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ABSTRACT:  

Frictional, adhesive, and elastic characteristics of graphene edges are determined through 

lateral force microscopy.  Measurements reveal a significant local frictional increase at exposed 

graphene edges, whereas a single overlapping layer of graphene removes this local frictional 

increase.  Comparison of lateral force and atomic force microscopy measurements shows that 

local forces on the probe are successfully modeled with a vertical adhesion in the vicinity of the 

atomic-scale graphene steps which also provides a new low-load calibration method.  Lateral 

force microscopy performed with carefully maintained low-adhesion probes shows evidence of 

elastic straining of graphene edges.  Estimates of the energy stored of this observed elastic 

response is consistent with out-of-plane bending of the graphene edge.   

PACS (81.05.ue, 81.07.Lk, 46.55.+d, 62.25.-g, 68.35.Af, 62.20.de) 
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I. INTRODUCTION 

Graphene has tremendous potential for use in a wide range of applications owing to its 

incredible mechanical, thermal, and electronic properties.1-4  The structural properties of 

graphene edges are expected to play an important role in electrical and thermal transport,5, 6 

particularly as the dimensions of graphene elements are reduced to the nanoscale.7-10  In addition, 

strain within graphene can induce an effective local magnetic field11-15 making recently proposed 

strain effects in the vicinity of graphene edges particularly important in determining transport 

properties of graphene nanostructures,11, 16-19 while recent theoretical work has also raised the 

possibility that strain along the graphene edge could inhibit quantum Hall effect physics.17, 20  

Although recent investigations of the mechanical properties of bulk graphene have demonstrated 

its tremendous strength21 and low friction,22-25 such characteristics have been relatively 

unexplored in the vicinity of its edges.   

Lateral force microscopy (LFM), which is the measurement of torsional deflections of a 

cantilever as it is dragged over a surface, has been used over the last few decades to probe 

nanometer-scale frictional and topographic features.26  Although it has long been known that 

there are significant increases in lateral force signals at atomic scale steps,27, 28 the source of 

these increases has been of ongoing debate.24, 29-31  Elimination of these localized increases, 

while maintaining the overall atomic-scale surface topography, could have significant 

implications towards the realization of low-friction micro- and nano-electromechanical systems.  

Here we report on frictional, adhesive, and elastic characteristics of graphene edges through 

the use of lateral force microscopy.  LFM reveals a significant local frictional increase at the 

exposed edges of graphene, whereas a single overlapping layer of graphene nearly completely 
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removes this local frictional increase.  This result indicates graphene could be an ideal, 

atomically thin coating for reducing local friction associated with atomic steps.  Direct 

comparison between LFM and atomic force microscopy (AFM) measurements shows that the 

local forces on the scanning probe are successfully modeled with a vertical adhesion in the 

vicinity of the atomic-scale graphene steps.  Taking this adhesion into account allows for the 

surface topography of graphene to be determined through low-load LFM measurements and also 

provides a new low-load LFM calibration method.  Through the use of carefully maintained 

scanning probe tips, we also observe evidence of elastic straining of graphene edges, which 

behave as nanoscale springs.  Estimates of the strain energy are consistent with out-of-plane 

bending of graphene edges when sharp LFM tips are dragged into them.  The elastic response we 

observe represents the reversible straining of graphene edges and could represent a possible route 

for reversibly tuning the electronic properties of graphene. 

II. METHODS 

 A. Sample preparation 

The graphene samples were prepared through mechanical exfoliation of kish graphite onto 

silicon substrates with a 300 nm oxide layer.2   Prior to exfoliation, the substrates were placed in 

an ultrasonic cleaner in acetone, isopropyl alcohol, and deionized water for 3 minutes each.  This 

was followed by UV-ozone cleaning. After exfoliation, few-layer graphene films were initially 

identified through optical microscopy. The number of atomic layers was then determined 

through both Raman spectroscopy and AFM height measurements.  The graphene films did not 

undergo any further processing. 

 B. Lateral force and adhesion measurements 
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The LFM measurements were performed with an Asylum Research MFP-3D atomic force 

microscope in ambient laboratory conditions (at a temperature of 20 േ 3 C° and a relative 

humidity of 20 േ 3 %).  We used PPP-LFMR probes, manufactured by Nanosensors, which 

have nominal values of 0.2 N/m and 23 kHz for the force constant and resonant frequency, 

respectively (details of this model are discussed below in Appendix B).  As usual in LFM, the 

scan angle is selected such that the cantilever beam is perpendicular to the fast scanning 

direction.  Light from an infrared laser is reflected off the back of the cantilever and onto a four-

quadrant position sensitive detector (PSD) in order to monitor both lateral and vertical 

deflections of the probe.  When the tip is scanned across the sample surface, lateral forces cause 

the cantilever to undergo torsional rotation.  This deflects the laser spot in the horizontal 

direction at the PSD.   Simultaneously, the vertical deflection is maintained through closed-loop 

feedback control which provides topographical information of the scanned region.  In these 

experiments, we utilized probes which minimized crosstalk between the horizontal and vertical 

laser spot deflections.32 

Measurement of the adhesion force is done by bringing the tip into contact with the sample 

surface then retracting it while monitoring the deflection voltage to determine the force required 

to snap the tip off the sample surface.  Details of these adhesion measurements and their relation 

to scanning probe tip properties are discussed below in Appendix A.  Overall, we find that 

differences in the tip-graphene and tip-SiO2 adhesion forces are negligible.  The net load ܨ௧ is 

defined as the sum of the vertical applied load ܮ by the scanning probe cantilever and the 

adhesion force ܣ between the tip and sample.  Applying a negative load ܮ is possible by first 

bringing the tip into contact with the sample surface then allowing the adhesion force to maintain 

contact when the negative load is applied. 
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III. RESULTS AND DISCUSSION 

To investigate the mechanical and frictional characteristics of graphene edges we focus on 

graphene crosses where one graphene layer obliquely overlaps a second layer.   Such crosses 

occasionally occur during the mechanical exfoliation processes and provide two different edges 

for comparison -- one exposed and the other covered by a layer of graphene.  Figure 1a shows an 

atomic force microscopy (AFM) contact-mode height scan of a cross formed from two single 

layers of graphene that produced four distinct regions – two that are one atomic layer thick, a 

bilayer region, and the exposed SiO2.  
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Figure 1: AFM and LFM of graphene crosses:  a, Contact mode AFM height image of a 
graphene cross. b-c,  Schematic diagram of LFM model with the adhesion directed normal (b) to 
the local surface and vertically (c) as the tip is dragged over a step. d-e, LFM scan image formed 
while scanning the tip in the "trace" direction (left to right) (d) and in the "retrace" direction 
(right to left) (e). f-g, Line scans taken from (e) along the green dashed lines for the uncovered 
(f) and covered (g) edges. Data represent the average of 150 adjacent line scans over a width of 
146 nm. The data in d-g were taken with a net load Fnet of 9.0 nN, where Fnet is defined as the 
sum of the 6.7 nN load L applied by the cantilever tip and the 2.3 nN adhesion A of the tip to the 
surface determined through independent force plots. 
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Although the AFM height image of Fig. 1a does not show discernible differences between the 

boundaries, LFM (Figs. 1b and 1c) clearly distinguishes between the two types of edges.  Figures 

1d and 1e show the lateral signals simultaneously measured with the contact-mode data in Fig. 

1a.  Figure 1d corresponds to the "trace" image (scanning left to right) and Fig. 1e corresponds to 

the "retrace" image (scanning right to left).  In both the trace and retrace LFM images, the 

uncovered edge has much greater contrast than the covered edge.  Moreover, the uncovered edge 

shows both a positive and negative torsional deflection of the lateral probe depending on scan 

direction whereas the covered edge produces the same LFM deflection regardless of scan 

direction, clearly discernible in the line scans in Figs. 1f and 1g.  These LFM measurements 

allow for the easy identification of covered or uncovered step edges, enabling one to determine 

the stacking arrangements and folds of few-layer graphene systems. 

To quantify these results, we model the forces on an LFM tip as shown in Figs. 1b and 1c over 

a surface having a local incline angle ߠ (with details of this model discussed below in Appendix 

B).  The forces on the tip are balanced by the forces and moments applied to the cantilever and 

will sum to zero assuming the tip is not accelerating.  The forces applied to the cantilever are the 

transverse force ܶ and the load force ܮ while the resulting moment causes the torsional rotation 

of the cantilever.  We model the tip sample interaction as a normal reaction force ܰ and a 

frictional force obeying Amonton's law ܨ ൌ  In descriptions of interactions between  .ܰߤ

macroscopic inclines and scanning probe tips,33, 34 the adhesion ܣ is typically modeled as an 

attractive force directed normal to the incline, as in Fig. 1b.  However, this choice is not 

necessarily valid for very short inclines that occur for atomic scale changes in topography, so we 

allow ܣ to have a variable direction ranging from the local surface normal (Fig. 1b) to the 
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vertical direction where ߠ ൌ   (Fig. 1c).  In the small angle approximation discussed in detail inߠ

Appendix B, the above model gives the local coefficient of friction, 

ߤ   ൌ ఈWೇሺାሻ,         (1)                               

which depends on the difference between trace and retrace LFM voltage measurements (2W ൌሺ ௧ܸ െ ܸሻ) and an LFM calibration coefficient ߙ that converts  the measured voltage to the lateral 

force on the cantilever tip.  The model also gives the local incline assuming normal directed 

adhesion, 

ߠ   ൌ ఈೇబାሺାሻఓమ,         (2)                               

while for vertical adhesion, 

ߠ   ൌ ఈೇబሺାሻሺଵାఓమሻ.        (3)                        

These equations depend on the average of the trace and retrace voltage measurements (Δ ൌሺ ௧ܸ  ܸሻ/2 െ ܸ) with a zero offset ( ܸ) estimated by averaging ሺ ௧ܸ  ܸሻ/2 over a flat region. 

Figures 2a and 2b show, respectively, LFM scans of an uncovered graphene edge and an edge 

covered by a single layer of graphene which (along with the LFM trace measurements not 

shown) is used to determine a spatially varying W and Δ and, thus, the local frictional 

variations and surface topography through Eqs. (1-3).  Fig 2c is the coefficient of friction as a 

function of position for the uncovered edge for net loads ranging from 1.1 – 8.1 nN, showing that 

there is a substantial increase in the friction near the step edge for these loads. This contrasts the 

behavior at the covered edge, Fig. 2d, where we find that there is essentially no signature of a 

local increase in friction (estimated as a reduction of more than 90%).  This result indicates 

graphene could be an ideal, atomically thin coating for reducing local friction associated with 

atomic steps.  
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The determination of the local topography from the LFM response is shown in Fig. 3 using 

both adhesion models (Eqs. (2) and (3)).  Assuming a normally directed adhesion (Figs. 3a and 

3b) erroneously suggests a topography over the graphene edge that is strongly dependent on ܮ.  

In contrast, the vertically directed adhesion model results in a topography which is remarkably 

consistent over the same range of applied loads (Figs. 3c and 3d).  This is a strong indication that 

the adhesion forces remain predominantly in the vertical direction as the tip traverses the atomic 

step edges. These topographic determinations also show excellent agreement with the 

simultaneously determined AFM height measurements for covered edges, uncovered edges, and 

regions of graphene that conform to the undulations of the substrate, as demonstrated by the 

agreement to the spatial derivative of the height measurements (black line) in Figs. 3c and 3d.  

Since the term 1  ଶߤ ൎ 1 for low friction graphene surfaces, the AFM height measurements can 

be directly compared to the LFM Δ values to obtain the ߙ calibration coefficient.  This 

represents a new low-load LFM calibration method (compared to other techniques33, 34) that is 

sensitive to correct modeling of adhesion forces.  
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Figure 2: Local frictional characteristics of graphene edges:  a-b, LFM retrace scans of an 
uncovered (a) and covered (b) graphene edge. For both scan regions the bi-layer graphene is on 
the left and the single layer is on the right.  Fnet  for the scan in a is 8.1 nN with a 2.8 nN 
adhesion while the scan in b is 8.0 nN with a 2.6 nN adhesion. c-d,  Analysis of line scan data 
from a and b at various loads using Eq. (1) in text.  Data represent the average of 50 adjacent line 
scans over a width of 20 nm.  The graphene edges correspond to a location in the middle of these 
plots (between 40 and 50 nm along the x-axis).  The friction of the bi-layer region varies between 
b and c due to the change in scan angle (kept normal to the edge under investigation), which is 
consistent with recent reports of anisotropic frictional behavior of graphene surfaces.[23] 
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Figure 3: Topography of graphene edges determined through LFM:  a-b, Analysis of line 
scan data from Fig. 2 at various loads using the normal adhesion model, Eq. (2) in text.  c-d, 
Analysis of line scan data from Fig. 2 at various loads using the vertical adhesion model, Eq. (3) 
in text. The black line is the spatial derivative of the AFM height measurements. Data represent 
the average of 50 adjacent line scans over a width of 20 nm.  The graphene edges correspond to a 
location in the middle of these plots (between 40 and 50 nm along the x-axis). 

 

The above measurements were all performed with tips that were previously scanned laterally 

over regions of SiO2 substrate resulting in tips with adhesions of 2.0 - 3.0 nN, a value consistent 

with previous reports.25, 31  When we utilize tips that are scanned with low normal loads 

restricted only to the graphene regions, we observe lower adhesion forces of ~1.0 nN.  These 

carefully maintained tips also show strongly altered LFM characteristics over exposed graphene 

edges.  Figure 4a is a retrace scan of an exposed graphene edge, demonstrating an abrupt change 

in the lateral force as the tip moves up over the atomic step (going from a mono-layer to a bi-
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layer region).  A single line scan (Fig. 4b) reveals that as the tip is dragged into the graphene 

edge in the retrace direction, the LFM signal increases approximately linearly followed by an 

abrupt reduction in force at a location approximately 10 nm to the left.  These LFM signals 

indicate that we are straining the exposed graphene edge as the tip moves up the step followed by 

a release of the stored elastic energy.  These signals are repeatable over hundreds of trace/retrace 

cycles of the LFM tip (as in Fig. 4a) without noticeable displacement of the graphene edge, 

indicating that the edge is being elastically strained.   

The effective spring constant, ݇, for flexing the graphene edge is estimated from the linear 

LFM response to be ~ 0.29 ± 0.11 N/m.  This spring constant value of the graphene edge is 

nearly two orders of magnitude smaller than the torsional spring constant of the LFM tip ݇௧ ൌ ܬܩ ሺ݈ሺ݄  ݐ 2⁄ ሻଶሻ ൎ⁄ 24 N/m,33 where ܩ ൌ 64 Pa is the shear modulus of silicon, ܬ is the 

torsion constant (approximated as 0.3ݐݓଷ, where ݓ is the 48 ߤm width and ݐ is the 1 ߤm 

thickness of the cantilever), ݈ is the 225 ߤm length of the cantilever, and ݄ is the 12.5 ߤm height 

of the cantilever.  Since ݇ ا ݇௧, the vast majority of the deflection occurs within the graphene 

when the tip is laterally pressed against the graphene edge. 

The stick-slip response of the graphene edge when laterally scanning with well-maintained, 

sharp tips can be qualitatively understood through extension of a recently proposed effective 

potential under low normal loads in the vicinity of an atomic step, ܷ ൌ ݔሺ݂ݎሼെ݁ܧ ܾଵ⁄ ሻ ݂݁ݎሺሾݔ െ ܿሿ ܾଶ⁄ ሻሽ.29  In this model ܧ is a constant of order an eV, ܾଵ is the effective barrier 

width at the edge (ݔ ؠ 0) which should be on the order of the tip apex radius, and ܾଶ and ܿ are 

constants larger than ܾଵ which represent a slow recovery of the potential.  Assuming that such a 

potential describes the graphene edge, even when it has been flexed, the value of ݔ represents the 

relative position of the tip to the graphene edge.  Stick-slip motion of this relative coordinate as 
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the tip moves into the edge (in the െݔො direction) will occur at points where ௗమௗ௫మ ൌ െ݇.  

Assuming reasonable values of ܧ ൌ 2 eV and 10ܾଵ ൌ ܾଶ ൌ ܿ in the above potential with the 

observed spring constant of ݇ ൎ 0.3 N/m yields stick-slip behavior for ܾଵ د 1 nm.  For atomic-

scale effective barriers with ܾଵ ൎ 0.1 nm the stick slip distance is ൎ 11 nm -- in good agreement 

with our experiments.  As the effective tip apex and barrier width increase beyond 1 nm, the 

relative edge-tip distance is instead smoothly varying as the tip moves up the edge.  This 

suggests that the smoothly varying lateral signal we observe for worn tips is due to their larger 

effective tip apex radii; a view also supported by their increased adhesion to the sample surface. 

Covered edges do not show stick-slip flexing for the same well-maintained sharp tips and 

normal loads that cause this large (~ 10 ݊݉) stick-slip flexing of uncovered edges.  This 

suggests that a single covering layer of graphene increases the effective barrier width and/or 

decreases its depth to suppress stick-slip.  The covering layer may also similarly act to suppress 

much smaller atomic-scale stick-slip displacements of the edge as a large-diameter worn tip (like 

the ones used to obtain the data in Figs. 1-3) moves over it.  The reduction of atomic-scale stick-

slip should likewise lead to the concomitant decrease in friction,35 which could be the source of 

the significantly reduced friction observed for worn tips over covered edges in comparison to 

uncovered edges seen in Fig 2.  

The energy stored in the large (~ 10 ݊݉) uncovered graphene edge strain using well-

maintained sharp tips is approximately ݇ሺ10 ݊݉ሻଶ 2⁄ ൎ 90 ܸ݁.  Estimates of possible in-plane 

strain energy are too large to account for this observed edge displacement.  In-plane strain energy 

can be estimated with a two-dimensional model as గ଼ ாଵିఔమ ሺൎ ܧ ଶ whereݔ 1.02 TPa) is Young's 

modulus, ܮ (ൎ 0.34 nm) is the thickness of graphene, and ߥ (ൎ 0.24) is the Poisson ratio for 

graphene36 -- giving an energy of 9000 ܸ݁ for ݔ ൎ 10 nm displacement.35  
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In contrast, out-of-plane distortions (as represented in Fig. 4c) are much more consistent with 

our measurements.  Although a detailed determination of possible out-of-plane strain energy is a 

subtle issue,36 we obtain a rough estimate of it by considering the sum of the energy stored in 

bending a ~ 10 nm region of graphene in addition to the van der Waals (vdW) adhesion energy 

over this same region.  The bending energy can be estimated through 2ܥ  ݑሺ݀ଶݕ݀ݔ݀ ⁄ଶݔ݀ ሻଶ, 

where ݑ is the deflection and ܥ (1.2 eV) is the bending stiffness.37  Assuming a uniform bending 

radius of ~ 9 nm yields an energy of  ~5 eV.  An estimate of the adhesion energy over a ~ 10 nm 

diameter region can be estimated from the vdW adhesion energy (1.6 ൈ 10ଵ଼ eV/m2)37 to be 

~130 eV.  Since the sum of these out-of-plane energies is the same order of magnitude as our 

measurements, our observed edge strain is consistent with such a mode of deformation.  

Considering the large effects that such a strain can have on the transport properties of graphene,12 

the elastic response we observe represents a possible route for reversibly tuning the electronic 

properties of graphene.   

It has also recently been suggested that out-of-plain elastic strain over the bulk portions of few-

layer graphene samples could play an important role in the frictional dissipation for sharp 

asperities.38  Likewise, the out-of-plane elastic strain indicated by our experiments could lead to 

additional modes of frictional energy dissipation at graphene edges.     
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Figure 4: Elastic response of graphene edge:  a, LFM retrace scan of a graphene edge.  Bi-
layer region is on the left, and single layer region is on the right. b, Single LFM scan lines in the 
trace and retrace directions as the tip is dragged across the edge. c, Schematic model of the tip 
causing out-of-plane strain of the edge as the tip is dragged towards it, to the right. 

 

IV. CONCLUSIONS 

We have observed frictional, adhesive, and elastic characteristics of graphene edges through 

the use of LFM.  By focusing on single overlapping graphene layers (graphene crosses), LFM 

has revealed a significant local frictional increase at the exposed edges of graphene.  In contrast, 

an edge covered by a single overlapping layer of graphene nearly completely removes this local 

frictional increase, indicating that graphene could be an ideal, atomically thin coating for 
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reducing local friction associated with atomic steps.  Experimental comparison of LFM and 

AFM revealed that the local adhesion in the vicinity of graphene edges is directed vertically 

downwards.  Taking this vertical adhesion into account allows for the surface topography of 

graphene to be determined through low-load LFM measurements and also provides a new low-

load LFM calibration method.  Through the use of low-adhesion scanning probe tips, we also 

observed evidence of elastic straining of graphene edges that act like nanoscale springs.  

Estimates of the strain energy are consistent with out-of-plane bending of graphene edges when 

atomically sharp LFM tips are dragged into them which causes a single large (~ 10 nm) stick-slip 

event.  The elastic response we observe represents the reversible straining of graphene edges and 

could have application in future nanoscale electro-mechanical devices. 
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APPENDIX A: CANTILEVER AND SCANNING PROBE TIP CHARACTERIZATION 

In order to apply precise load forces while scanning a sample, it is necessary to determine the 

spring constant (݇) of a particular tip, as the actual value may vary significantly from the values 

supplied by the manufacturer. It is also necessary to determine the inverse optical lever 

sensitivity (ܵܮܱݒ݊ܫ, units of nm/volt) which is the proportionality constant used to determine the 

deflection of the cantilever, in nanometers, from the vertical deflection voltage ( ௗܸ).  From 
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these, we have ܼௗ  ൌ · ܵܮܱݒ݊ܫ   ௗܸ, and the applied load force ܮ ൌ െ݇ · ܼௗ, which when 

combined,  allow us to apply a specific load force by setting ௗܸ.   

The net load force ܨ௧ (the average net force over a flat horizontal surface) is the sum of ܮ 

and the adhesion force (ܣ) between the tip and sample.  In general, the adhesion force can 

depend on van der Waals (vdW) forces, sample charging, tip geometry, and environmental 

conditions such as humidity.  Measurement of the adhesion force was done by bringing the tip 

into contact with the sample surface then retracting it while monitoring the deflection voltage to 

determine the force required to snap the tip off the sample surface (Fig. 5a). We found that 

differences in the tip-graphene and tip-SiO2 adhesion forces are negligible for the results 

presented here (Fig. 5b). The adhesion force also tends to increase due to wear on the tip at high 

loads (Fig. 6) therefore the adhesion was measured between successive scans. 
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Figure 5: Adhesion and force maps of sample: a, The tip-sample adhesion force is measured 
by taking a force-distance curve. During this measurement, the tip is brought into hard contact 
with the sample surface. As the cantilever is retracted to withdraw the tip, adhesive forces 
oppose the release of the tip from the surface. The force measured just before the tip is released, 
in this case ≈1.5 nN, is the adhesion force. b, An adhesion force map is generated by taking a 
force-distance curve at every point during a scan centered about the same location as the AFM 
image, Fig. 1a, as shown above for a single-layer on single-layer graphene cross. On average, we 
find the differences in the tip-graphene and tip-SiO2 adhesion forces to be less than 0.2 nN. 
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Figure 6: Effects of tip-wear: a-b, Trace and retrace LFM images, respectively, of an 
uncovered graphene step edge taken with a net applied load of 4.0 nN using a pristine LFM 
probe that exhibited an adhesion force of about ~1.0 nN. Note that the graphene edge 
compression features are enhanced. c-d, Respective LFM trace and retrace image comparisons of 
a similar region acquired with a net applied load of 3.9 nN with the same tip after it was scanned 
at a high load (approximately 20 nN) over the SiO2 surface. The high-load scans were performed 
four times with a square window scan size of 125 nm and a scan rate of 0.6 Hz. The blunted tip 
exhibited an adhesion force of about 2.9 nN. 

 

Crosstalk, the convolution of the lateral deflection voltages into the vertical deflection voltage 

channel and vice versa, must also be considered when making LFM measurements. This 
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crosstalk can have many possible sources, including a rotated PSD, asymmetries in the 

tip/cantilever, or large changes in either topographical or frictional features in the sample.32 In 

these experiments, it was found that the degree of crosstalk was largely dependent on the tip 

being used and only probes that exhibited minimal crosstalk were used. 

 

APPENDIX B: LATERAL FORCE MODELING 

To quantify these changes in friction and morphology, we model the forces on an AFM 

cantilever tip as shown in the schematic in Figs. 1b and 1c as it is dragged over the local surface 

having an incline angle ߠ.  The forces on the tip are balanced by the forces and moments applied 

to the AFM cantilever and will sum to zero assuming the tip is not accelerating.  Separating the 

forces parallel and normal to the inclined surface yields respectively for the rightward (trace) 

motion of the tip, 

 ௧ܶ cos ߠ െ ܮ sin ߠ െ ௧ܨ െ ܣ sin ߠ ൌ 0      (B1) 

 െ ௧ܶ sin ߠ െ ܮ cos ߠ ט ܰ െ ܣ cos ߠ ൌ 0,                              (B2)                          

where the applied horizontal force on the cantilever is ௧ܶ, the vertical load applied to the 

cantilever is ܮ, the frictional force at the tip is ܨ௧, and ܣ is the adhesion force on the tip which is 

directed at the angle of ߠ with respect to the normal of the surface.  We will also assume 

Amonton's law such that ܨ௧ ൌ  is the coefficient of friction and ܰ is the normal ߤ where ,ܰߤ

force acting on the tip from the surface.  This normal force can be eliminated from equations 

(B1) and (B2) and solved for ௧ܶ such that  

 ௧ܶ ൌ ሺୱ୧୬ ఏାఓ ୡ୭ୱ ఏሻାሺୱ୧୬ ఏಲାఓ ୡ୭ୱ ఏಲሻୡ୭ୱ ఏିఓ ୱ୧୬ ఏ .           (B3)                          

We will assume small angles for the topography so that ߠ and ߠ are small and we can 

approximate ௧ܶ as 
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 ௧ܶ ൎ ሺఏାఓሻାሺఏಲାఓሻଵିఓఏ .           (B4)                            

Likewise, the horizontal force for the leftward (retrace) motion of the tip is  

 ܶ ൌ ሺୱ୧୬ ఏିఓ ୡ୭ୱ ఏሻାሺୱ୧୬ ఏಲିఓ ୡ୭ୱ ఏಲሻୡ୭ୱ ఏାఓ ୱ୧୬ ఏ ൎ ሺఏିఓሻାሺఏಲିఓሻଵାఓఏ .      (B5)                     

Assuming a small tilt angle ߮ for the cantilever and requiring that the sum of the moments about 

the tip of the cantilever be zero we obtain 

௧ܯ  െ ቀ݄  ௧ଶቁ ௧ܶ െ ܮ ቀ݄  ௧ଶቁ ߮௧ ൌ 0,        (B6)                            

where ܯ௧ is the constraining moment applied by the fixed base of the cantilever, ݄ is the AFM 

tip height, and ݐ is the cantilever beam thickness.  Since the externally applied moment is in 

response to the torsional rotation of the cantilever by ߮, we can relate the two quantities through 

  ߮௧ ൌ ெீ ,                                        (B7)                            

where ݈ is the length of the cantilever, ܩ is the shear modulus, and ܬ is the torsion constant of the 

cantilever which depends on its geometrical cross section.  Equation (B6) can now be written as  

௧ܯ  ቊ1 െ ቀାమቁீ ቋ ൌ ቀ݄  ௧ଶቁ ௧ܶ.                                                                        (B8)  

For the cantilevers we use and for vertical cantilever loads ܮ د 10 ݊ܰ, we have 
ቀାమቁீ ا 1, so 

that Eq. (B8) can be approximated as 

௧ܯ  ൌ ቀ݄  ௧ଶቁ ௧ܶ,          (B9)                            

with a similar relation for the retrace scan direction.   

In LFM, we measure a voltage signal for the trace direction ௧ܸ that is related to the torsional 

rotation and, thus, the torsional moment on the cantilever.  For small torsional angles this relation 

is (for both trace and retrace signals respectively) 
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 ௧ܸ ൌ ܸ  ெఈቀାమቁ,             (B10)                          

and  

 ܸ ൌ ܸ  ெೝఈቀାమቁ,                (B11)                         

where ܸ is an offset and ߙ is the LFM calibration coefficient where the term ߙ ቀ݄  ௧ଶቁ converts 

a torsional moment applied to the cantilever to the measured voltage.  For a flat surface with the 

lateral force only due to frictional effects, the term ெቀାమቁ  is the frictional force.  We can 

determine the local frictional and topographical changes using the above relations by taking half 

the difference (W ൌ ሺ ௧ܸ െ ܸሻ/2) and the average (Δ ൌ ሺ ௧ܸ  ܸሻ/2,) of the trace and retrace 

voltage measurements, such that 

 W ൌ ଵଶఈ ሺ ௧ܶ െ ܶሻ ൎ ఓሺାሻఈ ,           (B12)                           

and,  

 Δ ൌ Δ െ ܸ ൌ ଵଶఈ ሺ ௧ܶ  ܶሻ ൎ ఏାఏಲାሺାሻఓమఏఈ ,      (B13)                         

where we have only kept terms to linear order in the small angles.  The ܸ baseline can be 

estimated by taking the spatial average of Δ over a region where we expect ߠ and ߠ to vary 

equally on either side of zero.  We use the flat regions over uniform thicknesses of FLG to 

perform this baseline determination. 

Equation (B12) can be inverted to determine the local coefficient of friction from 

experimentally determined values such that,   

ߤ  ൌ ఈWೇሺାሻ.          (B14)                           

The local coefficient of friction of a surface can be obtained once the calibration coefficient ߙ is 

determined.  
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Unlike the coefficient of friction, the local topography determined by the measurements is 

highly influenced by the relation between ߠ and ߠ. Conventionally, ߠ is chosen to be zero such 

that the adhesion is always directed normal to the local contact between the AFM tip and the 

surface.  However, this choice is not necessarily valid for very short inclines that are appropriate 

for atomic scale changes in topography.  Thus we arrive at the two possible cases:  For normal 

adhesion we have, 

ߠ  ൌ ఈೇబାሺାሻఓమ,          (B15)                           

while for vertical adhesion we have, 

ߠ  ൌ ఈೇబሺାሻሺଵାఓమሻ.         (B16) 

For both cases we consider here for the adhesion, the local coefficient of friction can be 

determined from Eq. (B14) and inserted into Eqs. (B15) and (B16) to determine the local slope 

of the topography. 
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