
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Compressive sensing as a paradigm for building physics
models

Lance J. Nelson, Gus L. W. Hart, Fei Zhou (周非), and Vidvuds Ozoliņš
Phys. Rev. B 87, 035125 — Published 18 January 2013

DOI: 10.1103/PhysRevB.87.035125

http://dx.doi.org/10.1103/PhysRevB.87.035125


Compressive sensing as a powerful paradigm for model building

Lance J. Nelson and Gus L. W. Hart
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA

Fei Zhou (周非) and Vidvuds Ozoliņš
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The widely-accepted intuition that the important properties of solids are determined by a few
key variables underpins many methods in physics. Though this reductionist paradigm is applicable
in many physical problems, its utility can be limited because the intuition for identifying the key
variables often does not exist or is difficult to develop. Machine learning algorithms (genetic pro-
gramming, neural networks, Bayesian methods, etc.) attempt to eliminate the a priori need for
such intuition but often do so with increased computational burden and human time. A recently-
developed technique in the field of signal processing, compressive sensing (CS), provides a simple,
general, and efficient way of finding the key descriptive variables. CS is a powerful paradigm for
model building—we show that its models are more physical and predict more accurately than cur-
rent state-of-the-art approaches, and can be constructed at a fraction of the computational cost and
user effort.
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FIG. 1. (a) A sparse signal
(blue line) like that of Eq. 2, uni-
form samples of the signal at the
Nyquist frequency (red dots), and
a few random samples (black cir-
cles). The signal is composed of
only 3 non-zero frequencies. (b)
Exact recovery of the frequency
components of the signal using
compressive sensing.

I. INRODUCTION

Physical intuition and experience suggest that many important properties of materials are primarily determined
by just a few key variables. For instance, the crystal structures of intermetallic compounds have been successfully
classified into groups (so-called structure maps) according to the properties of the constituent atoms.1–4 The widely
known Miedema rules relate alloy formation energies to atomic charge densities and electronegativities.5 Most magnets
can be described using a Heisenberg model with only a few short-ranged exchange interactions,6 and the formation
energies of multicomponent alloys can be efficiently parameterized using generalized Ising models (cluster expansions)
with a finite number of pair and multibody interactions.7–9 In all these cases, enormous gains in efficiency and
conceptual clarity are achieved by building models which express the quantity of interest (typically, total energy) in
a simple, easy-to-evaluate functional form. These models can then be used to perform realistic simulations at finite
temperatures, on large systems, and/or over long time scales, significantly extending the reach of current state-of-the-
art quantum mechanics based methods.
The conventional approach to model building starts by selecting a small, physically motivated basis set which

describes the configuration of the system. The target properties are then expressed in terms of these basis functions
and the unknown coefficients are determined by performing least-squares fits to the calculated or experimentally
measured data. While conceptually simple, this method is often difficult to use in practice. First, the number of
unknown coefficients has to be smaller than the number of data points, which precludes the use of very large basis
sets. Second, least-squares fitting is susceptible to noise, and there is often the possibility of “over-fitting”—the model
is trained to reproduce the fitting data, but performs poorly in a predictive capacity. Finally, finding the the optimal
finite basis set is an NP -hard problem, i.e., the solution time increases faster than polynomial with the number of
possible basis functions. To keep the number of coefficients smaller than the amount of data, one must choose, based
on physical intuition, which basis functions to keep. This physical intuition in many cases may be unavailable and/or
difficult to develop; hence there is no clear path to achieve systematic improvement. Recent years have seen numerous
attempts to use machine learning algorithms (genetic programming, neural networks, Bayesian methods, etc.) to
decrease the role of intuition in model-building.10–17

We show that a recently developed technique in the field of signal processing, compressive sensing (CS),18 provides
a simple, general, and efficient approach to model-building.19 Instead of attempting to develop physical intuition for
which coefficients will be most relevant, the CS framework allows the inclusion of essentially all possible basis functions.
Using very large basis sets eliminates the need to use physical intuition to construct smaller ones. Furthermore, CS
is computationally efficient for very large problems, robust even for very noisy data, and its models predict more
accurately than current state-of-the-art approaches.

II. COMPRESSIVE SENSING: AN ILLUSTRATION

Before demonstrating the power of compressive sensing for building physical models, we first illustrate the concept
itself with a simple time series. Discussion of compressive sensing requires the definition of ℓp norms:

‖u‖p =

(

∑

i

|ui|p
)1/p

, (1)

of which the ℓ1 (taxicab or Manhattan distance) and ℓ2 (Euclidean; subscript 2 often omitted) norms are special
cases. The number of non-zero elements of ~u is often (improperly) referred to as the ℓ0 “norm” even though it is not
a norm in a strict mathematical sense.
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In the signal processing community, compressive sensing is used to recover sparse signals exactly with far fewer
samples than required by standard spectral techniques, such as the well-known Fourier and Laplace transforms.
Consider a signal like that shown in Fig. 1(a) which has the functional form:

f(t) =
N
∑

n=1

une
i2πnt, (2)

where most of the coefficients, un, are zero (i.e., the signal is sparse). The Fourier transform is mathematically
equivalent to solving the matrix equation

A~u = ~f, (3)

where the matrix A is formed by the values of the Fourier basis functions at the sampling times tm, i.e., it consists
of rows of n terms of the form Amn = ei2πntm , and fm ≡ f(tm) is the sampled signal. The solution vector ~u contains
the relative amounts of the different Fourier components, as shown in Fig. 1(b). Capturing all relevant frequency
components of the signal using Fourier transform techniques requires the signal to be sampled regularly and at a
frequency at least as high as the Nyquist frequency [shown as red points in Fig. 1(a)], a severe restriction stemming
from the requirement that the linear system Eq. (3) should not be underdetermined.
However, the main idea of compressive sensing is that,when the signal is sparse, one should be able to recover the

exact signal with a number of measurements that is proportional to the number of nonzero components, i.e., with
far fewer samples than given by the Nyquist frequency. Conceptually, this could be done by searching for a solution
that reproduces the measured time signal exactly and has the minimum number of non-zero Fourier components.
Unfortunately, this formulation results in a discrete optimization problem, which cannot be solved in polynomial
time. Compressive sensing recasts the problem as a simple minimization of the ℓ1 norm of the solution, subject to
the constraint given by Eq. (3) above:

min
u

{‖~u‖1 : A~u = ~f}, (4)

where ‖~u‖1=
∑

i |ui| is the ℓ1-norm defined in Eq. (1). In other words, one seeks to minimize the sum of the components
of the solution vector ~u subject to the condition that the measured signal is reproduced exactly; this constitutes the
so-called basis pursuit problem. Eq. (4) is a convex optimization problem which can be solved efficiently (see Sec. IV).
We note here that optimization of the common sum-of-squares (ℓ2) norm of ~u would result in a dense solution which
may deviate considerably from the original signal.18

As a simple illustration, the exact decomposition of an example function, shown in Fig. 1, was possible via compres-
sive sensing with only 5 random samples (black dots in figure 1) of the signal, instead of the 24 equally-spaced samples
(red dots in figure 1) needed for a discrete Fourier transform. Quite generally, a mathematical theorem proven by
Candes, Romberg, and Tao20 guarantees that, with an overwhelming probability, any sparse signal with S nonzero
components can be recovered from M ∼ S logN random measurements, where N is the total number of sensing basis
functions. This very powerful result is the mathematical foundation of compressive sensing.
Another practically important feature of compressive sensing is the ability to tolerate noise in the input data and to

deal with signals that are only approximately sparse, i.e., are dominated by a few large terms, but also contain a large
number of smaller contributions; this is the case in almost all physics applications. It has been proven that, if the
sensing matrix A obeys the so-called restricted isometry property (RIP), an accurate reconstruction of the signal from
highly under-sampled measurements can be achieved also in the presence of both random and systematic noise.18,20

The RIP criterion is automatically satisfied if the measurements are chosen randomly. (see Sec. IVD for a detailed
discussion)

When applying compressive sensing to model building, two tasks must be accomplished: (i) a basis must be chosen,
and (ii) the coefficients associated with each basis function must be determined. Mathematically, the problem is
analogous to the simple Fourier example considered above, with the sensing matrix A being determined by the values
of the basis functions at the chosen measurement points. Below we illustrate the use of compressive sensing on two
cluster expansion (CE) models of configurational energetics:7 (i) Ag-Pt alloys on a face-centered cubic (fcc) lattice, and
(ii) protein folding energies in the so-called zinc finger motif. CE is chosen as an example because it is conceptually
simple, mathematically rigorous, and widely used in the materials community to calculate temperature-composition
phase diagrams. Furthermore, CE is a stringent test case for compressive sensing because a significant amount of effort
has been expended developing advanced model building techniques, which have been implemented in sophisticated
general-purpose computer codes.15–17,21–25
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III. CLUSTER EXPANSION

A. Energy Model

Since a formal mathematical description of CE can be found in the literature, here we only restate its main features
and refer the reader to Refs. 7–9 for detailed explanations. The CE method uses a complete set of discrete basis
functions, defined over clusters of lattice sites, which describe the occupation of each site and thus the entire atomic
configuration on the crystal. The total energy is given by

E(σ) = E0 +
∑

f

Π̄f (σ)Jf , (5)

where f represents symmetrically distinct clusters of lattice sites (points, pairs, triplets, etc.), σ denotes the atomic
configuration, usually expressed by a collection of pseudo-spin variables {Si} describing the type of atom at each
lattice site, and the cluster correlations Π̄f (σ) are formed as symmetrized averages of products of these pseudo-spin
variables. The key quantities in this approach are Jf , the effective cluster interactions (ECI’s): Given the ECI’s, the
energy of any atomic configuration on the lattice can be calculated rapidly from Eq. (5). Physical intuition based
on the concept of “near-sightedness”of screened interatomic interactions suggests that only clusters within a limited
range and involving a limited number of sites will have significant ECI’s. The goal then is to determine which of the
clusters f , out of the myriads of possible choices, contribute significantly to the total energy of the system and to
calculate the values of these coefficients.
Currently, the most popular approaches are based on the so-called structure inversion method (SIM),26 where a

limited number of quantum-mechanics-based total energy calculations are used to determine E(σ) on the left-hand
side of Eq. (5). The cluster interactions Jf are truncated according to some recipe and their values are determined by
least-squares fitting to the training set energies E(σ). The accuracy of the resulting CE depends crucially on the chosen
truncation method. Including too few interactions leads to poor predictive power because important interactions are
not accounted for (“under-fitting”, while choosing too many parameters Jf results in spurious interactions and an
associated decrease in predictive accuracy (“over-fitting”). Use of the least-squares fitting necessarily requires that the
number of structures must exceed the number of candidate ECIs, which is the CE analogue of the Nyquist frequency
in signal processing.
In modern practice, the trial ECI’s are chosen by scanning over many possible sets of clusters while attempting

to minimize the predictive error. Ideally, the predictive error should be calculated as the root mean square (RMS)
deviation between the density functional theory (DFT) and CE-predicted energies over a separate “hold-out” set of
structures that are not used in fitting. This approach would require tens or hundreds of additional DFT calculations
and is therefore seldom used in practice. Leave-one-out cross-validation (LOOCV) or k-fold cross-validation scores
are commonly used as proxies for the predictive error since they do not require the construction of a separate hold-out
set.21

Starting from an initial set of ECI’s (e.g., empty, point, and nearest-neighbor pair clusters), a typical procedure
for improving the model attempts to add and/or substitute clusters into the current set, keeping changes if the
predictive error is found to decrease. The procedure is terminated when none of the attempted changes produce an
improvement in the predictive accuracy. Unfortunately, there is no guarantee that this process will truly result in the
optimal set of ECI’s because it is practically impossible to solve the NP -hard discrete optimization (DO) problem,
especially if the number of candidate ECI’s is large, such as required for very accurate CE’s or in situations of low
symmetry (e.g., near defects, surfaces, nano-particles). As a result, with DO, one may miss important clusters or add
clusters that should not have been included in the model, which may result non-physical ECI values. Additionally,
adding/removing clusters one-by-one is computationally expensive, requiring days to finish when considering very
large pools of candidate clusters.
Genetic algorithms have been used with some success, but they also require large amounts of time to complete,

especially for large cluster pools and fitting sets, and employ a host of tunable paramters.23,27 Other methods for
optimizing the CV score have been proposed28,29 but are limited in the number of basis functions they can consider
and require a heavy initial truncation of the basis.
Other researchers, in an attempt to avoid predictive errors associated with incomplete discrete optimization, have

sought to devise direct minimization methods that automatically select ECIs only if they are required to reproduce the
energies of the training set. The first such approach was proposed by Laks, Wei, and Zunger for pair interactions,30

who added a distance-weighted ℓ2 norm of the pair interactions to the objective function. However, this approach
usually results in dense sets of long-ranged pair ECI’s and, more importantly, is difficult to extend to multibody
interactions.31–33 Recently, a method based on Bayesian statistics was introduced to automatically estimate ECI’s
and shown to outperform several common methods in low-symmetry situations.34 However, it makes use of physical
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intuition to construct informative prior distributions, which are required for estimating the ECI values. It is desirable
to develop methods that avoid the use of intuition since heuristic rules, derived from experience with a few specific
systems, may not be universally valid. Design of efficient, numerically robust and physically accurate methods for
selecting the physically significant ECIs remains a challenging problem.

B. Compressive sensing cluster expansion (CSCE)

Here, we show that compressive sensing can be used to select the important ECI’s and determine their values in

one shot. The applicability of compressive sensing to CE is based on the mathematical theorem of Candes, Romberg,
and Tao,20 which guarantees that sparse ECI’s can be recovered from a limited number of DFT formation energies
given certain easy-to-satisfy properties of the matrix Π̄ in Eq. (5). Adopting the common assumption that the “true”
physical ECI’s are approximately sparse, this theorem guarantees that a good approximation will be found even in
cases when the data has both random and systematic noise, e.g., due to numerical errors in the DFT calculations or
due to interactions beyond the chosen energy resolution, see Sec. IVE.

There are two possible formulations for compressive sensing cluster expansion (CSCE), both of which enforce the
requirement that the cluster expansion should be as sparse as possible, while resulting in a certain level of accuracy
for the training set. In the first approach, one may determine the optimal set of ECI’s from

J = argmin
J

{

||J ||1 : ||E − Π̄J || ≤ ǫ
}

, (6)

where ℓ1 norm of J ’s is used as a proxy for the number of nonzero ECI’s. Solving the so-called LASSO problem
Eq. (6)35,36 offers a mathematically strict way of constructing a minimal cluster set that reproduces the training
set with a given accuracy. Of course, over- (under-) fitting is still an issue if ǫ is chosen too small (large), but it is
physically reasonable that, given the physical properties of the system and the size of the training set, an optimal ǫ
always exists. Following common practice, optimal ǫ could be found either by minimizing the LOOCV score or the
predictive RMS error over a hold-out set.
Since the inequality constraint is inconvenient to enforce during calculations,35 here we follow common practice

in signal processing and use an unconstrained approach which minimizes the sum of an ℓ1 norm of the ECI’s and a
least-squares sum of the fitting errors:

J = argmin
J
µ||J ||1 +

1

2
||E − Π̄J ||2, (7)

where µ is a parameter that controls the accuracy of the fit versus the sparseness of the solution: higher values of
µ will result in sparser solutions and larger fitting errors (under-fitting), while very small µ values will lead to dense
solutions and degraded predictive accuracy (over-fitting). It will be shown below in Sec. IVE that the optimal value
of µ is proportional to the level of noise (random and systematic) in the calculated formation energies. Just like ǫ
in Eq. (6), an optimal µ to avoid over- or under-fitting can be chosen either by minimizing the LOOCV score or by
minimizing the rms prediction error for a separate hold-out set; it is shown below that both approaches result in very
similar values of optimal µ. Furthermore, in Sec. V we demonstrate that CSCE is not particularly sensitive to the
precise value of µ and show that there is usually a range of µ’s that give ECI’s of similar predictive accuracy.
The main advantage of CSCE, Eqs. (6) & (7), over current CE methods is that the NP -hard discrete optimization

of the truncated ECI set is replaced by convex optimization problems for which exact solutions may be found in
polynomial time. Furthermore, the minimization of the ℓ1 norm of the solution also serves to decrease the magnitude
of the ECI’s, leading to “smoother” ECI’s, increased numerical stability with respect to the noise in the training data,
and eventually more accurate predictions. In addition, the CSCE is simple to implement and use, which will facilitate
its widespread adoption in solid state physics and other fields where configurational energetics play a role. In Sec. V
below, we illustrate the superior performance of CSCE using examples from bulk alloys (Ag-Pt) and biology (protein
folding energetics).

IV. PRACTICAL ASPECTS OF ℓ1-BASED OPTIMIZATION

In what follows, we review methods for solving the unconstrained minimization problem given by Eq. (7), which
we rewrite as:

min
u
µ‖~u‖1 + 1

2
‖A~u− ~f‖2. (8)

Eq. (8) is referred to as the basis pursuit denoising problem. It has a tunable parameter, µ, which controls the
sparseness of the solution: smaller (larger) values of µ produce less (more) sparse solutions.
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A. Fixed-point continuation

The fixed-point continuation (FPC) method of Hale, Yin, and Zhang37 is an iterative algorithm that starts from
~u0 = 0 and attempts to improve the objective function by following the gradient of the ℓ2 term:

~gk = A
T (A~uk − ~f) (9)

uk+1
n = shrink

(

ukn − τgkn, µτ
)

(10)

where k = 0, 1, 2, . . . is the iteration number and the shrinkage operator is defined as

shrink (y, α) := sign(y)max (|y| − α, 0) . (11)

In other words, shrinkage decreases the absolute magnitude of y by α and sets y to zero if |y| ≤ α. The iterations are
stopped when the ℓ∞ norm, or maximum component value, of the gradient drops below the shrinkage threshold,

1

µ
||~g||∞ − 1 < δg, (12)

and the change in the solution vector is sufficiently small,

‖|~uk+1 − ~uk||
||~uk|| < δu. (13)

The sensing matrix should be normalized in such a way that the largest eigenvalue αA of AT
A is less than or equal

to 1; this is easily accomplished by dividing both A and ~f by
√
αA. The step size τ in Eq. (10) is given by

τ = min(1.999,−1.665
M

N
+ 2.665), (14)

where M and N are the number of equations and the number of expansion coefficients, respectively.

B. Bregman iteration

While FPC algorithm is generally applicable to any problem of type Eq. (8) and is guaranteed to converge, in
practice it has a serious shortcoming: very small values of µ are needed to recover the exact solution to the basis
pursuit problem without noise, Eq. (4), which cause an associated increase in the number of FPC iterations. To
alleviate the need to use small µ’s, Yin et al.38 proposed an efficient iterative denoising algorithm for finding the
solution to Eq. (8), which has the additional benefit of yielding the exact solution to the basis pursuit problem Eq. (4)
for zero noise. This so-called Bregman iteration involves the following two-step cycle:

~fk+1 = ~f + (~fk − A~uk), (15)

~uk+1 = argmin
u
µ‖~u‖1 + 1

2
‖A~u− ~fk+1‖2, (16)

starting from ~f0 = 0 and ~u0 = 0. A key feature of the algorithm is that the residual after iteration k is added

back to the residual vector ~fk+1 for the next iteration, resulting in efficient denoising and rapid convergence.38 Each
minimization in Eq. (16) can be performed using the fixed-point continuation (FPC) method proposed by Hale, Yin,
and Zhang.37 The main advantages of the Bregman iteration are faster convergence and the ability to use µ values
that are several orders of magnitude larger than those required for direct application of the FPC method.

C. Split Bregman iteration

For very large problems (i.e., large sensing matrices A), the FPC optimization steps in the Bregman iterative method
progress very slowly. The problem becomes severe when the condition number computed from the nonzero eigenvalues
of AT

A becomes large. Indeed, FPC is essentially a steepest descent method combined with an ℓ1 shrinkage step, and
the number of required steepest descent iterations increases linearly with the ratio of the largest-to-smallest eigenvalues
of AT

A.39 An improved Bregman algorithm, which eliminates the hard-to-solve mixed ℓ1 and ℓ2 minimization problem
in Eq. (16), was proposed by Goldstein and Osher.40 It carries the name of “split Bregman” iteration because it splits
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off the ℓ1 norm of the solution from the objective function and replaces it with the variable ~d, which is designed to

converge towards the ℓ1 term, limk→∞(~dk − µ~uk) = 0. A least-squares ℓ2 term is added to the objective function to

ensure that ~d = µ~u in the limit:

~u = argmin
u,d

‖~d‖1 + 1
2
‖A~u− ~f‖2 + λ

2
‖~d− µ~u‖2. (17)

A key advantage of this formulation is that the minimization involving the quadratic form ‖A~u− ~f‖2 does not contain
ℓ1 terms and can be performed efficiently using standard convex optimization techniques, such as Gauss-Seidel or

conjugate gradients (CG),39 while the ℓ1 minimization with respect to ~d at a fixed ~u contains an ℓ2 term that is

diagonal in the components of ~d and can be solved easily (see below). The full split Bregman iterative algorithm
proceeds as follows:

~uk+1 = argmin
u

1
2
‖A~u− ~f‖2 + λ

2
‖~dk − µ~u−~bk‖2, (18)

~dk+1 = argmin
d

‖~d‖1 + λ
2
‖~d− µ~uk+1 −~bk‖2, (19)

~bk+1 = ~bk + µ~uk+1 − ~dk+1, (20)

starting from ~d0 = 0, ~b0 = 0, and ~u0 = 0. We use the conjugate gradient method to perform the ℓ2 minimization in
Eq. (18). The second step, Eq. (19), separates into individual vector components and can be solved explicitly using
shrinkage as

dk+1
n = shrink

(

µuk+1
n + bkn, 1/λ

)

. (21)

The final step of the split Bregman cycle, Eq. (20), adds back the residual deficit in the ℓ1 term, in complete analogy
with the Bregman iteration Eq. (15). The results do not depend on the value of the parameter λ, although an
unsuitable choice will lead to very slow or failed convergence. We find that in practice an optimal λ can easily be
found from a few trial runs at a fixed value of µ, and then kept fixed for any µ. Just like FPC, the split Bregman
iteration provides an exact solution to the basis pursuit denoising problem Eq. (8), but in contrast to the Bregman
approach of Sec. IVB, small values of µ may be needed to solve the noiseless basis pursuit problem Eq. (4). In
practice, we find that the convergence rate of the split Bregman method is almost always faster than those of the
Bregman or FPC algorithms, and greatly so for large, ill-conditioned sensing matrices.

D. Choice of structures for CSCE

An important practical question regards the best strategy for choosing structures σ to include in the training set.
Mathematical theorems from compressive sensing provide a definite answer to this question. The key idea is the
notion of coherence between the measurement and representation basis. The representation basis Φ = {φj} is used to
express the signal as a sparse series expansion (e.g., plane waves form the representation basis for the Fourier series),
while the measurement basis Ψ = {ψk} contains all possible measurements. For the Fourier example in Sec. II, the
measurement basis is given by delta functions, i.e., signal values at certain points in time. Assuming that both ψj

and φk are normalized and orthogonal, the coherence is defined as the maximum overlap between them:41

ν(Φ,Ψ) =
√
N max

j,k
|〈φj , ψk〉|. (22)

In the Fourier example of Sec. II, the scalar products are all |〈φj , ψk〉| = N− 1

2 , which corresponds to the lowest pos-

sible coherence, ν = 1. In contrast, the highest possible value ν =
√
N would be obtained by directly measuring the

amplitudes of the individual sinusoidal components of the signal, i.e., if plane waves were chosen as the measurement
basis functions. Coherence is key in determining the number of measurements required to recover a given sparse
signal with S nonzero components: the higher the coherence, the higher the required number of measurements. More
quantitatively, the probability of correct signal recovery from M measurements exceeds 1 − δ if the number of mea-
surements satisfiesM ≥ Cν2(Φ,Ψ)S log(N/δ), where C is a constant and S is the number of nonzero components;42,43

a similar result holds for compressive sensing in the presence of noise. This expression shows that the worst possible
strategy for recovering sparse signals is to choose the same measurement basis as the one used in sparse representation
(ν(Φ,Ψ) ≈

√
N), since this would require a number of measurements equal to the number of unknown coefficients,

N .
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In cluster expansion, the representation basis are formed by symmetry-distinct cluster types and the measurements
are represented by structures σ. The corresponding representation basis functions are Kroenecker deltas, φg(f) = δfg,
where f and g are cluster numbers. The measurements are represented by symmetry-inequivalent structures σ,
and the corresponding basis functions are given by normalized rows of the cluster correlation matrix, i.e., ψσ(f) =

Π̄f (σ)/
√

∑

f ′ Π̄f ′(σ)2. The coherence is given by the maximum scalar product between the two, which is

ν(Φ,Ψ) =
√
N max

σ,f

|Π̄f (σ)|
√

∑

f ′ Π̄f ′(σ)2
. (23)

Because random matrices with independent identically distributed (i.i.d.) entries are incoherent with almost any
representation basis, they occupy a special place in compressive sensing. If the possible measurements are designed
by selecting N uniformly distributed random vectors on the unit sphere, followed by subsequent orthogonalization,
the coherence between Φ and Ψ is on the order of

√
2 logN .18 This suggests the following simple strategy for selecting

structures for CSCE:

• Generate M uniformly distributed random vectors ψσ(f) on the unit sphere (σ = 1, . . . ,M)

• Orthogonalize ψσ(f)

• Match each ψσ(f) onto a real structure σ with normalized correlations Π̄f (σ)/
√

∑

f ′ Π̄f ′(σ)2 approximating

ψσ(f) as closely as possible

The last step can be conveniently performed by enumerating all possible ordered structures up to a certain size of the
unit cell using the methods of Refs. 44 and 45 and then choosing the best matches from this list. We stress that the
somewhat counterintuitive strategy of selecting random structures follows from the general mathematical properties
of ℓ1-based compressive sensing and represents the best possible method for choosing structure sets for CSCE.
Parenthetically we note that selecting structures at random makes for a remarkably simple approach to generating

input data. The “structure selection” problem, that is, deciding which structure to use to train the model, has been
a vexing problem in the cluster expansion community since cluster expansions first began to be trained with first-
principles data. At first, structures that were easy to calculate (few atoms per unit cell) were selected. In later years,
more sophisticated approaches came to be used46–48, but a simple, easy-to-implement solution has remained elusive.
Compressive sensing not only solves the “cluster selection” problem (because it makes unbiased selections from a huge
set of clusters) but also overcomes the structure selection problem because it dictates that the best strategy is to
select ordered structures with pseudorandom correlations.

E. Effect of noise and its relation to optimal µ

The lone adjustable parameter, µ, should be chosen to achieve the optimal balance between the sparseness of the
ECI’s and the RMS fitting error for the training set. The effect of µ on the calculated ECI’s is most transparently
seen by analyzing the FPC equations (9) and (10), which show that µ controls the energy cutoff for the gradient of the
ℓ2 norm of the residuals: components of ~g with absolute values |gf | ≤ µ will be set to zero by the shrinkage operator
and therefore will be excluded from the model. In what follows, we show that the optimal value for µ is proportional
to the level of noise (random and systematic) in the training data.
We first consider the relation between the normalized sensing matrix A in Eq. (9) and the CSCE correlation matrix

Π̄: they are related by A = Π̄/
√
αΠ̄, where αΠ̄ is the largest eigenvalue of Π̄Π̄T . The corresponding relation for the

measurement vectors is ~f = E/
√
αΠ̄. The distributions of the extremal eigenvalues for ideal random matrices are

known from the theory of principal component analysis.49 However, it is not immediately clear that the eigenvalue
distributions found for i.i.d. random matrices will be directly applicable to the CSCE correlation matrices Π̄ because
the correlation values for real structures are neither independent nor identically distributed, and hence the entries
of Π̄ are only approximately i.i.d. We have numerically calculated the distribution of the largest eigenvalue of Π̄Π̄T

using subsets of 1 ≤ M ≤ 500 fcc-based ordered structures with 12 or fewer atoms in the unit cell.44 We considered
N = 986 correlations (up to six-body terms) and averaged the calculated eigenvalues over 1000 subsets randomly
drawn from the above list of 10850 structures. We find that, for a fixed N , the average value of αΠ̄ increases linearly

with the number of structures M . Therefore, A ∝ Π̄/
√
M .

Random noise: Here we demonstrate that CSCE is not only stable with respect to noise in the input data, but that
it can also filter out the effects of noise on the calculated ECI’s. We assume that the DFT formation energies E(σ)
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(a)M (b)M

!"#

M

FIG. 2. ‖Jexact − Jfit‖1(solid) and ‖Jfit‖0(dashed) vs log10µ for the short-ranged pair model with M = 200 (a) and M = 400
(b). Random uniform noise of ∼ 10%(blue circles), 20% ( green squares), and 50% (red “x”s) of the noiseless energies was
added to the fitting structures. (c) ‖Jexact−Jfit‖1 vs the number of fitting structures and the noise level. Each point represents
an average over ∼100 different subsets of M structures.

contain random noise which is represented by a vector ~ηǫ of length M and i.i.d random components with variance
ǫ2rand. The contribution of ~ηǫ to the FPC gradient in Eq. (9) is given by

δgf ∝ − 1

M

M
∑

σ=1

Π̄f (σ)ηǫ(σ), (24)

where the factor 1/M comes from the fact that both the sensing matrix A and the measurement vector ~f are related
to the correlation matrix Π̄ and input energies E by a normalization factor 1/

√
αΠ̄. If the structures are chosen

randomly according to the prescription outlined in Sec. IVD, then Π̄f (σ) ∈ [−1, 1] are approximately i.i.d. Hence,
the individual terms under the summation sign in Eq. (24) will be randomly distributed with a mean of zero and a
variance proportional to ǫ2rand. To deduce the behavior of δgf in the limit of large M , one can apply the central limit
theorem (CLT) of classical statistics, which states that the average of M random terms is normally distributed with
a variance that is given by the variance of the individual terms divided by M , i.e., the variance of δgf is proportional
to ǫ2rand/M . It then follows from the properties of the normal distribution that the average ℓ1 norm of the noise term
in the gradient decreases with the size of the training set as

||δgf ||1 ∝ ǫrand√
M
. (25)

This relation demonstrates an important noise-tolerance aspect of CSCE, which guarantees that the true physical
ECI’s will be recovered even if the training data sets contains uncorrelated random noise of arbitrary magnitude,
provided that the number of data points is sufficiently large. The practical significance of this feature cannot be
overstated: not only is CSCE stable with respect to random noise, but an absolute numerical accuracy in the DFT
energies is not even needed to recover the correct ECI’s!50 Equation (25) also offers guidance for choosing µ to smooth
the effect of random noise: as long as µ ≃ ||δgf ||1, the contribution of noise to the gradient will be zeroed out in
the shrinkage step [Eq. (10)] and will not affect the calculated ECI’s. In practice, however, the optimal value of µ is
difficult to determine using Eq. (25) because the level of noise in the DFT formation energies is not known a priori,

and approaches based on optimizing the predictive error are more practical.
Systematic noise: We next consider the effect of systematic noise due to errors in the ECI’s, which we denote by

δJf . These errors contribute a term δE(σ) =
∑

f Π̄f (σ)δJf to the residual, and the corresponding error in the FPC
gradient is given by

δgf ∝ −
∑

f ′

〈Π̄f Π̄f ′〉δJf ′ , (26)

where we have introduced a correlation matrix for cluster correlations Π̄ calculated over the training set:

〈Π̄f Π̄f ′〉 = 1

M

M
∑

σ=1

Π̄f (σ)Π̄f ′(σ). (27)

This matrix is of fundamental importance for CSCE because it describes how the value of one ECI is affected by
errors in the other ECI’s, or the degree of cross-contamination between systematic ECI errors. Minimum sensitivity
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to cross-contamination is achieved when 〈Π̄f Π̄f ′〉 is diagonal, but the latter case is impossible to realize in practice
due to the fact that there are rather pronounced correlations between the cluster averages in real structures. In the
best case scenario, the correlation matrix 〈Π̄f Π̄f ′〉 will be approximately diagonal if the training set structures are
chosen randomly according to the algorithm proposed in Sec. IVD. Indeed, if the average cluster correlations Π̄f (σ)
are approximately i.i.d., the off-diagonal elements of the correlation matrix 〈Π̄f Π̄f ′〉 tend to zero with increasing M ,
while the diagonal elements remain O(1):

〈Π̄f Π̄f ′〉 =

{

〈Π̄2
f 〉 for f = f ′

O
(

1√
M

)

for f 6= f ′
. (28)

Hence, in the limit of large M , CSCE based on a randomly chosen training set cleanly separates the contributions
of the systematic ECI errors to the gradient, i.e., the ECI error for cluster f only affects the component f of the
gradient, enabling accurate recovery of the correct solution. This is an important feature for any physics model-
building approach because it guarantees the stability of the solution with respect to the interactions that are not
represented within the chosen basis set. Furthermore, these considerations offer another insight into the physical
meaning of the parameter µ: it can be used to filter out the cross-contamination due to effects of systematic noise if
chosen as

µ ∼ ||δ ~J ||∞√
M

, (29)

where ||δ ~J ||∞ is the magnitude of the largest error in the cluster interactions. Since the diagonal contribution to the
gradient remains constant with increasing M , successively smaller ECI’s can be extracted by increasing the size of
the training set M and simultaneously decreasing the value of µ according to Eq. (29). Unfortunately, the practical
value of this expression is limited because the ECI errors are not known, and approaches based on minimizing the
prediction errors or CV scores should be used instead.
The preceding analysis shows that µ can be interpreted as a parameter controlling the filtering of the noise in

the calculated energies, including both random noise due to numerical errors in the DFT formation enthalpies and
systematic noise due to cluster interactions that are not recoverable using the given structure set. Expressing the
total noise level as a sum of random and systematic contributions, ǫ2 = ǫ2rand + ǫ2syst, the effect of both is expected to

decrease the inverse of the size of the training set, and the optimal value of µ is expected to vary as 1
√
M . We note

here that the Bregman and split Bregman iterations contain additional noise-filtering steps [Eqs. (15) and (20)] which
add back the residual to the residual of the next iteration. As a result, the optimal value of µ will in general vary
between the different ℓ1 optimization approaches, even though the solutions and the predictive errors are practically
the same.38,40

V. APPLICATIONS

A. Short-ranged pair model with noise

We first work with an ad-hoc cluster expansion example where we choose a set of sparse coefficients and then use
them to compute the energies of various crystal structures for use as input to CSCE. The advantage of this approach
is that knowing the exact solution a priori allows us to easily determine the accuracy of the solution found by CSCE
and determine how numerical noise influences the performance of the algorithm. While this example is certainly not
representative of any real alloy system, it clearly illustrates some key features of the method, particularly how CS
performs with noisy data.
Using the uncle

23 framework the following clusters on an fcc lattice were enumerated: 141 pairs, 293 triplets, 241
four-bodies, 87 five-bodies, and 222 six-bodies (986 clusters in total, including the onsite and empty clusters). The
coefficients of the three shortest nearest-neighbor pairs were chosen as 10, 4, and 1, respectively; all other coefficients
were set to zero. Uniformly distributed random noise equal to ∼ 10%, 20%, and 50% of the noiseless energies was
added to the computed energies E(σ). We emphasize that these noise levels significantly exceed typical numerical
errors in the calculated formation enthalpies from state-of-the-art quantum mechanics codes.51

The values of each of the 986 basis functions were computed for all structures in the training set, thus forming the
sensing matrix, A. The rows of the sensing matrix, A, which each represent a training set structure, were constructed
by drawing randomly from a uniform distribution on [−1, 1]. For real systems, such as Ag-Pt in the next section, these
rows should be mapped onto real crystallographic configurations as described in Sec. IVD. However since the quality
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of the fit for the short-ranged pair case was found to be unaffected by this mapping, either favorably or adversely, we
chose to simply use the random vectors themselves in order to simplify computations.

Figures 2(a) and 2(b) illustrate the performance of CS by showing two quantities: 1) the ℓ1-norm of the difference
between the exact and fitted coefficients (‖Jexact − Jfit‖1), and 2) the number of non-zero coefficients (ℓ0-norm of the
solution, ‖Jfit‖0). We varied µ to investigate it’s optimal values for a given noise level. Each data point in Fig. 2 was
obtained by averaging over approximately 100 different sets, each of size M = 200 or 400.
The curves in Fig. 2 exhibit a series of plateaus, each one indicating a region over which the extracted solution

remains practically unchanged. Notice, for example, the plateau located between log10 µ = −0.75 and log10 µ = −0.4
in the ‖Jfit‖0 vs. µ curve for M = 200 and the lowest noise content (circle markers). This plateau indicates that
CSCE has extracted three non-zero coefficients. Furthermore, the value of ‖Jexact − Jfit‖1 drops close to zero in this
range, indicating that CSCE has found essentially the exact answer. Using values of µ below the optimal range results
in sharp increases in both the number of nonzero coefficients and in the error ‖Jexact − Jfit‖1, indicating overfitting.

Conversely, µ values above the optimal range result in fewer non-zero coefficients and an incremental increase in
‖Jexact − Jfit‖1, probably indicating underfitting. As a function of increasing µ, one first obtains a plateau where the
CS reproduces the two largest expansion coefficients (10 and 4), followed by another plateau where only the largest
coefficient is reproduced. This example illustrates the important point that CS is largely insensitive to the choice of
µ—the ability to recover the correct solution does not depend on the exact value of µ, as long as it lies within an
optimal, but broad, range.
Upon increasing the noise in the fitting data at a fixed data set size [compare the curves marked by circles and

squares in Fig. 2(a)], the plateaus in ‖Jfit‖0 vs µ become narrower until the highest plateau, corresponding to full
recovery of the true solution, disappears completely (“x” markers in Fig. 2). At the same time, the minimum in the
error ‖Jexact − Jfit‖1 vs. µ is increasing incrementally. This displays the robustness and stability of CS—even at a
very high noise level we are able to recover the majority of the signal content.
The shift towards higher values of optimal µ upon increasing noise level in Fig. 2 is consistent with the physical

interpretation of µ as the threshold for noise filtering given in Sec. IVE. We also note that an increase in the number
of structures M tends to slightly lower the optimal µ, which can be attributed to a fuller recovery of the correct
solution and an associated decrease in the systematic noise.
Figure 2(c) displays ‖Jexact − Jfit‖1, averaged over approximately 100 random subsets, as a function of M , the

number of fitting structures, and the noise level. Here we see the same plateau structure found in Fig. 2(a), with the
lower (blue) plateau indicating essentially an exact fit. This plot demonstrates that, for all noise levels considered
(up to as high as 50% of the noiseless energies!), there remains a training set size for which the exact solution will be
recovered.

B. Actual alloy example: Ag-Pt

Having explained the basic properties of CSCE for a model system, we now test its performance on real DFT
data for binary Ag-Pt alloys on a face-centered cubic (fcc) lattice. Ag-Pt was chosen due to a report of unusual
ordering tendencies52 which are non-trivial to reproduce with current state-of-the-art CE methods. The energies
of more than 1100 Ag-Pt fcc-based crystal structures53 were calculated from the density-functional theory (DFT)
using the vasp software.54,55 We used projector-augmented-wave (PAW) potentials56 and the generalized gradient
approximation (GGA) to the exchange-correlation functional proposed by Perdew, Burke and Ernzerhof.57 To reduce
random numerical errors, equivalent k-point meshes were used for Brillioun zone integration.58 Optimal choices of the
unit cells, using a Minkowski reduction algorithm, were adopted to accelerate the convergence of the calculations.59

The effect of spin-orbit coupling was not included in our calculations because it’s effect was shown to be a simple tilt
of the calculated energies, as explained in Ref. 60.
Out of a total of approximately 1100 structure energies calculated for this system, 250 were chosen at random to

be held out of the fitting process and used for prediction. This “holdout” set remained unchanged for all fitting sets
chosen. Of the remaining 850 data points available for fitting, subsets of up to N = 400 were chosen to be used as
CSCE training data.
We start by illustrating the performance of two different methods for selecting the optimal value of µ. First, we

varied µ and calculated the standard LOOCV score over 10 different randomly drawn subsets of M structures; the
results are shown by blue curves in Fig. 3. It is seen that the LOOCV scores reach their minima at µ ≈ 4 and 2
meV/atom for M = 100 and 400, respectively, which we interpret as the optimum µ’s providing maximum predictive
power. Second, we calculated the average prediction errors for all structures left out of the fitting set, which are
represented by the black dotted lines in Fig. 3. We see that the RMS errors for the prediction set largely follow the
same behavior as the LOOCV scores, reaching minima at nearly identical µ values.

As expected, fitting errors for the training set (not shown here) decrease monotonically with decreasing µ and
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FIG. 3. Root-mean-square errors for the prediction set (black line with empty squares) and the leave-one out cross-validation
score (LOOCV, solid blue line) as functions of the parameter µ. LOOCV has been averaged over 10 randomly drawn sets of
100 (400) structures, and the error bars were calculated from the variance in the predicted LOOCV scores over these sets.
Predictive errors for the hold-out set and the fitting errors for the training set were averaged over 500 different sets of 100 (400)
structures; the corresponding error bars are smaller than the size of the symbols.

are significantly smaller than either the LOOCV scores or prediction errors for the hold-out set. The leveling off in
both the prediction errors and the LOOCV score at small values of µ can be explained by noting that CSCE fits the
training set perfectly and further decrease of µ does not bring about noticeable changes in the calculated ECI’s. We
note that this behavior is different from the short-ranged pair model in the previous section, where decreasing µ below
the optimal range caused a rapid deterioration in the accuracy of the calculated ECI’s. We attribute this difference
to the lower level of noise in the Ag-Pt case, so that the range of µ’s that leads to acceptable ECI’s is much wider
than at the 20-50% noise level for the short-ranged pair model.

To compare the performance of CSCE with other established methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22 was used. Note that the ATAT program is capable
of employing advanced algorithms beyond minimization of the LOOCV score to ensure that the ground state line is
reproduced correctly and to determine which structures should be used as input. In order to make a straightforward
comparison between CSCE and DO and to ensure a reasonable fit construction time for this problem, we only used
the LOOCV-based DO functionality of ATAT. Since the DO method for N = 986 clusters on a training set of a few
hundred structures takes several days to complete, averages were taken over only 10 training sets of size M (except
for M = 400 when we used 42 different training sets to perform statistical analysis of the calculated ECI’s). In order
to simulate building a complicated unknown model, we deliberately avoided applying physical intuition (e.g., picking
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FIG. 4. Results from compressive sensing and leave-one-out cross-validation for the fcc-based, Ag-Pt alloy system. The solid
line gives the root-mean-square (RMS) errors for predictions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross-validation (squares). The dashed lines give the ℓ1-norm of the solution vector for both methods.

short-range interactions) and simply performed the optimizations with minimal restrictions. The maximum number of
reported ECI’s was capped to M/4 for ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom and computed
solutions for 500 randomly chosen training sets of M structures.

Figure 4 shows a box and whisker plot of the RMS errors over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used for DO solutions due to the small number of DO fits).
Each box and whisker represents RMS values for approximately 500 different fits. We see that CSCE achieves an RMS
error value much lower (2.8 meV/atom) than LOOCV-based DO (6.8 meV/atom). Furthermore, Fig. 4 shows that
the ℓ1 norm of the solution increases almost linearly for the DO fit, while it levels off for the CSCE fit, indicating that
the latter is converging towards a stable solution, while the former keeps adding large ECI’s, a behavior suggestive of
over-fitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different training sets can be computed in a few minutes. The
results of all these fits can be analyzed statistically to determine which coefficients are consistently identified as
contributors and to eliminate artifacts due to a particular choice of the training set. This functionality, the ability to
gather enough data in a reasonable amount of time to perform statistical analyses, is a significant advantage of CSCE
over (slower) DO methods that can be used to gain insight into the probability distributions for the cluster interactions.
These distributions can be used to quantify the uncertainty in the CSCE predictions for physical properties that go
beyond a simple LOOCV score or an RMS prediction error. For instance, one can draw ECI’s from the calculated
distributions and generate ground state convex hulls with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were computed for Ag-Pt. Most of the resulting distributions had only
one sharp peak at zero, indicating that, independently of the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s exhibited a unimodal distribution with nonzero mean,
which were interpreted as strongly significant nonzero interactions. Finally, a fraction of the ECI’s showed bi-modal
distributions with two peaks of comparable weight and one of the peaks centered at zero energy. Since the latter ECI’s
were selected by CSCE with an approximately 50% probability, they belong to the class of “marginal” interactions
which were counted as significant only if their distribution mean was greater than one standard deviation. To make a
fair comparison between CSCE and the DO method implemented in the ATAT program, the same statistical criteria
for determining relevant coefficients was used for the DO fits, even though data for only 42 fits were available.
Figure 5 gives a comparison of the CS-determined coefficients and those found by DO. The upper pane compares

a typical DO fit with a typical CSCE fit, while the lower pane gives a comparison of statistically relevant ECI’s from
both methods. The CSCE-derived ECI’s appear to evolve towards one specific solution as the size of the fitting set
increases, indicating convergence of the solution. Notice also that the magnitudes of the CSCE coefficients decrease
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FIG. 5. Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients
that were found to be statistically relevant from both methods. The x-axis is the cluster radius, which is defined as the
average distance from the center of mass of all cluster vertices. (Blue dots were placed on the x-axis even for clusters not
found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests that
shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found
by both methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition,
while DO finds spurious, long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one
specific solution as the size of the fitting set increases. (note: Triplets and quadruplets are shown on a scale from -20 to 20
meV, different from the scale used for the pairs.)

as the spatial extent of the cluster increases and as the number of cluster vertices increases (note that triplets and
quadruplets are shown on a scale from -20 to 20 meV, as opposed to -50 to 50 meV for pairs). This is in harmony with
long-standing claims in the CE community, and it confirms that a stable solution has been found. DO-determined
clusters follow this pattern for pair clusters only. At higher vertex numbers, a typical DO fit finds non-physical,
spurious coefficients for three- and four- body interactions. The set of statistically-relevant DO coefficients appear to
be lacking several important interactions, specifically short-ranged three- and four-body interactions. This indicates
that: (i) current DO methods are much too slow to be able to gather enough statistics to do a meaningful statistical
analysis, and/or (ii) current DO methods are very sensitive to the choice of the training set and fall short in their
ability to identify physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients, regardless of spatial extent, are efficiently retrieved using
CS. In cases where a purely real-space cluster expansion fails to converge, CS may fail to construct a suitable model,
but it could be combined (as has been done with other approaches) with reciprocal-space fomulations.30,61–63
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FIG. 6. Predicted CSCE formation energies obtained using the ECI’s shown in Fig. 5; error bars are standard deviation due
to different random choices of ≤ 400 structure subsets. Black solid line denotes the convex hull calculated from the average
energies; only Ag, Ca7Ge-type Ag7Pt (barely, with a depth of less than 1 meV/atom), L11 AgPt, and Pt are predicted to be
T = 0 K ground states.

Figure 6 shows the results of a ground state search performed by using the statistically significant M = 400
coefficients to predict the energies of all fcc-based superstructures up to 12 atoms. Error bars were calculated from
randomly drawn sets of M = 400 structures. The ground state line in this figure is consistent with first-principles
data for this system, which finds the same ground states as in Fig. 6, with a few degenerate structures lying on the
convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional cluster selection methods, CS is not only simpler and
faster (less than a minute on a single CPU for CS versus days for LOOCV at M = 400), but also produces more
physical solutions that result in a significant improvement in physical accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—that of protein design in biology. Modeling the protein
folding energies in the zinc-finger motif represents a technically difficult test case with applications in biology.64,65

One of the key problems in protein design is to find the sequence of amino acids (AAs) which stabilizes a particular
3D structure, or folding. Physics-based energy functionals are considered to be some of the most-promising methods
in protein design since they link the stability of the the folded 3D structure to the total free energy, accurately
accounting for electrostatics, van der Waals interactions, and solvation effects. However, their use is problematic due
to the astronomical number of possible AA sequences for even very short proteins. It was shown64,65 that the CE
model can be generalized to describe protein energetics, allowing very fast direct evaluation of the protein energy as
a function of its sequence.
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FIG. 7. Predictive performance of CS for protein energetics in the zinc-finger structure (shown in the inset).

Here, we use the data from Ref. 64 for the so-called zinc-finger protein fold and closely follow exactly the same
computational procedures as employed in that study. The fitting is done using a basis of approximately 76,000 clusters
and energies of 60,000 AA sequences; a separate set of 4,000 AA sequence energies is used to test the predictive power
of the CE model. The very large size of the problem presents a severe test to the conventional LOOCV-based
model building approach, requiring running times of several weeks on parallel computers with user-supervised partial
optimization.64 We chose the highly efficient split Bregman iteration40 for solving the basis pursuit denoising problem
in Eq.(8), which allows us to perform a full optimization in approximately 30 minutes on a single 2.4 GHz Intel Xeon
E5620 processor. Figure 7 shows that for the physically important negative-energy configurations, we are able to
achieve an RMS predictive error of 2.1 kcal/mol with 3,100 model parameters, significantly better than the RMS
error of 2.7 kcal/mol with approximately 6,000 parameters obtained using the LOOCV method in Ref. 64. Since the
predictive errors are Gaussian-distributed with a mean of zero, the statistical uncertainty in the predictive error due
to the finite size of the prediction set (> 1000 negative-energy structures) can be calculated using standard statistical
formulas for the χ2-distribution; they are found to be less than 1% of the calculated RMSE. These results show that
the computational efficiency, conceptual simplicity and physical accuracy of the ℓ1-based minimization shows promise
for future applications in protein design.

VI. CONCLUSION

In conclusion, compressive sensing can be straightforwardly adopted to build physical models that are dominated
by a relatively small number of contributions drawn from a much larger underlying set of basis functions. Compressive
sensing is applicable to any “sparse” basis-expansion problem, a broad class of problems in physics, chemistry and
materials science. Compressive sensing allows the identification of relevant parameters from a large pool of candidates
using a small number of experiments or calculations—a real paradigm shift from traditional techniques. Furthermore,
many other scientific problems that do not appear to be a basis pursuit problem may be recast as one, in which case
CS could efficiently provide accurate and robust solutions with relatively little user input. With the huge amount
of experimental and computational data in physical sciences, compressive sensing techniques represent a promising
avenue for model building on many fronts including structure maps, empirical potential models, tight binding methods,
and cluster expansions for configurational energies, thermodynamics and kinetic Monte Carlo.

In the arena of cluster expansion, compressive sensing provides a simple solution to two challenges: “cluster selec-
tion” and “structure selection.” Cluster selection is effectively solved because compressive sensing can select clusters
efficiently from a very large set (thousands or tens of thousands). Essentially, it allows the user to specify a cluster
set so large that it encompasses every physically-conceivable interaction. The second challenge, structure selection,
is overcome by the fact that compressive sensing requires that input structures simply be chosen randomly from
configuration space.
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