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Abstract

This research explores the non-linear elastic properties of two-dimensional molybdenum disulfide.

We derive a thermodynamically rigorous non-linear elastic constitutive equation and then calculate

the non-linear elastic response of two-dimensional MoS2 with first-principles density functional

theory (DFT) calculations. The non-linear elastic properties are used to predict the behavior of

suspended monolayer MoS2 subjected to a spherical indenter load at finite strains in a multiple

length scale finite element analysis model. The model is validated experimentally by indenting

suspended circular MoS2 membranes with an atomic force microscope. We find that the two-

dimensional Young’s modulus and intrinsic strength of monolayer MoS2 are 130 N/m and 16.5 N/m,

respectively. The results approach Griffith’s predicted intrinsic strength limit of σint ∼
E
9
, where E

is the Young’s modulus. This study reveals the predictive power of first-principles density functional

theory, in the derivation of non-linear elastic properties of two-dimensional MoS2. Furthermore,

the study bridges three main gaps that hinder understanding of material properties: DFT to finite

element analysis (FEA), experimental results to DFT, and the nanoscale to the microscale. In

bridging these three gaps the experimental results validate the DFT calculations and the multiscale

constitutive model.
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Introduction

Two-dimensional materials have recently become an area of increased research focus,

despite their long being considered thermodynamically unstable1. The experimental signif-

icance of 2D materials was first revealed in 2004 when the electrical properties of graphite

crystals limited to only a few atoms thick were probed2. These 2D crystals were obtained

via the clever and simple mechanical exfoliation method. Since this groundbreaking study,

graphene and other 2D materials have been studied in areas of basic research such as elec-

tronics, optics and mechanics3–8.

Two-dimensional materials serve as outstanding testbeds for fundamental studies of me-

chanical properties under extreme strains4. They can be fabricated in a pristine condition

essentially free of defects which enables them to achieve extreme tensile strain states prior

to fracture or void nucleation. The mechanical flexibility of 2D materials allows them to

conform to a surface and adhere to it via van der Waals interactions, thus simplifying

the boundary conditions on a 2D material during mechanical characterization4. In addi-

tion, the relatively small number of atoms in a 2D material offers the opportunity to use

first-principles and molecular dynamics computational methods that model the deforma-

tion behavior of 2D materials using an atomistic basis9. Finally, the 2D geometry restricts

the possible deformation states which renders higher-order non-linear continuum elastic-

ity formulations sufficiently tractable to combine with the atomistic methods to formulate

multi-length scale models that can be readily incorporated into standard finite element anal-

ysis formulations9,10. Most of these previous studies concentrated on monatomically-thin

graphene, which is a single close-packed atomic plane of a single component (i.e. carbon),

but other more general 2D materials can be produced by mechanical exfoliation7,11–15.

In the current study, we extend these methods to to study 2D molybdenum disulfide,

which is a multi-component and multi-atomic layer system. Molybdenum disulfide is a

layered transition metal dichalcogenide (LTMD) composed of layers of molybdenum atoms

sandwiched between sulfur atoms, with each molybdenum atom ionically bonded to six

sulfur atom as seen in Figure 1. Multiple MoS2 layers are held together in the bulk material

through van der Waals interactions, so the MoS2 monolayers are easily cleaved.
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FIG. 1: Atomic structure of monolayer MoS2. The green and yellow spheres represent Mo and S

atoms, respectively: (A) top view of the atomic structure; (B) side view of MoS2 to highlight the

out-of-plane sulfur atoms; and, (C) oblique view of 4x4 unit cells.

Molybdenum disulfide has been used as a solid lubricant for centuries and was studied

as a material for detecting and rectifying radio signals in the 1950s16. Bulk MoS2 has a

hardness of 1–1.5 on the Mohs scale and exhibits excellent lubrication in high vacuum or

under atmospheric conditions16. A study on bundles of MoS2 nanotubes reveals a Young’s

modulus of 120 GPa with an inter-tube shear modulus of 160±30 MPa17. Bulk MoS2 is an

indirect gap semiconductor with a band gap of 1.2 eV, but by reducing the number of layers

one can modify the band structure and create a direct gap semiconductor5,12,18–21. Recently,

monolayers of MoS2 have been investigated as materials for microelectromechanical systems

(MEMS) and nanoelectromechanical systems (NEMS) devices5,7,12,17. The low power dissi-

pation of MoS2 direct gap semiconductors and its low cost make it an ideal candidate for

flexible electronic applications. Studies have investigated the crystal structure and electrical
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properties5–7,12,14,16,18,20–22. Finally, the elastic properties of 2D MoS2 have been investigated

to characterize the Young’s modulus and breaking strength11. However a more complete

understanding of the mechanical properties of 2D MoS2 is necessary to be able to predict

its response upon incorporation into MEMS and NEMS devices.

The thickness of a 2D material is indeterminate because its out-of-plane electron config-

uration may change as a function of deformation state. Hence, stress, σ, and elastic moduli

such as Young’s modulus, E, are defined intrinsically as force per length rather than force

per area. For purposes of comparison to 3D materials, the derived 3D quantities of stress

and elastic moduli of a 2D material can be determined as σ3D = σ/t and E3D = E/t, respec-

tively, where t is an assumed thickness of the 2D materials. Herein we assume t = 0.615 nm

as a representative thickness of 2D MoS2, which is the interlayer spacing between layers of

MoS2 in the bulk material)16. Unless explicitly expressed otherwise with a superscript 3D,

we assume all stress and moduli are 2D quantities.

The overall goal of this study is to determine the non-linear elastic properties of single

layer MoS2. First we derive a thermodynamically rigorous continuum elastic constitutive

model of the non-linear elastic response of MoS2 via a Taylor series expansion of the elastic

strain energy density potential. We then use density functional theory (DFT) to calculate

the elastic response of MoS2 for several in-plane deformation states of uniaxial strain as

well as biaxial strain. The magnitude of the applied strains ranges from infinitesimal to

finite deformations beyond that corresponding to the intrinsic (i.e. maximum) stress. All

components of the stiffness tensors of the higher-order elastic constitutive model are deter-

mined by fitting the continuum model to the stress vs. strain results of the uniaxial strain

deformation states studied by DFT calculations. We use the crystal symmetry of 2D MoS2

to determine the number of independent elastic constants for the continuum model. To

verify the internal consistency of the higher order continuum theory, we calculate the elastic

response with DFT of MoS2 under a condition of uniaxial stress and demonstrate that the

continuum model—fit only to the uniaxial strain DFT results—accurately predicts the DFT

results in uniaxial stress. To validate the model, we use AFM nanoindentation to determine

the force-displacement response as well as the force required to rupture a monolayer MoS2

film suspended over open circular holes. The results of a detailed finite element analysis

(FEA) of the indentation experiments using the non-linear elastic continuum formulation

are consistent with the experimental measurements to within experimental uncertainty, thus
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validating the model.

Non-linear Elastic Constitutive Model

Figure 2 shows the undeformed unit cell of monolayer MoS2 described by two lattice

vectors ai (i=1,2). Unit vectors in the x1- and x2-directions relative to Figure 2 are denoted

as ê1 and ê2, respectively, and a1 = a1ê1 and a2 = a2(
1

2
ê1 +

√
3

2
ê2). As will be discussed

below, the magnitudes of the lattice vectors are a1 = a2 = 3.16Å in the undeformed reference

configuration.

A macroscopic homogeneous in-plane deformation of the 2D crystal results in deformation

of the lattice vectors a′
i = Fai where F is the deformation gradient tensor and a′

i are the

deformed lattice vectors. Writing the Lagrangian strain tensor as η = 1

2

(

FTF− I
)

where I

is the identity tensor, the strain energy density potential has the functional form Φ = Φ(η),

which quantifies the elastic strain energy per unit reference area of the undeformed MoS2
9.
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FIG. 2: Unit cell of monolayer MoS2. The axes are labeled by the black arrows and the unit cell

is contained in the dashed red box. Atoms of S lie both above and below plane of the Mo atoms.

The elastic strain energy density potential can be expressed as a Taylor series expansion

in powers of strain as

(1)
Φ =

1

2!
Cijklηijηkl +

1

3!
Cijklmnηijηklηmn +

1

4!
Cijklmnopηijηklηmnηop

+
1

5!
Cijklmnopqrηijηklηmnηopηqr + ...

where Cijkl, Cijklmn, Cijklmnop, and Cijklmnopqr are the second-, third-, fourth- and fifth-order

stiffness tensors, respectively9; the summation convention is adopted for repeating indices
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and summation for lower case indices runs from 1 to 3. The quadratic term in strain suffices

to describe a linear elastic material, so the higher-order terms are necessary to describe the

non-linear response. The second Piola-Kirchhoff stress tensor, Σij , defined in terms of its

work conjugate Lagrangian strain is calculated by taking ∂Φ/∂ηij to obtain

(2)Σij = Cijklηkl +
1

2!
Cijklmnηklηmn +

1

3!
Cijklmnopηklηmnηop +

1

4!
Cijklmnopqrηklηmnηopηqr + ....

Upon adopting the Voigt notation23, the stress tensor can be expressed as

(3)ΣI = CIJηJ +
1

2!
CIJKηJηK +

1

3!
CIJKLηJηKηL +

1

4!
CIJKLMηJηKηLηM + ...

where the lower case indices transform to Voigt indices in upper case letters as 11→1, 22→2,

33→3, 23→4, 13→5, and 12→6; the summation convention still holds and summation of

upper case indices ranges from 1 to 6. The components of CIJ are the second-order elastic

constants (SOEC), those of CIJK are the third-order elastic constants (TOEC), those of

CIJKL are the fourth-order elastic constants (FOEC), and those of CIJKLM are the fifth-

order elastic constants (FFOEC).

A general anisotropic elastic solid has 21 independent components in the SOEC, 56 in the

TOEC, 126 in the FOEC and 252 in the FFOEC. The deformation state of a 2D material

can be approximated as being solely an in-plane deformation state when the contribution of

bending deformation to the strain energy density is negligible compared to that of in-plane

deformation. This implies that only in-plane components (i.e. those with indices that include

only I, J=1, 2 and 6 or i, j=1 and 2) of the stiffness tensors may be non-zero, and all out-

of-plane components of the stiffness tensors are identically zero. An undeformed 2D MoS2

monolayer has point groupD3h which has a hexagonal crystal structure13,24. Previous studies

have shown that in-plane deformation states for this point group have two independents

components of the SOEC, three independent components of the TOEC tensor, and four

independent components of the FOEC tensor25,26. We calculate that the FFOEC tensor has

five independent non-zero components by imposing the symmetry elements of monolayer

MoS2 symmetry on the tensor based upon

(4)Cabcdefghij = QkaQlbQmcQndQoeCklmnopqrstQpfQqgQrhQsiQtj

where Q refers to the transformation matrix associated with a symmetry element. Thus,

monolayer MoS2 requires a total of only 14 independent components of the stiffness tensors

to describe finite in-plane deformations. The list of elastic constants is given in Table I.
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For general infinitesimal in-plane deformations, the elastic response is isotropic and linear

with Young’s modulus E = (C2
11 − C2

12) /C11 and Poisson’s ratio ν = C12/C11 and the full

linear-elastic response is
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Σ6
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C11 C12 0

C12 C11 0

0 0 C11−C12
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η1

η2

η6











. (5)

For general finite in-plane deformations, the elastic response is anisotropic and non-linear

and the in-plane components of the second Piola-Kirchhoff tensor, Σ1, Σ2, and Σ6, are given

by

(6)

Σ1 = C11η1 + C12η2 +
1

2
C111η

2
1 + C112η1η2 −

1

2

(

1

2
C111 +

1

4
C112 −

3

4
C222

)

η26

+
1

2
(C111 + C112 − C222) η

2
2 +

1

6
C1111η

3
1 +

1

6

(

1

2
C1111 + C1112 −

1

2
C2222

)

η32

+
1

2
C1112η

2
1η2 +

1

2
C1122η1η

2
2 +

1

2

(

1

12
C1111 +

1

6
C1112 −

1

4
C1122

)

η2η
2
6

−
1

2

(

5

24
C1111 +

1

6
C1112 −

3

8
C2222

)

η1η
2
6 +

1

6
C11112η

3
1η2 +

1

24
C11111η

4
1

+
1

24
C12222η

4
2 +

1

4
C11122η

2
1η

2
2 −

1

4

(

1

10
C11111 +

1

8
C11112 −

9

40
C22222

)

η21η
2
6

+
1

24

(

11

80
C11111 +

3

8
C11112 +

1

8
C11122 −

9

16
C12222 −

3

40
C22222

)

η46

+
1

6

(

1

2
C11111 +

3

2
C11112 + C11122 −

3

2
C12222 −

1

2
C22222

)

η1η
3
2

+
1

4

(

1

15
C11111 +

1

8
C11112 −

1

6
C11122 −

1

40
C22222

)

η22η
2
6

−
1

2

(

13

120
C11111 +

1

4
C11112 +

1

6
C11122 −

3

8
C12222 −

3

20
C22222

)

η1η2η
2
6
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(7)

Σ2 = C12η1 + C11η2 +
1

2
C112η

2
1 +

1

2
C222η

2
2 + (C111 + C112 − C222) η1η2

−
1

2

(

1

4
C112 −

1

2
C111 +

1

4
C222

)

η26 +
1

6
C1112η

3
1 +

1

6
C2222η

3
2

+
1

2

(

1

2
C1111 + C1112 −

1

2
C2222

)

η1η
2
2 +

1

2
C1122η

2
1η2

+
1

2

(

1

12
C1111 +

1

6
C1112 −

1

4
C1122

)

η1η
2
6 −

1

2

(

1

6
C1112 −

7

24
C1111 +

1

8
C2222

)

η2η
2
6

−
1

4

(

13

120
C11111 +

1

4
C11112 +

1

6
C11122 −

3

8
C12222 −

3

20
C22222

)

η21η
2
6

+
1

6
C11122η

3
1η2 +

1

6
C12222η1η

3
2 +

1

24
C11112η

4
1 +

1

24
C22222η

4
2

+
1

2

(

1

15
C11111 +

1

8
C11112 −

1

6
C11122 −

1

40
C22222

)

η1η2η
2
6

+
1

24

(

1

8
C11122 −

3

8
C11112 −

1

80
C11111 +

3

16
C12222 +

3

40
C22222

)

η46

+
1

4

(

1

2
C11111 +

3

2
C11112 + C11122 −

3

2
C12222 −

1

2
C22222

)

η21η
2
2

−
1

4

(

1

8
C12222 −

9

40
C11111 +

1

10
C22222

)

η22η
2
6

(8)

Σ6 =
1

2
(C11 − C12) η6 +

1

4
(2C111 − C112 − C222) η2η6 −

1

4
(2C111 + C112 − 3C222) η1η6

+
1

12
(C1111 + 2C1112 − 3C1122) η1η2η6 −

1

48
(5C1111 + 4C1112 − 9C2222) η

2
1η6

+
1

48
(7C1111 − 4C1112 − 3C2222) η

2
2η6 −

1

96
(C1111 + 8C1112 − 6C1122 − 3C2222) η

3
6

−
1

240
(4C11111 + 5C11112 − 9C22222) η

3
1η6 +

1

24
(9C11111 − 5C12222 − 4C22222) η

3
2η6

+
1

240
(8C11111 + 15C11112 − 20C11122 − 3C22222) η1η

2
2η6

−
1

480
(C11111 + 30C11112 − 10C11122 − 15C12222 − 6C22222) η2η

3
6

+
1

480
(11C11111 + 30C11112 + 10C11122 − 45C12222 − 6C22222) η1η

3
6

−
1

240
(13C11111 + 30C11112 + 20C11122 − 45C12222 − 18C22222) η

2
1η2η6

where η1, η2, and η6 are the in-plane components of the Lagrangian strain tensor defined

relative to the orientation of monolayer MoS2 shown in Figure 2.

We now consider several special deformation states that simplify the expressions for the

general non-linear in-plane elastic response which we will now refer to being in uniaxial

strain. The elastic response of monolayer MoS2 is calculated for these special states. With
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reference to Figure 2, a state of uniaxial strain in the x1-direction is characterized by η1 ≥ 0

and η2 = η6 = 0. The corresponding elastic response gives Σ1 ≥ 0, Σ2 ≥ 0, where Σ2 is

the lateral constraint stress for this configuration, which is the stress required to maintain

zero strain in the lateral direction; symmetry dictates that Σ6 = 0. Similarly, we consider a

state of uniaxial strain in the x2-direction. Finally, we consider a state of equibiaxial strain

for which η1 = η2 = η ≥ 0 and η6 = 0 which results in Σ1 = Σ2 ≥ 0 and Σ6 = 0. The

deformation gradient tensors for the three deformation states, respectively, are

F1 =





λ1 0

0 1



 , F2 =





1 0

0 λ2



 ,

Fbi =





λbi 0

0 λbi





(9)

where the stretch ratio, λ1, is the ratio of the deformed length of the unit cell in the x1-

direction to the reference length, λ2 is defined analogously for deformation in the x2-direction,

and for the equibiaxial case λbi = λ1 = λ2.

For uniaxial strain in the x1-direction the general stress-strain response simplifies to

(10)Σ1 = C11η1 +
1

2
C111η

2
1 +

1

6
C1111η

3
1 +

1

24
C11111η

4
1

(11)Σ2 = C12η1 +
1

2
C112η

2
1 +

1

6
C1112η

3
1 +

1

24
C11112η

4
1

(12)Σ6 = 0 .

For uniaxial strain in the x2-direction there results

(13)Σ1 = C12η2 +
1

2
(C111 − C222 + C112) η

2
2 +

1

12
(C1111 + 2C1112 − C2222) η

3
2 +

1

24
C12222η

4
2

(14)Σ2 = C11η2 +
1

2
C222η

2
2 +

1

6
C2222η

3
2 +

1

24
C22222η

4
2

(15)Σ6 = 0 .

For the biaxial strain state there results
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Σ1 = Σ2

= (C11+C12) η+
1

2
(2C111 −C222 +3C112) η

2+
1

6

(

3

2
C1111+4C1112 −

1

2
C2222+3C1122

)

η3

+
1

24
(3C11111 + 10C11112 − 5C12222 + 10C11122 − 2C22222) η

4

(16)

(17)Σ6 = 0 .

It is significant to note that all fourteen elastic constants appear in the stress vs. strain

constitutive relationships for the three special cases collectively. Thus, the values of the

elastic constants can be determined by fitting to the stress vs. strain response as calculated

from first principles calculations.

In addition, we consider the elastic behavior of MoS2 under conditions of uniaxial stress

as a means to verify the internal consistency of the higher-order continuum theory. Uniaxial

stress in the x1-direction is characterized by Σ1 ≥ 0, Σ2 = 0 with η1 ≥ 0 and η2 ≤ 0 due to

Poisson contraction. Uniaxial stress in the x2-direction is defined analagously.

First Principles Calculations of Elastic Response

We use density functional theory (DFT) to calculate the elastic response for the three

special deformation states. The DFT calculations are performed with the VASP software

package27–31 using the projector augmented wave method and both the local density approx-

imation (LDA)32 and the generalized gradient approximation (GGA)31,33 at 0 K.

A unit cell of one molybdenum atom and two sulfur atoms is employed assuming a

separation distance of 61.5 Å between MoS2 monolayers. The k-point grid is 13 × 13 × 3

with a cutoff energy of 500 eV. The undeformed equilibrium state is determined through

an energy and stress minimization as a function of the in-plane lattice vector and out-of-

plane sulfur atom heights. The equilibrium configuration is determined to be a spacing of

3.122 Å between molybdenum atoms and an out-of-plane distance of 1.557 Å between a

plane of sulfur atoms and the intermediate plane of molybdenum atoms. These results are

consistent with experimentally determined lattice spacing of 3.16 Åbetween Mo atoms and

1.59 Å out-of-plane height for S atoms in a bulk MoS2 crystal34. The stress components

computed in VASP are in terms of true stress, or Cauchy stress, σ, in units of force per area

on the cross-sectional edges of the unit cell. For a 2D material it is appropriate to express
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TABLE I: Independent Components of Stiffness Tensors

CIJ CIJK CIJKL CIJKLM

C11 C111 C1111 C11111

C12 C112 C1112 C11112

C66 = 1

2
(C11 − C12) C222 C1122 C11122

C116 = 0 C2222 C12222

C126 = 0 C1126 = 0 C22222

C166 = 1

4
(3C222 − 2C111 − C112) C1166 = 1

24
(−5C1111 − 4C1112 + 9C2222) C11116 = 0

C226 = 0 C1222 = 1

2
(C1111 + 2C1112 − C2222) C11126 = 0

C266 = 1

4
(2C111 − C222 − C112) C1266 = 0 C11166 = 1

40
(−4C11111 − 5C11112 + 9C22222)

C122 = C111 + C112 − C222 C1266 = 1

12
(C1111 + 2C1112 − 3C1122) C11222 = 1

2
(C11111 + 3C11112 + 2C11122 − 3C12222 − C22222)

C666 = 0 C1666 C11226 = 0

C2226 = 0
C11266 =

−1

120
(13C11111 + 30C11112 + 20C11122 − 45C12222 − 18C22222)

C2266 = 1

24
(7C1111 − 4C1112 − 3C2222) C11666 = 0

C2666 = 0 C12226 = 0

C6666 =

1

16
(−C1111 − 8C1112 + 6C1122 + 3C2222)

C12266 = 1

120
(8C11111 + 15C1112 − 20C11122 − 3C22222)

C12666 = 0

C16666 = 1

40
(9C11111 − 5C12222 − 4C22222)

C22226 = 0

C22266 = 1

40
(9C11111 − 5C12222 − 4C22222)

C22666 = 0

C26666 = 1

80
(−C11111 − 30C11112 + 10C11122 + 15C12222 + 6C22222)

C66666 = 0

11



the stress in terms of force per length of the edge; this is obtained from the product of the

the stress components calculated from VASP and the interlayer spacing of 61.5 Å.

The relation between the true stress and second Piola-Kirchhoff (P-K) stress Σ is given

as

Σ = JF−1σ
(

F−1
)T

(18)

where J is the determinant of the deformation gradient tensor F35. In this work, we did

not explore the possibility of finite wave vector instabilities which might be relevant at large

strains. For example, in graphene a phonon instability of the K-mode occurs for sufficiently

large equibiaxial strain36.

To calculate the elastic response of a given deformation state, the unit cell is determined

according to the deformed lattice vectors a′
i which are functions of the applied F. The

molybdenum and sulfur atoms are relaxed in the strained unit cell into the minimum poten-

tial energy configuration both in and out of the plane. A series of simulations is performed

for both uniaxial strain cases as well as the equibiaxial strain case, beginning with strains

within the linear-elastic regime and finishing with strains beyond that corresponding to the

intrinsic (i.e. maximum) stress.

The results of the VASP simulations are shown in Figure 3a where the second Piola-

Kirchhoff stress is plotted as a function of the Lagrangian strain and in Figure 3b the true

stress is plotted as a function of the true strain. True (i.e. Cauchy) stress is calculated based

on equation 18 and the true strain is given as ε = ln (λ). The calculated DFT results are

highlighted as symbols. The red symbols represent calculations for uniaxial strain in the

x1-direction, with the + and × symbols indicating the lateral constraint and normal stresses

as a function of prescribed strain η, respectively. The green symbols represent calculations

for uniaxial strain in the x2-direction, with the � and ⋄ symbols indicating the lateral

constraint and normal stresses, respectively. The blue ⊗ symbols represent the equibiaxial

stress (Σ1 = Σ2) in the x1- and x2-directions.

The values of the fourteen independent components of the stiffness tensors are determined

by least-squares curve fitting of equations 10–17 to the corresponding DFT calculations. The

results, shown as solid colored lines in Figure 3, demonstrate that the higher order continuum

formulation accurately describes the calculated stress-strain response up to approximately

0.30 Lagrangian strain or 0.25 true strain. The resulting fourteen independent elastic con-

stants for monolayer MoS2 are tabulated in Table II. For the linear-elastic regime at small

12



strains, the Young’s modulus is E2D=129 N/m and the in-plane Poisson’s ratio is ν = 0.29.

A fifth order expansion of the strain energy density function captures the anisotropy of 2D

MoS2 and the elastic instability used to predict failure of the material. The appropriateness

of the fifth order fit is verified by comparing the root-mean-square (RMS) deviation defined

as
√

SSE/n, where SSE is the sum of squares error and n is the number of data points

used in the fit. Comparing the RMS deviation for the 234 data points of stress and strain,

a third order elastic constant expansion results in a RMS deviation of 1.404 N/m, a fourth

order approximation results in 0.462 N/m, and the fifth order approximation results in a

0.145 N/m RMS deviation. The third and fourth order approximations cannot capture both

the linear response and the peak stress at finite strains in the same fit. The third and fourth

order fits underpredict the Young’s modulus as 65 N/m and 104 N/m, respectively. The fifth

order approximation captures the relevant behavior of 2D MoS2 under tension including the

linear-elastic response and the elastic instability used to predict fracture.

It is interesting to note that the anisotropy of MoS2 is very prominent in Figure 3a

comparing the resulting second Piola-Kirchhoff stresses as a result of uniaxial strains in

the x1- and x2-directions. Along the x1-direction, as defined in Figure 1, the second Piola-

Kirchhoff lateral constraint stress becomes higher than the normal stress. The true stress

measure, in Figure 3b, reveals that this phenomenon is a result of the reference area choice.

In a system composed of one type of atom, such as graphene, this behavior has not been

observed9.
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FIG. 3: 3a is the least squares curve fit to DFT data using the LDA functional of three prescribed

deformation states. Quantities are plotted in Second Piola-Kirchhoff stress and Lagrangian strain.

Symbols depict calculated data and lines indicate least squares fits. 3b is the same data converted

to true stress and true strain.

SOEC (N/m) TOEC (N/m) FOEC (N/m) FFOEC (N/m)

C11 = 140 C111 = -1300 C1111 = 8770 C11111 = -29830

C12 = 40 C112 = -1090 C1112 = 440 C11112 = -4340

C222 = -30 C1122 = -230 C11122 = -230

C2222 = 5870 C12222 = -8450

C22222 = -18930

TABLE II: Non-zero independent elastic constants fit to the LDA functional DFT data of monolayer

MoS2 relating the second Piola-Kirchhoff stress tensor to the Lagrangian strain deformation state.

The SOEC, TOEC, FOEC and FFOEC, second-, third-, fourth- and fifth-order elastic constants,

respectively are tabulated.

The calculations are repeated using a projector augmented wave with a generalized gra-
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dient approximation (GGA), the Perdew-Burke-Ernzerhof (PBE), functional in VASP. The

unit cell remains one molybdenum atom and two sulfur atoms and a separation distance of

61.5 Å between MoS2 monolayers. The k-point grid remains 13×13×3 with a cutoff energy

of 500 eV. The undeformed equilibrium state is determined through an energy and stress

minimization as a function of the molybdenum atom spacing and out-of-plane sulfur atom

heights. The equilibrium configuration is determined to be a spacing of 3.182 Å between

molybdenum atoms and an out-of-plane distance of 1.563 Å between a plane of sulfur atoms

and the intermediate plane of molybdenum atoms for the PBE functional. The resulting

higher order elastic constants are shown in Table III and the graphs are shown in Figure 4.
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FIG. 4: 4a is the least squares curve fit to DFT data using the PBE functional of three prescribed

deformation states. Quantities are plotted in Second Piola-Kirchhoff stress and Lagrangian strain.

Symbols depict calculated data and lines indicate least squares fits. 4b is the same data converted

to true stress and true strain.
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SOEC (N/m) TOEC (N/m) FOEC (N/m) FFOEC (N/m)

C11 = 130 C111 = -1200 C1111 = 7800 C11111 = -26460

C12 = 40 C112 = -1010 C1112 = 580 C11112 = -4200

C222 = -60 C1122 = -50 C11122 = -800

C2222 = 5760 C12222 = -6880

C22222 = -21300

TABLE III: Non-zero independent elastic constants fit to the PBE functional DFT data of mono-

layer MoS2 relating the second Piola-Kirchhoff stress tensor to the Lagrangian strain deformation

state. The SOEC, TOEC, FOEC and FFOEC, second-, third-, fourth- and fifth-order elastic

constants, respectively are tabulated.

The PBE functional results fit to the higher order nonlinear elastic constants predicts a

Young’s modulus of E = 118 N/m and a Poisson’s ratio of ν = 0.31. At strains above 20 %

the difference in stress measures for LDA and PBE is approximately 15 %. The calculations

with LDA predict an elastic instability at η = 23.4% and Σ = 27N/m, while the PBE

calculations predict an elastic instability as η = 23.2 % and Σ = 24 N/m.

We verify in two ways that our calculations and constitutive model are correct and inter-

nally self-consistent. First we reproduce our VASP calculations of the elastic response under

all five deformation states considered herein with both the Abinit and Quantum Espresso

DFT software packages. The results from all three software packages are quantitively con-

sistent with each other for the PBE approximation, thus verifying the DFT calculations.

Second we demonstrate that the DFT calculations and the continuum constitutive model

are internally self consistent, individually for the LDA and PBE approximations. To do so,

we first calculated the elastic response for the equibiaxial and the two uniaxial strain defor-

mation states using DFT. Then we determined the fourteen independent elastic constants

of the continuum fifth order elastic constitutive description by fitting to the DFT results

of the equibiaxial and the two uniaxial strain deformation states. We then predicted the

elastic response under the two states of uniaxial stress using the continuum model. We then

calculated the elastic response for the two states of uniaxial stress via DFT. The continuum

predictions are compared to the DFT calculations in Figures 5a for the LDA approximation

and 5b for the PBE approximation. There is a very good agreement between the predic-
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tions and the calculations, thus verifying the internal consistency of the multiscale atomistic

(DFT) and continuum constitutive model. It bears emphasis that the fourteen elastic con-

stants are determined by fitting to DFT results from only the equibiaxial and uniaxial strain

states for each approximation; the DFT results for the two uniaxial stress deformation states

were not used in the curve fitting process.

For completeness, we now discuss the details of the DFT calculation under uniaxial stress

conditions. The uniaxial stress DFT calculations are achieved by relaxing the ê2-components

of the a1 and a2 lattice vectors for uniaxial stress in the x1-direction. The uniaxial stress state

in the x2-direction is achieved analogously by relaxation of the ê1-components. Li37 performs

uniaxial stress calculations that are not consistent with our results. However, our results

have been verified using three ab initio codes (ie. VASP, Abinit, and Quantum Espresso),

and a direct comparison to Li’s results will be made in a forthcoming publication38.

17



0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

ε

σ
2

D
 (

N
/m

)

 

 

x
1
 uniaxial stress

x
2
 uniaxial stress

DFT LDA Uniax x

DFT LDA Uniax y

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

ε

σ
2

D
 (

N
/m

)

 

 

x
1
 uniaxial stress

x
2
 uniaxial stress

DFT PBE Uniax x

DFT PBE Uniax y

(b)

FIG. 5: Plotted above are the uniaxial stress calculations based upon DFT with a LDA functional

5a and a PBE functional 5b. The + and × data points represent the data calculated for a uniaxial

stress state in the x1- and x2-directions, respectively. The red and black lines represent the least

squares curve fit prediction of the stress-strain curve for uniaxial stress in the x1- and x2-directions,

respectively. The data is plotted in true stress and true strain.

Experimental Methods

Following the approach and procedures of Lee et al.4, the specimens are fabricated on a

silicon substrate with a 300 nm epilayer of SiO2. We introduce an array of circular wells with

500 nm diameter and 500 nm depth, via reactive ion etching, into the substrate following

patterning via electron beam lithography. Then, MoS2 is mechanically exfoliated onto the

substrate. The individual flakes of MoS2, with sizes up to 4 µm by 8 µm, are randomly

distributed atop the substrate and are large enough to cover several adjacent wells.

The nanoindentation experiments performed in this study offer several advantages over

mechanical tests performed on nanotube structures. First, the sample geometry is pre-

cisely defined and the 2D structure is less sensitive to material or substrate defects. The
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circular freestanding monolayers of MoS2 are effectively clamped around the periphery via

van der Waals interactions with the substrate, which serves to constrain both radial and

out-of-plane displacements. Thus the boundary conditions are well-defined and repeatable,

whereas it is much more difficult to obtain such boundary conditions when loading nanotube

configurations.
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FIG. 6: Suspended MoS2 on SiO2 substrate imaged via optical microscopy (A) and AFM (B) and

(C). The arrow in image (A) points to a flake of monolayer MoS2; (B) shows the AFM image of the

area highlighted in red in (A); the scale bars in (A), (B), and (C) are 10 µm, 5 µm, and 100 nm,

respectively; and, (D) shows the experimental set-up graphically.

We use optical microstopy to identify candidate monolayer MoS2 sheets suspended above
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wells, as seen in Figure 6A. Then an AFM (XE-100, Park Systems) in non-contact mode

confirms the monolayer thickness to be 0.615 nm39. Suspended monolayers are imaged in

non-contact mode to determine the center of the membrane. The monolayer films are then

indented at their centers with the AFM to determine the force-displacement response as well

as the breaking force.

The AFM tip is a diamond cube corner on a silicon cantilever fabricated by MicroStar

Technologies; standard silicon AFM tips are not used because the load levels can cause

fracture of the tip prior to rupture of the monolayer MoS2. The tip radius, measured before

and after indentation using a transmission electron microscope (TEM), is 26 nm. The

AFM cantilever is calibrated against a reference cantilever for accurate determination of

its stiffness40. Indentations are performed on twelve suspended membranes from one flake

of MoS2 that can be seen in Figure 6. Each monolayer MoS2 membrane is loaded and

unloaded several times at a prescribed AFM tip displacement rate of 1.25 µm/s. Eight of

the membranes exhibit significant hysteresis of the force-displacement response, indicating

that the van der Waals interactions are not sufficient to preclude slipping at the periphery

of the suspended membranes; data from these membranes are not included in subsequent

analysis. Four of the membranes exhibit negligible hysteresis. The depth of the indent

load-unload cycles is increased in 30–50 nm increments until rupture of the membrane is

recorded, characterized by the tip plunging through the membrane and a sudden diminution

of the force. A typical set of data in Figure 7 show two loading-unloading curves in blue

and green, demonstrating the negligible hysteresis. Subsequently in the red curve, the

membrane is loaded to rupture shown by the × symbol. The average breaking force of the

four membranes is 1500 nN with a standard deviation of 300 nN.
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FIG. 7: Typical loading-unloading curve for a monolayer MoS2 membrane. The blue and green

curves include both the loading and unloading data points. There is no evidence of hysteresis. The

red curve ends in abrupt fracture of the membrane, marked by the × symbol.

The force-displacement data are analyzed to characterize the elastic response of mono-

layer MoS2. A semi-empirical formula approximates the relationship between force and

displacement for an axisymmetric membrane under a central point load as4

F = σ0 (πa)

(

δ

a

)

+ E
(

q3a
)

(

δ

a

)3

(19)

where F is the applied force on the AFM tip, δ is the load point deflection, a is the membrane

radius, E and σ0 are the 2D Young’s modulus and prestress in the film, respectively, and

q = (1.05− 0.15ν − 0.16ν2), and ν = 0.29 the Poisson’s ratio. The prestress and Young’s

modulus are determined by fitting Equation 19 to the experimental force-displacement data.

The resulting measure of stiffness is valid only as an estimate of the in-plane Young’s mod-

ulus; it does not offer any insight into 3D mechanical behaviors such as bending stiffness.

In this study, 26 loading curves yield an average value of Ē = 120 N/m with a standard

deviation of 30 N/m and an average prestress of σ̄0 = 0.4 N/m with a standard deviation of

0.2 N/m.

Experimental Validation

We now discuss results of a detailed finite element analysis (FEA) of the indentation of

the circular monolayer MoS2 membrane and compare the results to the experimental data.

The FEA simulation employs the higher-order non-linear elastic constitutive behavior of
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Equations 6-8 as well as the elastic constants in Table II that have been implemented into a

User Material (UMAT) subroutine10 for use with the commercially available finite element

program ABAQUS41. This implementation is valid for use in membrane elements, which

implies that the bending stiffness of the MoS2 is vanishingly small compared to the in-plane

stiffness. This assumption is valid when the radius of curvature of the deformed MoS2

monolayer is much greater than the distance between nearest atomic neighbors. Specifically

for these simulations, the smallest radius of curvature in the MoS2 is the 26 nm of the

indenter tip and the interatomic distance is 3.16 Å.

The circular membrane of diameter 500 nm is modeled with 9575 four-node membrane

elements and is clamped to inhibit displacements at its periphery and loaded at its center

with a frictionless rigid sphere of radius 26 nm. An equibiaxial prestress is set to 0.42 N/m,

the average measure of prestress from AFM nanoindentations. The simulation is performed

in approximately 900 time increments equating to an average of 1.2 nm of indenter displace-

ment per increment. The FEA formulation requires 3D stress and modulus measures as well

as a well-defined membrane thickness, so we perform the computations using the derived 3D

quantities. However we report the results in terms of the intrinsic 2D quantities.

Figure 8 shows the simulated force-displacement curve at the center of the membrane for

both the LDA and PBE approximations, which are in good agreement with experimental

results from AFM nanoindentations. The close agreement between the results from the finite

element model based on first-principles data and the nanoindentation curve is a testament

to the validity of the experimental and theoretical framework that comprise this study.

Figure 9 shows the details of the stress concentration in the MoS2 monolayer under

the indenter tip. At very shallow indentation depths, the stress state is axisymmetric (cf.

Figure 9A), consistent with elastic isotropy at small strains. At an intermediate indentation

depth in Figure 9B, the stress state begins to develop a six-fold rotation symmetry, which

becomes fully developed at large indentation depths of Figure 9C. Thus monolayer MoS2

develops an elastic anisotropy with a six-fold rotation symmetry at finite strains of an

approximate equibiaxial nature, consistent with the D3h point group of the hexagonal lattice.

The deformation state in the very center of the indented region experiences equibiaxial

deformation, so that according to Figure 3a the LDA data, the peak stress the MoS2 can

withstand is 16.5 N/m a Lagrangian strain of about 0.23. At larger equibiaxial strains, the

stress will decrease and the deformation state will be unstable because of the negative local
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tangent modulus leading to strain softening. Figure 9D shows the monolayer MoS2 at the

state when the stress in the very center has begun to decrease. The FEA simulation becomes

unable to converge to equilibrium solutions at an indentation depth past 102 nm, where force

on the indenter tip in the first-principles FEA model is 1490 nN for the LDA least squares

fit and 1360 nN for the PBE least squares fit, well within the experimental uncertainty

of the measurements. The 95% confidence interval for the experimental breaking force is

1350–1650 nN. A smaller degree of uncertainty in experimental measurements would lend

insight into which approximation closer represents the mechanical properties of MoS2.
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FIG. 8: Comparison of the multiscale finite element models based on first principles data rep-

resented by the solid and dashed lines for LDA and PBE fits, respectively. The AFM data is

represented by ◦ symbols. The point at which fracture occurs in the model is represented with a +

symbol for the LDA fit and a × symbol for the PBE fit. The measured breaking force from AFM

nanoindentatio is represented by the red © symbol.
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FIG. 9: Abaqus FEA contours showing maximum principal stress at each integration point under

the spherical rigid indenter at indentation depths of: (A) 6 nm; (B) 63 nm; (C) 98 nm; and, (D)

101 nm. The scale bars in (A)–(D) are 30 nm.
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Conclusions

We have calculated using DFT the elastic response of monolayer MoS2 for in-plane condi-

tions of uniaxial strain and equibiaxial strain. The strains range from infinitesimal values to

finite values beyond that corresponding to the intrinsic (i.e. maximum) stress. In addition,

we derived the framework for a thermodynamically rigorous non-linear elastic constitutive

relationship for arbitrary in-plane deformation by expanding the strain energy density in

a Taylor series in powers of Lagrangian strain truncated after the fifth power. There are

fourteen indendent components of the resulting stiffness tensors. The values of these com-

ponents are determined by fitting to the DFT results. The resulting multiscale continuum

constitutive relationship is non-linear and anisotropic, although the non-linearity does not

manifest itself until a strain beyond about 0.05 and the anisotropy becomes significant only

after a strain of about 0.1. AFM nanoindentation experiments performed on circular sus-

pended monolayers of MoS2 provide experimental evidence of intrinsic strength and in-plane

Young’s modulus. A detailed finite element model (FEM) of the experimental configura-

tion was performed with ABAQUS along with a user material (UMAT) which incorporated

the continuum constitutive model for use in membrane elements. The predicted force vs.

displacement response as well as the force at rupture of the MoS2 film correspond closely

to the experimental values. This study bridges three main gaps that hinder understand-

ing of material properties: DFT to FEM, experimental results to DFT, and the nanoscale

to the microscale. In bridging these three gaps the experimental results validate the DFT

calculations and the multiscale constitutive model.

Our results show that MoS2 is a strong and flexible crystal. The maximum stress at

the point of fracture is the intrinsic strength of the MoS2, σint = 16.5 N/m as confirmed

with finite element analysis implementation of the non-linear elastic constants. When

assuming a monolayer thickness of t = 0.615 nm, the 3D intrinsic strength of MoS2 is

σ3D
int = 26.8 GPa. The in-plane Young’s modulus suitable for conditions of infinitesimal

strains is E = 16.5 N/m, or E3D = 210 GPa, which is consistent with the experimental re-

sults of Bertolazzi11. The in-plane Poisson’s ratio suitable for conditions of infinitesimal

strains as calculated using DFT is ν = 0.29. It is interesting to note that Griffith42 predicts

the intrinsic strength of a material to be σint ≈ E/9, whereas experimental and DFT results

suggest σint ≈ E/8 in accordance with studies measuring the intrinsic strength of graphene4.
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