state
with different patterns for two layers are lower in energy.
This lower energy state is allowed only if Vnn & 2.06t,
i.e., be comparable to the bandwidth. The reason is that
such a state does not have a “nesting” periodicity and
therefore does not use uses any singularity in the joint
density of states.

Appendix B: Numerical Methods

The mean-field Hamiltonian of the ordered loop cur-
rent states can be readily diagonalized for each momen-
tum point (kx, ky). However, to examine their properties
under an applied magnetic field, as well as the topologi-
cal properties such as the edge modes, we also carry out
a real-space calculation.
Following a common numerical practice for honeycomb

lattices, we describe the bilayer graphene by a Nx × Ny

lattice, with four atoms on each lattice site (see Fig. 8).
The real-space coordinations of each atom (and the mo-
mentum) in the orthogonal x-y axis can be easily ob-
tained from this “deformed”-lattice representation.
The effect of an external magnetic field can be captured
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A1(B2)

y

x

FIG. 8: Real-space representation of the bilayer graphene lat-
tice. With the x-y axis specified in the figure, the lattice can
be represented by a Nx×Ny rectangle lattice with four atoms
in each lattice site.

by imposing a phase to the hopping term to each bond
tij → tije

i
∫
A·dx. We adopt the Landau gauge Ay =

−Bx to take advantage of the translational invariance
along y-direction. For the periodic boundary condition,
we commonly take the flux due to the external magnetic
field in a unit cell to be φ = 2π/M , where M is an
integer proportional to Nx. M = 1000 is equivalent to a
magnetic field strength B ≈ 30T for graphene systems.
In general, we choose periodic boundary conditions

along both directions ( a torus). This provides a verifi-
cation of our momentum-space calculations for the zero-
field. For the edge modes calculation, we choose an open
boundary along x-axis, which corresponds to a cylinder
with the zigzag edge.

Appendix C: Additional Results

1. Density of States

In Fig. 9, we show the density of states (DOS) for the
ME state with various values of the order parameter r.
We also show the result for the non-interacting case as
well. For r = 0, the DOS at ω = 0 is finite, which is due
to the parabolic dispersion E ∼ k2. There is a sudden
jump of DIS at ω ≈ ±t⊥/2, which is the energy scale of
the gap between top two valence bands (bottom conduc-
tion bands). When r is small, the conduction band at K
point and the valence band at K’ point have overlaps in
energy. Therefore, it remains a semi-metal state. A full
gapped state happens when r & t⊥/(3

√
3).

2. Chern numbers

In the main paper, we have shown the topological prop-
erties of the AHE and ME states by showing their edge
modes, calculated by assuming a periodic boundary con-
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FIG. 9: The density of states for the ME state. Various
values of the loop current order parameter are shown. The
non-interacting case r = 0 is also shown in comparison. Here
t⊥ = 0.2t.

dition along y-axis and an open boundary condition along
x-axis. Judging from the crossed edge modes, we learn
the AHE state indeed has a finite Hall conductance at
zero-field. Similarly, the ME state does not have any
Hall effect at zero-field.

This topological property can also be checked from the
Chern numbers. The Chern number for a given band is
defined as

Cn =

∫

d2k

(2π)2
ẑ · ∂Ψ

∗
n(k)

∂kx
× ∂Ψn(k)

∂ky
, (C1)

where Ψn(k) is the wavefunction for n-band. The Hall
conductance is given by σxy = Ce2/h. We calculate the
Chern numbers in a momentum-space algorithm, by sum-
ming the Berry curvature in small areas (∆kx,∆ky).

For the AHE state, any finite order parameter r will
open up a gap. We find the Chern numbers for the 4
bands are C = (0, 2,−2, 0) in sequence of energy, i.e, the
valence and conduction bands away from fermi energy do
not carry any Chern numbers. However, when r & t⊥,
the Chern numbers become C = (2, 0, 0,−2) instead. In
either case, a finite Hall conductance is a robust feature.

For the ME state, an indirect gap is open only for a
finite order parameter r & t⊥. However, as long as the
four bands do not touch with each other (having direct
band gaps), the Chern number calculation is robust. We
find the Chern numbers for the four bands of the ME
state are all zero, indicating a none-quantum Hall state.
When r ≫ t⊥, we find the Chern numbers become C =
(1,−1, 1,−1). In this limit, each layer is a Haldane state
while t⊥ only acts as a perturbation, slightly splitting the
stats from two layers. Still, there is no Hall effect near
the Fermi energy.
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3. Edge Modes in a finite magnetic field

In the main paper, we have shown the edge modes for
AHE and ME states at zero-field. For completeness, we
also show the edge modes in a finite external magnetic
field, in Fig. 10.
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FIG. 10: The edge modes for AHE (top panel) and ME (bot-
tom panel) states at a finite magnetic field. Here t⊥ = 0.2t ,
r = 0.04t and φ = 2π/256.
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