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The possibility of realizing lattice analogues of fractional quantum Hall (FQH) states, so-called fractional

Chern insulators (FCIs), in nearly flat topological (Chern) bands has attracted a lot of recent interest. Here,

we make the connection between Abelian as well as non-Abelian FQH states and FCIs more precise. Using a

gauge-fixed version of Qi’s Wannier basis representation of a Chern band, we demonstrate that the interpolation

between several FCI states, obtained by short-range lattice interactions in a spin-orbit coupled kagome lattice

model, and the corresponding continuum FQH states is smooth: the gap remains approximately constant and

extrapolates to a finite value in the thermodynamic limit, while the low lying part of the orbital entanglement

spectrum remains qualitatively unaltered. The orbital entanglement spectra also provides a first glimpse of

the edge physics of FCIs via the bulk-boundary correspondence. Corroborating these results, we find that the

squared overlaps between the FCI and FQH ground states are as large as 98.7% for the eight electron Laughlin

state at ν = 1/3 (consistent with an earlier study) and 97.8% for the ten electron Moore-Read state at ν = 1/2.

For the bosonic analogues of these states, the adiabatic continuity is also shown to hold, albeit with somewhat

smaller associated overlaps etc. Although going between the Chern bands to the Landau level problem is often

smooth, we show that this is not always the case by considering fermions at filling fraction ν = 4/5, where the

interpolation between Hamiltonians describing the two systems results in a phase transition.

PACS numbers: 73.43.Cd, 71.10.Fd, 73.21.Ac

I. INTRODUCTION

After Haldane’s seminal work modeling an integer quantum

Hall (IQH) effect in a simple lattice model1 it took over twenty

years until it was recently realized that similar ideas could be

see to emulate lattice analogues of fractional quantum Hall

(FQH) states2–6. These states, termed fractional Chern insula-

tors (FCIs), have a number of appealing traits: most saliently

they do not require an external magnetic field and they might,

in principle, persist at elevated temperatures.

While the basic ingredient needed for the IQH effect is a

band with non-zero Chern number (and a finite band gap),

an additional perquisite for the FCIs is that these bands are

only weakly dispersive, thus enhancing the effect of interac-

tions within the band. Following the initial suggestions2–4,

there are by now many known models with nearly flat bands

carrying non-zero Chern number, including intriguing solid-

state proposals2,7–12 and possible cold atom realizations13. Al-

though there is plenty of numerical evidence for FCI ana-

logues of Laughlin states4–6, hierarchy/composite fermion

states14–16 as well as non-Abelian states17–19, the physics in

Chern bands is only identical to that of a Landau level in a

very idealized limit17,20. In actual lattice models, however, the

distinctions are rather striking such as particle hole-symmetry

breaking15,16 and the emergence of qualitatively new compet-

ing compressible states15, underscoring the need for a better

understanding of theses systems at a quantitative level.

In an insightful paper, Qi introduced a Wannier basis rep-

resentation of a Chern band mincing the Landau gauge wave

functions in the continuum, and thereby paved the way to-

wards a more direct comparison between FCI and FQH

states21. Indeed, Scaffidi and Möller recently used this map-

ping to convincingly show that the ν = 1/2 bosonic FCI

state on the honeycomb lattice is indeed smoothly connected

to the Laughlin state describing the continuum FQH state

at the same filling fraction22. However, a direct implemen-

tation of Qi’s Wannier mapping is not always successful—

e.g., wave function overlaps with FQH model states often turn

out to be minuscule even in models where there are well es-

tablished FCI phases—due to the finite size properties (non-

orthogonality) of the Wannier functions and, in principle, also

because the two systems carry independent gauge degrees of

freedom. This issue was considered in detail by Wu et. al.

who also came up with an involved, yet elegant, prescription

that remedy these problems and showed that it lead to impres-

sive overlaps between the fermionic FCI at ν = 1/3 and the

corresponding Laughlin FQH state23.

In this work, we apply the Wannier state mapping21 adopted

to finite size systems23 to both Abelian and non-Abelian

FCI phases. We demonstrate the adiabatic continuity be-

tween these states and their corresponding FQH analogues

(Laughlin24 and Moore-Read25 states) by showing that the

gap remains essentially unaltered when interpolating between

the FCI and FQH Hamiltonians as well as studying the over-

laps with the model FQH states which turn out to remain

high throughout the interpolation. Moreover, we report on

the first studies of orbital entanglement spectra26 (OES) of

the FCI states. In contrast to the earlier particle entangle-

ment spectrum27 (PES) studies6 which probe the quasi-hole

physics, our OES studies, based on a cut in (Wannier) orbital

space28, provides a first test of the edge physics in FCI phases.

The upshot of these studies is that the FCI states considered
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here are, in a well-defined sense, closer to the idealized model

FQH wave functions than FQH states obtained for more real-

istic (Coulomb) interactions in continuum Landau level. Un-

derscoring that these results are indeed non-trivial, we also

provide an example where the interpolation between the Lan-

dau level physics and the interacting Chern band problem is

not smooth by considering fermions at ν = 4/5.

The remainder of this work is organized as follows. In Sec-

tion II we give relatively detailed description of the Wannier

mapping providing a bridge between the description of Chern

bands and continuum Landau levels on a torus. Section III

contains our main results on the adiabatic continuity and the

OES studies focusing on electronic (fermonic) states [corre-

sponding results for bosons are contained in the Appendix].

Finally, we discuss our findings in Section IV.

II. MODEL AND METHODS

In this section, we put the description of fractional quantum

Hall (FQH) systems in the continuum and fractional Chern in-

sulators (FCIs) in the lattice on the same footing. First, we

discuss the lowest Landau level (LLL) on a torus29, and then

we go on to discuss a suitably adapted version of the Wannier

function mapping of Chern bands in a finite-size system23.

This provides the necessary framework for a direct quantita-

tive comparison between FCIs with FQH states despite the

fact that the two systems have different symmetries. Finally,

we give a specific kagome lattice model that we use through-

out this work to study the FQH-FCI correspondence.

A. Quantum Hall states

We consider N particles projected to the lowest Landau

level on a twisted torus spanned by two basic vectors L1 =
L1v1(α) and L2 = L2v2, where v1(α) = sinαex + cosαey ,

v2 = ey , where α is the twisted angle of the torus, and L1(2) is

the length of the basic vector (in units of the magnetic length).

Assuming the number of flux quanta, Ns, through surface of

the torus is an integer, the magnetic translation invariance in

v1 and v2 direction leads to L1L2 sinα = 2πNs. There are

precisely Ns single particle states, |ψj〉, in the lowest Lan-

dau level that we choose as maximally to be localized in the

ex-direction (but delocalized in the ey-direction) as

〈x, y|ψj〉 =
( 1√

πL2

)
1

2

+∞
∑

n=−∞

exp
{

i
(2πj

L2
+ nL1 sinα

)(

y

−2πj

L2
cotα− nL1 cosα

)

− 1

2

(

x− 2πj

L2
− nL1 sinα

)2}

,

(1)

where j = 0, 1, 2, ..., Ns − 1 is the single-particle momentum

in units of 2π/L2. Note that ψj is quasi-periodic and centered

along the line x = 2πj/N2. We define N0 is the greatest

common divisor of N and Ns, namely N0 ≡ GCD(N,Ns).
Then p ≡ N/N0 and q ≡ Ns/N0 are coprime. There are

two translation operators, Tα(α = 1, 2), that commute with

t1, λ1

Figure 1. (Color online) Schematic picture of the mapping of a flat

Chern band in the lattice model to a continuum Landau level in terms

of Wannier states.

the many-body Hamiltonian (as with any translational invari-

ant operator) and obey T1T2 = e2πip/qT2T1. T1 corresponds

to a ey-translation and T2 translates a many-body state one

lattice constant 2π/L2 in the ex-direction. At filling factor

ν = p/q, because T q
2 commutes with T1, we can diagonalize

certain many-body Hamiltonian HFQH in the LLL orbital ba-

sis and obtain the many-body ground states |ΨFQH(K1,K2)〉
as the common eigenstates of T1 and T q

2 with eigenvalues

e2πiK1/Ns and e2πiK2/N0 , where K1 can be regarded as the

total momentum in the ex-direction. It directly follows that

the degeneracy of |ΨFQH(K1,K2)〉 is at least q-fold, among

which we can always pick up q-fold center-of-mass degener-

ate states with different K1 that are connected by the operator

T k
2 (k = 0, 1, ..., q − 1).
For later convenience, we also introduce an alternative de-

scription of the translational symmetry on the torus. Suppose

Ns has two factors N1 and N2, namely Ns = N1 × N2. Af-

ter defining N0,1 ≡ GCD(N,N1) and q1 ≡ N1/N0,1, we

can introduce two translation operators S1 = (T2)
q/q1 and

R2 = T q1
1 . Because S1 commutes with R2, we can make

the many-body ground states as their common eigenstates.

Within this description of the translational symmetry, the q-

fold center-of-mass degenerate states are

|ΨFQH(s, r)〉 =
1√
q1

q1−1
∑

m=0

e2πim(
sN−κ2

N0q1
)Sm

1 T
r
2 |ΨFQH(K1,K2)〉,

(2)

where s = 0, 1, ..., q1 − 1, r = 0, 1, ..., q/q1 − 1. If we

choose N1 and N2 appropriately, we can make q1 = 1. Then

|ΨFQH(s, r)〉 and |ΨFQH(K1,K2)〉 reduce to the same descrip-

tion.

B. Chern insulators

Now we move our attention from FQH states in the con-

tinuum to the FCIs in the lattice. We consider a two-

dimensional (2D) lattice on the torus with two lattice vec-

tors v1(β) = sinβex + cosβey and v2 = ey . The num-

ber of unit cells is N1 and N2 in respective direction and

there are s sites in each unit cell. The states in the first

Brillouin zone (1BZ) can be labelled by a 2D momentum
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k = (k1, k2) where ki = 0, 1, ...Ni − 1. In momen-

tum space, the single-particle Hamiltonian can be written as

H =
∑

k∈BZ(c
†
k,1, ..., c

†
k,s)h(k)(ck,1, ..., ck,s)

T and a band

structure is formed. We focus on a single, isolated band

|k〉 = ∑s
α=1 uα(k)c

†
k,α|vac〉, where uα(k) is the correspond-

ing eigenfunction of h(k), and suppose N interacting parti-

cles fractionally fill in this band. If the interaction Hamilto-

nian HFCI is chosen appropriately, the ground states of this

interacting many-body system are FCI states |ΨFCI〉 at certain

filling factors ν = N/(N1N2).
To compare the FCI states with the theoretically much bet-

ter understood FQH states, we need to expand |ΨFCI〉 in a basis

with single-particle states that mimic the LLL states [Eq. (1)].

An appropriate choice is the Wannier basis, whose single-

particle state |X, k2〉 is localized in the v1 direction but de-

localized in the v2 direction, where X is the position in the v1

direction and k2 is the momentum (in units of 2π/N2) in the

v2 direction21,23.

In a N1 ×N2 finite-size lattice, when focusing on one frac-

tionally filled band with Chern number C, the (lattice ver-

sion of the) Berry connection in the v1 direction can be de-

fined as A1(k1, k2) =
∑

α e
−i2πǫ1α/N1u∗α(k1, k2)uα(k1 +

1, k2), where ǫ1α is the v1-direction relative displacement

of site α in an unit cell. Similarly we can define the

Berry connection in the v2 direction as A2(k1, k2) =
∑

α e
−i2πǫ2α/N2u∗α(k1, k2)uα(k1, k2 + 1). To restore the or-

thogonality between different Wannier functions, we need

to introduce unitary Berry connections23 A1(2)(k1, k2) =
A1(2)(k1, k2)/|A1(2)(k1, k2)|. Then the unitary Wilson

loops are W1(k2) =
∏N1−1

k1=0 A1(k1, k2) and W2(k1) =
∏N2−1

k2=0 A2(k1, k2), whose argument angles are picked in

(−2π, 0]. After defining a shift δ2 as the cardinality of the

set {k2 = 0, 1, ..., N2 − 1| arg[W1(k2)] > arg[W1(0)]}, we

can introduce a principle Brillouin zone (pBZ) as the set of k2
satisfying Ck2 + δ2 ∈ [0, N2) and move k2 from 1BZ to pBZ.

After introducing [λ1(k2)]
N1 ≡ W1(k2) and [λ2(k1)]

N2 ≡
W2(k1), where we choose the argument angle arg[λ1(k2)] ∈
(−2π/N1, 0] and arg[λ2(k1)] ∈ (−2π/N2, 0], we can define

the Wannier function localized in the v1 direction as

|X, k2〉 =
eiΦ(k2)

√
N1

N1−1
∑

k1=0

e−i
2πk1

N1
X

{

[λ1(k2)]
k1

∏k1−1
κ=0 A1(κ, k2)

}

|k1, k2〉,

where k2 is in pBZ and Φ(k2) is independent of X and needs

to be fixed by a special prescription (see Appendix C for de-

tails). Letting jX,k2 = N2X + Ck2 + δ2, we can build a

one-to-one map between |X, k2〉 and |ψj〉.
Considering the one-to-one map between the Wannier or-

bital and the LLL orbital as well as their similar localizing

properties, the FCI states |ΨFCI〉 in the Wannier basis will be

very well approximated by the lattice version of FQH states

constructed as30

|Ψlat
FQH(s, r)〉 =

∑

{X,k2}

|{X, k2}〉〈{jX,k2}|ΨFQH(s, r)〉, (3)

where |{•}〉 is the many-body occupation configuration over

the single-particle state |•〉 (one can find that |ΨFQH(s, r)〉 in

the LLL orbital basis and its lattice version |Ψlat
FQH(s, r)〉 in

the Wannier basis have a common description). However, it

is important to note that |Ψlat
FQH(s, r)〉 will in general differ

from |ΨFCI〉, since the Hamiltonians of the two systems have

vastly different origins. Moreover, as discussed below, the

symmetries of the two models are different.

C. Symmetries

The FQH Hamiltonian in the LLL on the torus conserves

center-of-mass position corresponding to momentum K1 =
∑N

i=1 ji (mod Ns). However, the corresponding quantity is

not conserved for the FCI problem despite the fact that there

is a one-to-one correspondence jX,k2 = N2X + Ck2 + δ2
between |X, k2〉 and |ψj〉 which allows us to calculate a to-

tal 1D momentum
∑N

i=1(j
X,k2)i (mod N1N2). Instead, the

translational symmetry (in real-space) in the directions of the

two lattice vectors in the Chern band implies a conserved

two-dimensional momentum, which leads to a reduced sym-

metry for the FCI Hamiltonian in the Wannier basis: only

J1 =
∑N

i=1(j
X,k2)i (mod N2) is conserved. [Another man-

ifestation of the lower symmetry in the FCI problem is re-

flected in the lack of particle-hole symmetry15.]

The symmetry difference is indeed a generic effect due to

the underlying lattice where the Berry curvature necessarily

varies in reciprocal space as long as the number of bands is fi-

nite. In an ideal limit, however, the FCI Hamiltonian will have

the same emergent symmetries as the FQH Hamiltonian20.

D. Kagome lattice model

In the following, we focus on a special lattice model,

namely the kagome lattice model proposed in Ref. 2, to in-

vestigate the FCI-FQH correspondence. The single-particle

Hamiltonian of the kagome lattice model [cf. Fig. 1] in the

real space is

H = t1
∑

〈i,j〉,σ

c†iσcjσ + iλ1
∑

〈i,j〉,α,β

(Êij × R̂ij) · σαβc†iαcjβ ,

where Êij is the normalized, |Êij | = 1, electric field arising

from an ion at the center of each hexagon as experienced by a

particle hopping along the unit-vector R̂ij from site i to site j.
In this work we consider electrons are spin-polarized (all spin

up) particles and set t1 = −1 while using band structures cor-

responding to various λ1 as input to our studies of interactions

projected to non-trivial bands. In the momentum space we

have three energy bands, the lowest one of which has Chern

number C = 1. As customary6 we take the flat band limit and

project the interaction Hamiltonian HFCI to this C = 1 band.

Recent numerical work has indeed shown that both Abelian

and non-Abelian FCI states exist in this model19.
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III. CONTINUITY BETWEEN FQH AND FCI

As discussed above, the FQH Hamiltonian and FCI

Hamiltonian have different symmetries. However, they

have similar expression written in second-quantized form.

Taking two-body interactions as an example, we have

HFQH =
∑Ns−1

j1j2j3j4=0 δ
modNs

j1+j2,j3+j4
V FQH
j1j2j3j4

c†j1c
†
j2
cj3cj4 , for

the FQH case, where c†j (cj) creates (annihilates) a

particle in the state |ψj〉, while we have HFCI =
∑N1N2−1

j1j2j3j4=0 δ
modN2

j1+j2,j3+j4
V FCI
j1j2j3j4

c†j1c
†
j2
cj3cj4 , where c†j (cj)

creates (annihilates) a particle in the state |X, k2〉 with j =
XN2 + Ck2 + δ2 for the FCI case. Therefore, the structure of

the Hilbert space of FCIs in the Wannier basis is the same

as that of FQH systems in the LLL orbital basis if we set

Ns = N1 × N2. This makes it meaningful to consider an

interpolating Hamiltonian as follows,

H(λ) = λwFCIHFCI + (1− λ)wFQHHFQH, (4)

where λ ∈ [0, 1] is the interpolation parameter and wFCI and

wFQH are the energy rescaling factors that can make the en-

ergy gap at λ = 0 and λ = 1 equal to 1 (in the cases where

we find adiabatic continuity below it is well established that

the gap survives in the thermodynamic limit at λ = 0 and

λ = 1 respectively). We then diagonalize Eq. (4) in each

J1 = 0, 1, ..., N2−1 sector and analyze the energy gap and the

ground states as a function of λ, in order to examine whether

the FCI states are adiabatically connected to the correspond-

ing FQH model states.

A. Fermions at ν = 1/3

We start our discussion by focusing on the fermions at fill-

ing factor ν = 1/3. On the FQH side, we choose the Hamilto-

nian as HFQH =
∑

i<j ∇2
i δ

2(ri − rj). Then the ground states

are exact three-fold degenerate fermionic Laughlin states with

zero energy. On the FCI side, the Hamiltonian is set as the

nearest-neighbor interaction HFCI =
∑

〈ij〉 ninj . The ground

states are three nearly-degenerate states separated by a gap

from the excited states. Since β = π/3 for the kagome lat-

tice, we set α = π/3 also for the twisted Landau level torus.

This choice is further justified by the large overlap between

the FCI states at λ = 1 and the Laughlin states at λ = 0 (see

the following discussion).

We find that for each λ ∈ [0, 1], there are three nearly-

degenerate states separated by a sizable gap ∆ from excited

levels in the energy spectrum. We report the evolution of ∆
with λ for various system sizes in Fig. 2(a). It can be seen

that the gap never closes for any intermediate λ—in fact it

is always greater than one and has a maximal value at λ ≈
0.4 − 0.6. This provides strong evidence for the adiabatic

continuity between FQH states and FCI states.

To further confirm that there is no phase transition be-

tween λ = 0 and λ = 1, we study the properties of

the ground manifold. We can define the total overlap as

Otot =
1
d

∑d
i=1

∑d
j=1 |〈Ψi

FQH|Ψj(λ)〉|2, where d is the num-

ber of (nearly-) degenerate states (here d = 3), |Ψj(λ)〉 is the

Figure 2. (Color online) Results of the interpolation Eq. (4) for

fermions at ν = 1/3 with Ne = 4 (red dot), Ne = 6 (green triangle),

and Ne = 8 (blue square). In the FCI part, the lattice size is N1 ×
N2 = 4×3, N1×N2 = 6×3 and N1×N2 = 4×6, respectively; and

λ1 = 1. (a) The energy gap ∆ does not close for any intermediate λ.

(b) The total overlap Otot (filled symbol, solid line) and the average

weight W (empty symbol, dotted line) are still close to 1 at λ = 1.

All of those demonstrate that the continuity holds for fermions at

ν = 1/3.

(nearly-) degenerate state of H(λ), and |Ψj
FQH〉 = |Ψj(λ =

0)〉 is the FQH state (here the exact ν = 1/3 Laughlin state).

We find that Otot decreases from 1 at λ = 0 smoothly to about

0.987 at λ = 1 for our largest system size Ne = 8 [Fig. 2(b)].

Therefore, the ground states do not change qualitatively dur-

ing the interpolation from λ = 0 to λ = 1, supporting that the

FCI states are indeed very well captured by the lattice version

of FQH states constructed by Eq. (3).

The entanglement spectrum26 (ES) can usually provide us

more insights than the overlap, which is only a single number

and will necessarily vanish in the thermodynamic limit. For

any bipartite pure state |Ψ〉AB , it can be decomposed using

the Schmidt decomposition,

|Ψ〉AB =
∑

i

e−ξi/2|φAi 〉 ⊗ |φBi 〉,

where the states |φAi 〉 (|φBi 〉) form an orthonormal basis for

the subsystem A (B). {ξi ≥ 0} is defined as entanglement

spectrum and are related to the eigenvalues, ηi, of the reduced

density matrix, ρA = trB(|Ψ〉AB AB〈Ψ|), of A as ηi = e−ξi .

In some previous works, the ES for particle cut have been in-

vestigated extensively to probe the quasihole excitation prop-

erties of FCI states. Here we focus on another kind of ES, the

OES for a cut in orbital space, to test the edge physics of FCI

states.

We first briefly recall the OES of FQH states on the torus

that has been studied in Refs. 31 and 32. The three-fold

degenerate fermionic ν = 1/3 Laughlin states have follow-
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Figure 3. (Color online) The orbital entanglement spectra (OES) of exact fermionic Laughlin states (blue diamond) and the projected nearly-

degenerate states |ΨJ1

prj (λ)〉 (red cross) at ν = 1/3, Ne = 8. The lattice size is N1×N2 = 4×6 and λ1 = 1 for the FCI part. In the left column,

J1 = 0, corresponding to the Laughlin state in K1 = 12 sector. In the middle column, J1 = 2, corresponding to the Laughlin state in K1 = 20
sector. In the right column, J1 = 4, corresponding to the Laughlin state in K1 = 4 sector. In (a), (b) and (c), λ = 0.5. (a): The unprojected

|ΨJ1=0(λ)〉 has weight W ≈ 0.99730 on K1 = 12 sector. The overlap with the Laughlin state O = |〈ΨK1=12

Lau |ΨJ1=0(λ)〉|2 is 0.99654. (b):

The unprojected |ΨJ1=2(λ)〉 has weight W ≈ 0.99732 on K1 = 20 sector. The overlap with the Laughlin state O = |〈ΨK1=20

Lau |ΨJ1=2(λ)〉|2

is 0.99638. (c): The unprojected |ΨJ1=4(λ)〉 has weight W ≈ 0.99732 on K1 = 4 sector. The overlap O = |〈ΨK1=4

Lau |ΨJ1=4(λ)〉|2 is

0.99638. In (d), (e) and (f), λ = 1. (d): The unprojected |ΨJ1=0(λ)〉 has weight W ≈ 0.99062 on K1 = 12 sector. The overlap with the

Laughlin state O = |〈ΨK1=12

Lau |ΨJ1=0(λ)〉|2 is 0.98733. (e): The unprojected |ΨJ1=2(λ)〉 has weight W ≈ 0.99034 on K1 = 20 sector.

The overlap with the Laughlin state O = |〈ΨK1=20

Lau |ΨJ1=2(λ)〉|2 is 0.98667. (f): The unprojected |ΨJ1=4(λ)〉 has weight W ≈ 0.99034 on

K1 = 4 sector. The overlap with the Laughlin state O = |〈ΨK1=4

Lau |ΨJ1=4(λ)〉|2 is 0.98667. The weight and overlap in the middle column

and right column are always the same because of the inversion symmetry of the Wannier basis23. The orange shadows indicate the generic

levels in the OES of |ΨJ1

prj (λ)〉 which deviate from the levels of the exact Laughlin state.

ing simple representations in the orbital basis in the thin-torus

limit33 L2 = 0 (for Ne = 8, Ns = 24),

100100|100100100100|100100
010010|010010010010|010010
001001|001001001001|001001. (5)

We bipartition the system into blocks A and B, which consist

of lA consecutive orbits and the remaining Ns − lA orbits,

respectively [The bold block in Eq. (5) is our subsystem A].

After extracting the ES from the ground states, we label every

ES level by the particle number NA =
∑

j∈A nj and the total

momentum KA =
∑

j∈A jnj (mod Ns) in block A, where

nj is the particle number in the state |ψj〉. In this work, we

concentrate on the case lA = Ns/2.

In Refs. 31 and 32, it was shown that the resulting OES for

the FQH state form towers that can be decomposed into the

edge modes of the underlying conformal field theory (CFT).

This combination comes about as the natural partition, Eq.

(5), gives a subsystem A with the geometry of a cylinder

which has two edges on which gapless edge states with op-

posite chirality reside. An illuminating recent discussion of

the connection between the OES, the CFT describing the edge

and matrix product states was given in Ref. 34.

Considering the structure of the Hilbert space does not

change during the interpolation, we can make a cut in the ba-

sis and extract the OES of |Ψi(λ)〉 by the same method as

that for FQH states. For pure FCI states, this corresponds to a

cut in the localized Wannier orbitals. However, the total mo-

mentumK1 in |Ψi(λ)〉 is not a good quantum number (except

at λ = 0). This means |Ψi(λ)〉 may have weight on some

K1 that |ΨFQH〉 does not have weight on. We can calculate

the weight Wi of each |Ψi(λ)〉 on the K1 sectors of FQH

states and obtain an average weight W = 1
d

∑d
i=1 Wi. From

Fig. 2(b), we can see that the |Ψi(λ > 0)〉 indeed has some
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’momentum leakage’ leading to W < 1. However, even for

the pure FCI states at λ = 1, K1 is also almost conserved

(W ≈ 0.990 for Ne = 8). Therefore, we project |Ψi(λ)〉 into

the K1 sector of the corresponding FQH states and consider

the OES of |Ψi
prj(λ)〉.

In Fig. 3, we display our OES results for Ne = 8 (the lat-

tice size is N1×N2 = 4×6 for the FCI part). For this system

size, |Ψi(λ)〉 are located in the J1 = 0, J1 = 2 and J1 = 4
sectors. They correspond to the Laughlin state with K1 = 12
(100 sector), K1 = 20 (010 sector) and K1 = 4 (001 sector),

respectively. We find that the OES almost perfectly match

that of the corresponding Laughlin states up to ξ = ξmax for

all of the three |Ψi(λ)〉: ξmax ≈ 13.3 at λ = 0.5, while it

reduces slightly to about 12.3 at λ = 1. While the notion of

an entanglement gap26,35 cannot be defined as crisply as in ge-

ometries with only one edge35,36, the impressive match of the

OES with the model state nevertheless strongly suggests that

the edge excitation properties of the Laughlin states are pre-

served during the interpolation and furthermore corroborates

the adiabatic continuity between FCI states and FQH states

at ν = 1/3. In Ref. 31, the OES of the ν = 1/3 Coulomb

ground states were investigated and compared to the model

states. In this case there was a match of the OES levels with

exact ν = 1/3 Laughlin state up to ξmax ≈ 8 (the number of

levels below this value increase with system size). That we

find higher ξmax here indicates that the FCI states in the lat-

tice are actually closer to the Laughlin model states than is the

case for the Coulomb FQH ground states.

B. Fermions at ν = 1/2

It is also interesting to investigate whether the adiabatic

continuity holds also for some non-Abelian states. In fact,

none of the two previous Wannier basis studies22,23 consid-

ered states in this class. To this end, we turn our attention to

the ν = 1/2 fermionic Moore-Read phase. To obtain the exact

fermionic Moore-Read states in the continuum on the torus,

we chooseHFQH =
∑

i<j<k Sijk∇2
i∇4

jδ
2(ri−rj)δ

2(rj−rk),
where Sijk is the symmetrizing operator. The ground states

are exact six-fold degenerate fermionic Moore-Read states

with zero energy. On the FCI side, we construct the Hamil-

tonian as a three-body interaction HFCI =
∑

〈ijk〉 ninjnk be-

tween three nearest-neighbor sites. The ground states are six

nearly-degenerate states separated by a gap from the excited

states. Here we choose a different twisted angle α = 2π/3 for

the torus and this is justified by the large overlap between the

FCI states at λ = 1 and the Moore-Read states at λ = 0 (for

α = π/3 this overlap is relatively small).

We find that there are six nearly-degenerate states |Ψi(λ)〉
for each λ ∈ [0, 1]. The evolution of the energy gap [Fig.

4(a)], total overlap and average weight [Fig. 4(b)] behave sim-

ilarly with those for the ν = 1/3 fermionic Laughlin phase.

While both of the total overlap and average weight are slightly

smaller (Otot ≈ 0.977 and W ≈ 0.984 at λ = 1 for our largest

system size Ne = 10), these numbers are way above the over-

laps found between the Moore-Read state and the Coulomb

ground state in the second Landau level41. [Of course, the

Figure 4. (Color online) Results of the interpolation Eq. (4) for

fermions at ν = 1/2 for Ne = 6 (red dot), Ne = 8 (green trian-

gle), and Ne = 10 (blue square). In the FCI part, the lattice size is

N1 × N2 = 3 × 4, N1 × N2 = 4 × 4 and N1 × N2 = 5 × 4,

respectively; and λ1 = 0.8. (a) The energy gap ∆ does not close for

any intermediate λ. (b) The total overlap Otot (filled symbol, solid

line) and the average weight W (empty symbol, dotted line) are still

close to 1 at λ = 1. All of those demonstrate that the continuity

holds for fermions at ν = 1/2. (One may note that for Ne = 8,

N1 × N2 = 4 × 4, W = 1 for all λ. This is accidental for this

particular lattice size.)

three-body lattice Hamiltonian used here for the FCI is some-

what artificial to begin with making a direct comparison of

overlaps a bit biased.]

We also consider the OES for Ne = 10 (the lattice size

is N1 × N2 = 5 × 4 for the FCI part). In the continuum,

the thin-torus configuration of the six fermionic Moore-Read

states are37 (for Ne = 10, Ns = 20)

010101|0101010101|0101
101010|1010101010|1010

01100|1100110011|00110± 10011|0011001100|11001
11001|1001100110|01100± 00110|0110011001|10011.

Their total momentum is K1 = 0, K1 = 10, K1 = 15 (two-

fold) and K1 = 5 (two-fold), respectively. Among the six

|Ψi(λ)〉, one is located in J1 = 0 sector [corresponding to the

K1 = 0 Moore-Read state (0101 sector)], one is located in

J1 = 2 sector [corresponding to the K1 = 10 Moore-Read

state (1010 sector)], two are located in J1 = 1 sector [corre-

sponding to the two K1 = 5 Moore-Read states (1100±0011

sectors)], and two are located in K2 = 3 sector [correspond-

ing to the two K1 = 15 Moore-Read states (0110±1001 sec-

tors)]. The two |Ψi(λ)〉 with the same J1 = 1 (J1 = 3)

will mix with each other, so they do not have a one-to-one

correspondence to the 1100+0011 state and 1100-0011 state

(0110+1001 state and 0110-1001 state). Therefore, we only

consider the OES for the |Ψi(λ)〉 in J1 = 0 and J1 = 2
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Figure 5. (Color online) The orbital entanglement spectra (OES) of exact fermionic Moore-Read states (blue diamond) and the projected

nearly-degenerate states |ΨJ1

prj (λ)〉 (red cross) at ν = 1/2, Ne = 10. The lattice size is N1 × N2 = 5 × 4 and λ1 = 0.8 for the FCI part.

In the left column, J1 = 0, corresponding to the Moore-Read state in K1 = 0 sector. In the right column, J1 = 2, corresponding to the

Moore-Read state in K1 = 10 sector. In (a) and (b), λ = 0.5. (a): The unprojected |ΨJ1=0(λ)〉 has weight W ≈ 0.99403 on K1 = 0 sector.

The overlap with the Moore-Read state O = |〈ΨK1=0

MR |ΨJ1=0(λ)〉|2 is 0.99119. (b): The unprojected |ΨJ1=2(λ)〉 has weight W ≈ 0.99436

on K1 = 10 sector. The overlap with the Moore-Read state O = |〈ΨK1=10

MR |ΨJ1=2(λ)〉|2 is 0.99094. In (c) and (d), λ = 1. (c): The

unprojected |ΨJ1=0(λ)〉 has weight W ≈ 0.98488 on K1 = 0 sector. The overlap with the Moore-Read state O = |〈ΨK1=0

MR |ΨJ1=0(λ)〉|2

is 0.97792. (d): The unprojected |ΨJ1=2(λ)〉 has weight W ≈ 0.98583 on K1 = 10 sector. The overlap with the Moore-Read state

O = |〈ΨK1=10

MR |ΨJ1=2(λ)〉|2 is 0.97750. The orange shadows indicate the generic levels in the OES of |ΨJ1

prj (λ)〉 which deviate from the

levels of the exact Moore-Read state.

sectors here by projecting them into the K1 sector of the cor-

responding Moore-Read states. In Fig. 5, we can see that

the low-lying part of the OES of |Ψi
prj(λ)〉 also match that of

the exact Moore-Read state very well. As expected, ξmax here

(ξmax ≈ 12.5 at λ = 0.5 and ξmax ≈ 11 at λ = 1) is lower

slightly than that for the ν = 1/3 fermionic Laughlin case

reflecting the lower overlap. We also find that the OES of

|Ψi
prj(λ)〉 lacks inversion (left-right) symmetry, which is not

so obvious in the ν = 1/3 state. However, taken together

there is no doubt that the FCI phase is excellently described

by the Moore-Read wave function and the low energy physics

of the FCI problem should thus be within the same universal-

ity class.

C. Fermions at ν = 4/5 and ν = 2/3

Finally, we consider a case where there is a lack of adia-

batic continuity between the low energy sector of the FQH

and FCI Hamiltonians. To this end we focus on fermions

at ν = 4/5. On the FQH side, we choose the Hamilto-

nian as HFQH =
∑

i<j ∇6
i δ

2(ri − rj). Then the ground

states are five-fold degenerate states that are the particle-hole

conjugate (phc) of ν = 1/5 Laughlin states. On the FCI

side, the Hamiltonian is set as the nearest-neighbor interac-

tion HFCI =
∑

〈ij〉 ninj . Due to the particle-hole symme-

try breaking, the ground states are no longer FCI states but

competing compressible (Fermion liquid like) states without

the five-fold nearly-degeneracy15. Here we set β = π/3,

wFCI = wFQH = 1 and choose |Ψi(λ)〉 as the ground states

in J1 sectors where the FQH states are located in at λ = 0.

We use the total overlap and OES to probe the phase transi-

tion between λ = 0 and λ = 1. In Fig. 6, it is clear that the

total overlap drops down to a very small number at interme-

diate λ. In Fig. 7, we choose the |Ψi(λ)〉 in J1 = 2 sector

to study the OES. One can see that the OES of the projected

|Ψi(λ)〉 match that of the corresponding phc FQH state up to

ξmax ≈ 10 at λ = 0.1, but completely deviate at λ = 0.5. Our

results clearly show that the adiabatic continuity indeed does

not hold for fermions at ν = 4/5.
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Figure 6. (Color online) Results of the interpolation Eq. (4) for

fermions at ν = 4/5 for Ne = 16 (red dot), Ne = 20 (green tri-

angle), and Ne = 24 (blue square). In the FCI part, the lattice size

is N1 × N2 = 4 × 5, N1 × N2 = 5 × 5 and N1 × N2 = 6 × 5,

respectively; and λ1 = 1. The total overlap Otot shows a clear drop

at intermediate λ, which demonstrates that the continuity does not

hold for fermions at ν = 4/5.

We also find a similar phase transition for fermions at ν =
2/3. However, ν = 2/3 is probably on the border between

competing compressible states and FCI states (see Ref. 15 for

such study in checkerboard lattice), thus it is quite likely that

the appearence of this phase transition may depends on the

system size and the shape of the samples. On the contrary, we

expect the ν = 4/5 results showing a clear phase transition to

be robust to such details.

IV. DISCUSSION

In this paper, we have investigated the interpolation be-

tween the FCI states and FQH states with the help of appro-

priately gauge-fixed Wannier wavefunctions21,23. By demon-

strating an almost constant gap and a large overlap during

the interpolation, we provide the strong evidence that both

Abelian and non-Abelian FCI states are adiabatically con-

nected to their corresponding FQH (Laughlin and Moore-

Read respectively) states for fermions as well as for bosons.

The method used here may be seen as an improved version

of the first study of adiabatic continuity22, which studied

ν = 1/2 bosons, by utilizing the recent gauge-fixing insights

of Ref. 23. It also provides a more direct and quantitative

comparison between FCI and FQH than the like-wise elegant

connection recently established via relating Chern bands to

the Landau bands of the Hofstadter problem in Ref. 42.

To underscore the non-triviality of our results, we have also

considered fermions at filling factor ν = 4/5, for which there

is no FCI state due to the particle-hole symmetry breaking15

in the Chern band (this symmetry breaking is absent in a Lan-

dau level). The overlap and gap indeed drop drastically dur-

ing the interpolation reflecting a phase transition. In Ref. 43,

it was pointed out that the particle-hole symmetry can be ex-

plicitly restored by adding a single-particle term to the stan-

dard normal-ordered HamiltonianHFCI, which is used in most

numerical studies including the present work.44 By examin-

ing the adiabatic continuity using the resulting particle-hole-

Figure 7. (Color online) The orbital entanglement spectra (OES)

of exact fermionic phc state (blue diamond) and the projected state

|ΨJ1

prj (λ)〉 (red cross) at ν = 4/5, Ne = 24. |ΨJ1

prj (λ)〉 is in J1 = 2
sector and corresponds to the phc state in K1 = 12 sector. The lattice

size is N1 ×N2 = 6× 5 and λ1 = 1 for the FCI part. (a): λ = 0.1.

The unprojected |ΨJ1(λ)〉 has weight W ≈ 0.98645 on K1 = 12

sector. The overlap with the phc state O = |〈ΨK1=12

phc |ΨJ1=2(λ)〉|2

is 0.97213. (b): λ = 0.5. The unprojected |ΨJ1(λ)〉 has weight

W ≈ 0.06792 on K1 = 12 sector. The overlap with the phc state

O = |〈ΨK1=12

phc |ΨJ1=2(λ)〉|2 is almost 0.

symmetric FCI Hamiltonian, we find that the results signifi-

cantly less universal and that they crucially depend on details

such as the system size, the tight-binding parameters, and the

interaction we choose.

We have also given a first report of the orbital entanglement

spectrum (OES) of FCI states based on the orbital cut in the lo-

calized Wannier basis. The low-lying parts of the OES of FCI

states match those of corresponding ideal model FQH states

very well. By comparing the OES of FCI states with those of

FQH states obtained from realistic interaction in Landau lev-

els, we find FCI states are closer to the ideal FQH states. The

analysis of the OES generalizes earlier works on FQH states

on the torus, and thereby provides an appealing picture of

the FCI OES as composed of two CFT spectra with opposite

chirality31,32. Invoking the bulk-edge correspondence26,38–40,

our results also provide a first glimpse of the gapless edge

physics of the FCI phases.

Our work invites a number of interesting future directions.

Perhaps most interestingly, it suggests a natural generaliza-

tion studying FCI states in Chern bands with higher Chern

number. Indeed, novel series of FCI states with arbitrary
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Chern number, |C| = N , have recently been observed in

numerics45,46. While these new states might correspond to

appropriately symmetrized versions of multi-component FQH

states, such ideas need to be substantiated by further inves-

tigations and more direct comparisons as would be possible

within the framework used here.

Another important issue would be if the present formalism

might have bearing for the development of a pseudopotential

formalism for fractional Chern insulators. At present there

are two approaches15,48, one of which is built on the origi-

nal (non-gauge-fixed) Wannier basis construction48, leading

to apparently diverging predictions.
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Figure 8. (Color online) Results of the interpolation Eq. (4) for

bosons at ν = 1/2 for Nb = 4 (red dot), Nb = 6 (green triangle),

and Nb = 8 (blue square). In the FCI part, the lattice size is N1 ×
N2 = 4×2, N1×N2 = 3×4 and N1×N2 = 4×4, respectively; and

λ1 = 1. (a) The energy gap ∆ does not close for any intermediate λ.

(b) The total overlap Otot (filled symbol, solid line) and the average

weight W (empty symbol, dotted line) are still close to 1 at λ = 1.

All of those demonstrate that the continuity holds for bosons at ν =
1/2.

Appendix A: Bosons at ν = 1/2

In this section we focus on the continuity problem of bosons

at filling factor ν = 1/2. On the FQH side, we choose the

Hamiltonian as HFQH =
∑

i<j δ
2(ri − rj). Then the ground

states are exact two-fold degenerate bosonic Laughlin states

with zero energy. On the FCI side, the Hamiltonian is set as

the on-site interaction HFCI =
∑

i ni(ni − 1). The ground

states are two nearly-degenerate states separated by a gap

from the excited states. We set α = π/3 also for the twisted

torus.

We find that there are two nearly-degenerate states |Ψi(λ)〉
for each λ ∈ [0, 1]. The evolution of the energy gap [Fig.

8(a)], total overlap and average weight [Fig. 8(b)] is similar

with that for the ν = 1/3 fermionic Laughlin phase. How-

ever, both of the total overlap and average weight are smaller

(Otot ≈ 0.950 and W ≈ 0.9663 at λ = 1 for our largest

system size Nb = 8).

We consider the OES for Nb = 8 (the lattice size is N1 ×
N2 = 4 × 4 for the FCI part). In the continuum, the thin-

torus configuration of the two bosonic Laughlin states are (for

Nb = 8, Ns = 16)

0101|01010101|0101
1010|10101010|1010.

Their total momentum is K1 = 0 and K1 = 8, respectively.

The two |Ψi(λ)〉 are both in J1 = 0 sector, so they mix with

each other and do not have a good one-to-one correspondence

with the two Laughlin states. This means that each |Ψi(λ)〉
has weight on K1 = 0 and K1 = 8 sectors simultaneously.

However, we can still project one |Ψi(λ)〉 in K1 = 0 sector

and project the other in K1 = 8 sector. In Fig. 9, we can

see that the low-lying part of the OES of |Ψi
prj(λ)〉 also match

that of the exact Laughlin state very well. Of course ξmax here

(ξmax ≈ 13.2 at λ = 0.5 and ξmax ≈ 11.2 at λ = 1) is lower

than that in the ν = 1/3 fermionic Laughlin case due to the

lower overlap. However, all of our results strongly support

that the FQH states are adiabatically connected to FCI states

for bosons at ν = 1/2.

Appendix B: Bosons at ν = 1

In this section we focus on the continuity problem of bosons

at filling factor ν = 1. On the FQH side, we choose the Hamil-

tonian as HFQH =
∑

i<j<k δ
2(ri − rj)δ

2(rj − rk). Then the

ground states are exact three-fold degenerate bosonic Laugh-

lin states with zero energy. On the FCI side, the Hamilto-

nian is tactically chosen as the on-site three-body interaction

HFCI =
∑

i ni(ni − 1)(ni − 2). The ground states are three

nearly-degenerate states separated by a gap from the excited

states. We set α = 2π/3 for the twisted torus as was done for

the fermion case at ν = 1/2.

We find that there are three nearly-degenerate states

|Ψi(λ)〉 for each λ ∈ [0, 1]. The evolution of the energy gap

[Fig. 10(a)], total overlap and average weight [Fig. 10(b)]

is similar with that for the ν = 1/2 fermionic Moore-Read

phase. However, both of the total overlap and average weight

are smaller (Otot ≈ 0.869 and W ≈ 0.9073 at λ = 1 for our

largest system size Nb = 10).

We consider the OES for Nb = 12 (the lattice size is N1 ×
N2 = 3 × 4 for the FCI part). In the continuum, the thin-

torus configuration of the two bosonic Laughlin states are (for
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Figure 9. (Color online) The orbital entanglement spectra (OES) of exact bosonic Laughlin states (blue diamond) and the projected nearly-

degenerate states |ΨJ1

prj (λ)〉 (red cross) at ν = 1/2, Nb = 8. The lattice size is N1 × N2 = 4 × 4 and λ1 = 1 for the FCI part. Both of

the two nearly-degenerate states are in J1 = 0 sector. In the left column, we consider the one with lower energy and project it in K1 = 0
sector. In the right column, we consider the one with higher energy and project it in K1 = 8 sector. In (a) and (b), λ = 0.5. (a): The

unprojected |ΨJ1(λ)〉 has weight W ≈ 0.79721 on K1 = 0 sector and W ≈ 0.19096 on K1 = 8 sector. The overlap with the Laughlin state

O = 1

2
(|〈ΨK1=0

Lau |ΨJ1=0(λ)〉|2 + |〈ΨK1=8

Lau |ΨJ1=0(λ)〉|2) is 0.98264. (b): The unprojected |ΨJ1(λ)〉 has weight W ≈ 0.19276 on K1 = 0

sector and W ≈ 0.79902 on K1 = 8 sector. The overlap with the Laughlin state O = 1

2
(|〈ΨK1=0

Lau |ΨJ1=0(λ)〉|2 + |〈ΨK1=8

Lau |ΨJ1=0(λ)〉|2)

is 0.98825. In (c) and (d), λ = 1. (c): The unprojected |ΨJ1(λ)〉 has weight W ≈ 0.75966 on K1 = 0 sector and W ≈ 0.19968

on K1 = 8 sector. The overlap with the Laughlin state O = 1

2
(|〈ΨK1=0

Lau |ΨJ1=0(λ)〉|2 + |〈ΨK1=8

Lau |ΨJ1=0(λ)〉|2) is 0.93967. (d): The

unprojected |ΨJ1(λ)〉 has weight W ≈ 0.20603 on K1 = 0 sector and W ≈ 0.76720 on K1 = 8 sector. The overlap with the Laughlin state

O = 1

2
(|〈ΨK1=0

Lau |ΨJ1=0(λ)〉|2+ |〈ΨK1=8

Lau |ΨJ1=0(λ)〉|2) is 0.96111. The orange shadows indicate the generic levels in the OES of |ΨJ1

prj (λ)〉
which deviate from the levels of the exact Laughlin state.

Nb = 12, Ns = 12)

111|111111|111
020|202020|202± 202|020202|020.

Their total momentum is K1 = 6 and K1 = 0 (two-fold).

The three |Ψi(λ)〉 are in J1 = 0 sector (two-fold) and J1 =
2 sector. Because the two states in J1 = 0 sector will mix

with each other, we only concentrate on the single state in

J1 = 2 sector, which corresponds to the K1 = 6 Moore-

Read state. Compared with the fermionic Moore-Read case,

the asymmetry problem in the OES is more serious. Although

the OES of |ΨJ1=2(λ)〉 does not precisely match that of exact

bosonic Moore-Read state, we can still find a relatively good

correspondence between their OES levels up to ξmax ≈ 13.8
at λ = 0.5 and ξmax ≈ 11.5 at λ = 1.

Appendix C: Further details on the Wannier basis construction

To make this paper self-contained we give the prescrip-

tion of how to fix the phases Φ(k2) in the Wannier func-

tion |X, k2〉 in this Appendix. The results were first found

in Ref. 23. The essential point in fixing the phase is

to make the connection 〈X, k2|Ŷ |X ′, k′2〉 between adjacent

Wannier states independent of X and k2. Here Ŷ =
∑

k1,k2
|k1, k2〉A2(k1, k2)〈k1, k2 +1| is the unitary projected

position operator in the ey-direction, and adjacent Wannier

states are defined by jX
′,k′

2 = jX,k2 + C. Because jX,k2 =
N2X + Ck2 + δ2, k′2 = k2 + 1 (mod N2) for two adjacent

Wannier states. If increasing from k2 to k2 + 1 does not cross

the boundary of pBZ, X ′ = X . Otherwise, X ′ = X + C.
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Figure 10. (Color online) Results of the interpolation Eq. (4) for

bosons at ν = 1 for Nb = 6 (red dot), Nb = 8 (green triangle), and

Nb = 10 (blue square). In the FCI part, the lattice size is N1×N2 =
3×2, N1×N2 = 4×2 and N1×N2 = 5×2, respectively; and λ1 =
0.8. (a) The energy gap ∆ does not close for any intermediate λ.

(b) The total overlap Otot (filled symbol, solid line) and the average

weight W (empty symbol, dotted line) are still large at λ = 1. All of

those demonstrate that the continuity holds for bosons at ν = 1.

From the definition of the Wannier state, one can obtain that

〈X, k2|Ŷ |X ′, k′2〉 = ei[Φ(k′

2
)−Φ(k2)]A2(0, k2)U2(k2),

(C1)

where

U2(k2) =
1

N1

N1−1
∑

k1=0

W (k1, k2)

W ′(k1, k2)
,

with

W (k1, k2) =

∏k1−1
κ=0 A1(κ, k2)

∏k1−1
κ=0 A1(κ, k2 + 1)

A2(k1, k2)

A2(0, k2)
,

W ′(k1, k2) = [µ1(k2)]
k1 , and

µ1(k2) =

{

λ1(k2)
λ1(k2+1) , k2 + 1 ∈ pBZ

e2πiC/N1
λ1(k2)

λ1(k2+1) , otherwise
.

The product of 〈X, k2|Ŷ |X ′, k′2〉 has a very simple form,

N1−1
∏

X=0

N2−1
∏

k2=0

〈X, k2|Ŷ |X ′, k′2〉 =
[

W2(0)

N2−1
∏

k2=0

U2(k2)

]N1

.

(C2)

Defining U2(k2) = U2(k2)/|U2(k2)| and introducing a

phase (ω2)
N2 =

∏N2−1
k2=0 U2(k2) with the argument an-

gle in (−π/N2, π/N2), we can choose 〈X, k2|Ŷ |X ′, k′2〉 =

Figure 11. (Color online) (Color online) The orbital entanglement

spectra (OES) of exact bosonic Moore-Read states (blue diamond)

and the projected nearly-degenerate state |ΨJ1

prj (λ)〉 (red cross) at ν =

1, Nb = 12. |ΨJ1

prj (λ)〉 is in J1 = 2 sector and corresponds to the

Moore-Read state in K1 = 6 sector. The lattice size is N1 × N2 =
3× 4 and λ1 = 0.8 for the FCI part. (a): λ = 0.5. The unprojected

|ΨJ1(λ)〉 has weight W ≈ 0.95860 on K1 = 6 sector. The overlap

with the Moore-Read state O = |〈ΨK1=6

MR |ΨJ1=2(λ)〉|2 is 0.93707.

(b): λ = 1. The unprojected |ΨJ1(λ)〉 has weight W ≈ 0.89528
on K1 = 6 sector. The overlap with the Moore-Read state O =
|〈ΨK1=6

MR |ΨJ1=2(λ)〉|2 is 0.83976. The orange shadows indicate the

generic levels in the OES of |ΨJ1

prj (λ)〉 which deviate from the levels

of the exact Moore-Read state.

λ2(0)ω2|U2(k2)|, which satisfies Eq. (C2). Finally, by com-

paring this choice with Eq. (C1), we have

ei[Φ(k′

2
)−Φ(k2)] =

λ2(0)

A2(0, k2)

ω2

U2(k2)
. (C3)

We can choose eiΦ(0) = 1 and recursively fix all phases

eiΦ(k2) according to Eq. (C3).
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