
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Noncollinear density functional theory having proper
invariance and local torque properties

Ireneusz W. Bulik, Giovanni Scalmani, Michael J. Frisch, and Gustavo E. Scuseria
Phys. Rev. B 87, 035117 — Published 11 January 2013

DOI: 10.1103/PhysRevB.87.035117

http://dx.doi.org/10.1103/PhysRevB.87.035117


An approach to noncollinear DFT having proper invariance and local torque

properties

Ireneusz W. Bulik∗

Department of Chemistry, Rice University, Houston, Texas, 77005, USA

Giovanni Scalmani and Michael J. Frisch
Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, USA

Gustavo E. Scuseria
Department of Chemistry, Rice University, Houston, Texas, 77005, USA and

Department of Physics and Astronomy, Rice University, Houston, Texas, 77005, USA

(Dated: December 27, 2012)

Noncollinear spins are among the most interesting features of magnetic materials and their ac-
curate description is a central goals of density functional theory applied to periodic solids. How-
ever, these calculations typically yield a magnetization vector that is everywhere parallel to the
exchange-correlation magnetic field. No meaningful description of spin dynamics can emerge from
a functional constrained to have vanishing local magnetic torque. In this contribution we present a
generalization to periodic systems of the extension of exchange-correlation functionals to the non-
collinear regime, proposed by Scalmani and Frisch [J. Chem. Theory Comput. 2012 8 2193]. This
extension does afford a nonvanishing local magnetic torque and is free of numerical instabilities. As
illustrative examples, we discuss frustrated triangular and Kagomé lattices evaluated with various
density functionals including screened hybrid functionals.

PACS numbers: 71.10.–w,71.15.Mb

I. INTRODUCTION

The significance of density functional theory (DFT) in
condensed matter physics and quantum chemistry can-
not be overstated. Its low computational cost, com-
bined with increasingly accurate approximations to the
exchange-correlation energy, constitute a powerful theo-
retical tool. The currently available functionals, though
very successful in predicting the electronic structure of
matter, are not yet general enough to be applicable
for large classes of phenomena. One particular limi-
tation of DFT is connected with the specific way the
exchange-correlation (xc) functionals are constructed,
namely, within the spin polarized formalism.1,2 In this
approach, the dependence of the energy on the spin mag-
netization is introduced by an external magnetic field of
vanishing magnitude, aligned along what by convention
we call the z axis of spin quantization. Therefore, the
density functionals depend solely on the total density n
and the z component (i.e. the magnitude) of the mag-
netization vector, or, equivalently, the spin up and spin
down densities, n↑ and n↓:

E[n, ~m] → E[n,mz] ≡ E[n↑, n↓].

Even though collinear spin-polarized DFT (SDFT) suf-
fices to describe many magnetic systems, this approxima-
tion cannot be applied in the case where the direction of
the local magnetization is not constrained to a particular
axis, but can vary over the space. This type of behavior
is known and has been observed in, for example, bulk
γ-Fe, geometrically spin-frustrated lattices as jarosites,
halogen salts of erbium, and surfaces.3–10

The nontrivial problem of going beyond collinear
SDFT to account for spin noncollinearity has been of
much recent concern. Even though the extension can
be formally derived in terms of the total density and
the full magnetization vector,11 this approach has not
yet directly benefited from the knowledge and experi-
ence accrued in the development of collinear SDFT func-
tionals. The most common approach is to retain the
form of the existing density functional approximations
but to modify the basic ingredients of the theory. The
spin densities are transformed to alternative quantities
which carry the information about the magnetization. In
other words, E[n, ~m] becomes E[n+, n−]. This approach
was pioneered by Kübler et al.12 for the local spin den-
sity approximation (LSDA),1 where the total spin density
n̄ = 1/2(nσ0 + ~m · ~σ) at given point in space is brought
to diagonal form by a unitary transformation,

n̄(~r) =
1

2

(

n(~r) +mz(~r) mx(~r)− imy(~r)
mx(~r) + imy(~r) n(~r)−mz(~r)

)

→
(

n+(~r) 0
0 n−(~r)

)

(1)

which corresponds to finding a local reference frame
where the magnetization is aligned along the z axis
of spin quantization. The eigenvalues of the above
matrix then take the place of spin densities, and are
1/2(n± |~m|) = n±.
The extension of this formalism to more sophisticated

density functional approximations has been reported by
several authors. These approximations include the gener-
alized gradient approximations (GGAs),13 meta-GGAs,
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and hybrid functionals.14,15 However, many of these
extensions that directly rely on the local reference
frame for density derivatives can suffer from numerical
instabilities,14,16 or lead to an exchange-correlation mag-
netic field that is always parallel to the magnetization.14

The exchange-correlation magnetic field is a functional
derivative of the exchange-correlation energy with re-
spect to the magnetization,

~Bxc(~r) =
δE[n, ~m]

δ ~m(~r)
. (2)

It it clear that this field cannot exert a global torque
on the magnetization, hence it satisfies the Zero Torque

Theorem (ZTT).17 However, ~m × ~Bxc does not have to
vanish identically at every point in space. On the con-
trary, it has been shown that this local contribution plays
a crucial role in describing spin dynamics. It has been
pointed out that within the adiabatic approximation to
time dependent DFT, the density functionals that do not
afford nonzero exchange-correlation torque cannot prop-
erly describe the time evolution of the magnetization.18

Therefore, an extension of collinear SDFT to noncollinear
DFT that satisfies the ZTT locally (by constraining the
~Bxc to be collinear to the magnetization) is not useful for
such applications.
Recently, a novel extension of collinear SDFT has been

proposed by two of the present authors.16 This approach
is not only readily applicable to any existing functional
including GGAs and meta-GGAs but also is free of the
aforementioned collinearity constraint. Moreover, it does
not suffer from the numerical instabilities that proved
to be problematic in our previous formulation of non-
collinear DFT.14

The purpose of this work is to provide a generaliza-
tion of our formalism for periodic systems. It is well es-
tablished that many properties of solids, like band gaps
and lattice parameters, are much more accurate when
described in terms of screened hybrid functionals.19–24

We thus describe here an extension of general spin po-
larized exchange-correlation functionals that depend on
nonlocal Hartree-Fock type (exact) exchange to the non-
collinear regime. As in previous work, we adopt a gen-
eralized Kohn-Sham (KS) approach25–28 which is com-
putationally more feasible than the Optimized Effective
Potential scheme reported in the literature,18 and does
not suffer from discretization problems when used in con-
nection with gaussian orbitals.29 Additionally, exact ex-
change is not constrained by any variable transformation
and hence its contribution the exchange-correlation mag-
netic field does not suffer problems connected to general-
ization of the DFT part. Therefore our formalism seems
to be well suited for hybrid functionals. Furthermore, we
provide a simple implementation scheme that allows us
to extend gaussian orbital-based collinear SDFT codes
to the noncollinear regime. Noncollinear DFT requires
a two-component treatment; thus our formalism can be
combined with relativistic schemes going beyond scalar
effects. In particular, vector spin-orbit effects can be

easily included. Finally, we apply our approach to spin-
frustrated lattices. We explicitly show that our formalism
does not lead to locally vanishing exchange-correlation
magnetic torque. To the best of our knowledge, these are
the first examples of gaussian orbital-based noncollinear
DFT self-consistent calculations of extended systems.

II. THEORY AND IMPLEMENTATION

A. Basic quantities

In order to allow for noncollinearity in Kohn-Sham
DFT (KS-DFT), we start by expressing the nth crys-
talline orbital as a two-component spinor (x denotes spin
and space coordinate),

ψ
~k
n(x) =

(

ψα,~k
n (~r)

ψβ,~k
n (~r)

)

,

where ψσ,~k
n (~r) are expanded in terms of Bloch functions,

ψσ,~k
n (~r) =

∑

ν

cσ
~k

µnφ̃
~k
µ(~r),

and

φ̃
~k
µ(~r) =

1√
N

∑

~L

ei
~k·~Lφ

~L
µ (~r),

where ~L is a vector pointing to the Lth (out ofN) cell and

φ
~L
µ (~r) = φµ(~r − ~L) is the µth atomic orbital in this cell

(we assume it to be a real function in what follows). The
single-particle density matrix takes the following block
structure (the sum over band index should be understood
as a sum over occupied bands):

γ(x, x ′) =
∑

~k

∑

n

ψ
~k
n(x)ψ

~k†
n (x ′) =

(

γαα(~r, ~r ′) γαβ(~r, ~r ′)
γβα(~r, ~r ′) γββ(~r, ~r ′)

)

.

Henceforth, we will drop the dependence on the electronic
coordinate for brevity of notation, unless it could lead to
confusion. As usual, n = trσ[γ], where the trace is to be
understood in the spin space. Similarly (~σ denotes the
vector of Pauli matrices),

~m = trσ[~σ · γ] =





γαβ + γβα

i[γαβ − γβα]
γαα − γββ



 =





mx

my

mz



 . (3)

Each block of the density matrix has the following repre-
sentation in terms of Bloch functions (z̄ denotes complex
conjugate of z):

γσσ
′

=
1

N

∑

~L~L ′

∑

µν

φ
~L
µφ

~L ′

ν

∑

~k

ei
~k·(~L− ~L′)

∑

n

cσ
~k

µnc̄
σ ′~k
νn

=
∑

~L~L ′

∑

µν

[P σσ ′

µν ]
~L~L ′

φ
~L
µφ

~L ′

ν , (4)
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which defines [P σσ ′

µν ]
~L~L ′

,

[P σσ ′

µν ]
~L~L ′

=
1

N

∑

~k

∑

n

cσ
~k

µnc̄
σ ′~k
νn ei

~k·(~L−~L ′).

As usual, the summation over the Brilllouin zone can
be approximated with an integral. The density matrix
naturally takes the following spin structure:

(

P
αα

P
αβ

P
βα

P
ββ

)~L~L ′

. (5)

The periodic symmetry and the hermicity of the infinite

real space density matrix implies that (P
~L~L ′

)† = P
~L ′~L.

Hence,

(

(Pαα)† (Pβα)†

(Pαβ)† (Pββ)†

)~L~L ′

=

(

P
αα

P
αβ

P
βα

P
ββ

)~L ′~L

. (6)

It is clear that the information encoded in the full P
~L~L ′

is redundant. Therefore, we perform the standard de-
composition of an arbitrary matrix into its hermitian
and anti-hermitian components, which latter on can be
further separated into real symmetric (RS ), imaginary
symmetric (IS ), real anti-symmetric (RA) and imaginary
anti-symmetric (IA) contributions. We propose here the
following way of carrying out this decomposition for pe-
riodic systems,

[Pσσ ′

RS ]
~L~L ′

=
1

2
[Re(Pσσ ′

+P
σ ′σ)]

~L~L ′

(7)

[Pσσ ′

IA ]
~L~L ′

=
1

2
[Im(Pσσ ′

+P
σ ′σ)]

~L~L ′

. (8)

Analogously, the RA and IS components are obtained
by taking the difference in the equations above. We
note that the symmetry or anti-symmetry property of
the above matrices should be understood in the sense
that

P
~L~L ′

νµ = ±P ~L ′~L
µν ,

which can be readily verified using Eq.(6). Clearly, the
same spin RA and IS blocks of density matrices vanish
identically. Note that this decomposition allows one to
limit the amount of data stored not only for the density
matrix but also for each hermitan matrix that obeys a
relation analogous to Eq. (6). For instance, one only
needs to construct the decomposition for, say, Pαβ for

given vectors ~L and ~L ′. The corresponding block P
βα

can be always obtained for the cell ~L ′ and ~L. Therefore,
a set of only 8 real matrices of dimension N, suffice to
reconstruct the full real space complex density matrix of
dimension 2N.

B. Effective single-particle equations

Using the standard decomposition of the total energy
in the KS scheme, the total energy per unit cell, E, can

be written as

E = ET + EN + EJ + Exc + ESD (9)

where ET is the kinetic energy, EN is the electron-nuclei
attraction and nuclei-nuclei repulsion energy, EJ is the
classical Coulomb interaction of the electron density and
the exchange-correlation energy Exc includes the quan-
tum corrections. The last term describes the energy aris-
ing from additional spin-dependent interactions, for ex-
ample spin-orbit coupling. Variation of the energy ex-
pression with respect to crystalline orbitals leads to the
following KS equations:

(t̂+ v̂N + ĵ + v̂xc + ĥSD)ψ
~k
n(x) = ǫkψ

~k
n(x), (10)

where t = − 1
2∇2.

The kinetic energy, together with the Coulombic part
of the potential, v̂N+̂, is diagonal in spin space. Namely,

t̂+ v̂N + ̂ = (11)

σ0

(

− 1

2
∇2 −

∑

A

Za

|~r − ~RA|
+

∫

d~r ′ n(~r ′)

|~r − ~r ′|
)

,

where A label the atoms in the crystal and σ0 is the
2x2 identity matrix. Whereas the kinetic energy inte-
grals require no modification of the one-component code,
the Coulombic part can be easily computed by provid-
ing the one-component routines with few P σσ matrices.
Restricting ourselves to a real gaussian basis set, only
the real symmetric part of these matrices must be used,
which is clear from the symmetry of the two electron in-
tegrals. As usual, care must be taken when evaluating
formally divergent terms in the Coulomb sums. In the
present work we have used the Gaussian Fast Multipole
Method as presented by Kudin et al.30–32.
Now, let us turn our attention to the

exchange-correlation part. As mentioned in the
introduction, we wish to consider general xc approxima-
tions that contain a portion of exact (nonlocal) HF-type
exchange. Therefore, we write,

v̂xc = aK̂ + (1 − a)v̂DFT
x + v̂DFT

c ,

where K̂ is the Fock exchange operator and a is a mix-
ing parameter. The underlying interaction does not have
to correspond, however, to the bare Coulomb potential
but can take, for instance, a screened (short-range) or a
middle-range interaction.33 Including all of the above in
an operator V̂eff , we write

K̂ψ
~k
n(x) = −

∑

~k ′

∑

m

∫

d~x ′ψ
~k ′

m (x)V̂effψ
~k ′†
m (x ′)ψ

~k
n(x

′)

= −
∫

dx ′V̂effγ(x, x
′)ψ

~k
n(x

′). (12)

Expanding the two-component spinors in terms of the
localized atomic orbitals, one easily finds that the ma-
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trix representation of the exchange operator takes a spin-
blocked form analogous to the density matrix,

K
~L~L ′

=

(

K
αα

K
αβ

K
βα

K
ββ

)~L~L ′

,

where

[Kσσ ′

µν ]
~L~L ′

=
∑

λκ

∑

~H ~H ′

[P σσ ′

λκ ]
~H ~H ′〈µ~Lκ

~H ′ |λ ~Hν
~L ′〉.

In order to perform the exchange integral contrac-
tion with minimal modification of our existing single-
component periodic code, we use the decomposition of
the density matrix established in the previous section.
Each portion is a real matrix whose size is the same as
in single-component case. It is thus sufficient to contract
the two electron integrals with each block of P. Now,
reversing the transformation of Eq. (7) allows us to re-
construct the full K matrix.
Finally, let us discuss the pure density functional part

of the exchange-correlation energy. As mentioned in the
Introduction, the extension of collinear SDFT to the non-
collinear regime relies on the transformation of variables.
Namely, a set of variables (denoted with subscript + and
−) is obtained from the total density and magnetization
vector and their gradients,

{

n, ~m
}

→
{

n±, γ±, γmix, τ±,∇2n±

}

,

where γ± mimics the modulus square of the gradient
of spin up and down densities, γmix is the cross term,
τ± substitutes the kinetic energy density and ∇2n±

the laplacian. It should be understood that such vari-
able transformation is not unique. Nonetheless, we be-
lieve that the particular transformation introduced in
Ref. 16 and employed here, is the first example that sat-
isfy many important requirements, such as: (i) it does
not constrain the relative orientation of magnetization
and exchange-correlation field, thereby allowing for a
nonvanishing local magnetic torque while satisfying the
global zero torque theorem;17 (ii) both the xc energy and
the intermediate variables are invariant with respect to
spin-rotations; (iii) a vanishingly small magnitude of the
magnetization vector does not lead to numerical insta-
bilities and (iv) the proper collinear limit is recovered
as all the spins align with respect to any arbitrary spin
quantization axis.
For completeness, we present below these transforma-

tions explicitly

n± =
1

2

[

n±
√
~m ◦ ~m

]

(13)

γ± =
1

4

[

∇n · ∇n+∇~m ◦ ·∇~m
]

± f∇
2

√

(∇n · ∇~m) ◦ (∇n · ∇~m) (14)

γmix =
1

4

[

∇n · ∇n−∇~m ◦ ·∇~m
]

(15)

with ◦ (·) denoting scalar product in spin (real) space
and f∇ = sgn(∇n · ∇~m ◦ ~m), with sgn being the signum

function. The meta-GGA components are generalized as

τ± =
1

2

[

τ ± fτ
√
~u ◦ ~u

]

(16)

∇2n± =
1

2

[

∇2n± f∇2

√
∇2 ~m ◦ ∇2 ~m

]

, (17)

with fτ = sgn(~u ◦ ~m) and f∇2 = sgn(∇2 ~m ◦
~m). The vector ~u is obtained by replacing γ by
1/2∇~r · ∇~r ′γ(~r, ~r ′)|~r=~r ′ in Eq. (3).
The extension of the one-component code is therefore

straightforward. Translating Eq. (3) into the localized
Gaussian basis, we construct

n(~r) =
∑

µν

∑

~L~L ′

(

P
αα
RS +P

ββ
RS

)

~L~L ′

µν µ
~L(~r)ν

~L ′

(~r)

mx(~r) = 2
∑

µν

∑

~L~L ′

(

P
αβ
RS

)

~L~L ′

µν µ
~L(~r)ν

~L ′

(~r)

my(~r) = 2
∑

µν

∑

~L~L ′

(

P
αβ
IS

)

~L~L ′

µν µ
~L(~r)ν

~L ′

(~r)

mz(~r) =
∑

µν

∑

~L~L ′

(

P
αα
RS −P

ββ
RS

)

~L~L ′

µν µ
~L(~r)ν

~L ′

(~r) (18)

Again, we have used the fact that we work with real
atomic orbitals as the underlying basis. Furthermore, by
tracing the above combination of density matrices with
the gradients of basis functions, we can construct the
gradient of the magnetization and higher derivatives in
the usual way. The DFT contribution to the Fock ma-
trix can now be explicitly formed by taking the deriva-
tives of the exchange-correlation energy with respect to
the density matrix,25 with functional derivatives with re-
spect to ± variables changed into derivatives with respect
to n and ~m via the chain rule. Namely, the functional
derivative with respect to, say my, is used just as in the
one-component code to obtain the contributions to the
imaginary-symmetric block of Fock matrix. This step
takes place in the numerical quadrature and requires only
minor modifications to the existing subroutines.

C. Analysis and visualization of the magnetization

and the exchange-correlation magnetic field

The visualization of the magnetization vector field
~m(~r) does not rise any particular issue since it is suf-
ficient to use Eqs. (18) to map ~m(~r) over any selected
region of space.

The situation is different for ~Bxc(~r). In our implemen-
tation of the KS equations, we do not construct explicit
functional derivatives of the energy with respect to the
electron density. Instead, as mentioned in the Introduc-
tion, we take variations with respect to the one-particle
density matrix. Therefore, in order to evaluate (and vi-

sualize) ~Bxc(~r) we actually performed the integration by
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parts25 required to express the xc magnetic field as a lo-
cal function involving only derivatives with respect to the
magnetization density (18), leading to

~Bxc =
δExc

δ ~m
=

∂f

∂n+

∂n+

∂ ~m
+

∂f

∂n−

∂n−

∂ ~m
(19)

−∇ ·
(

∂f

∂γ+

∂γ+
∂∇~m

+
∂f

∂γ−

∂γ−
∂∇~m

+
∂f

∂γmix

∂γmix

∂∇~m

)

where f is the density functional. The above expression
is significantly more complex than what it is required
to variationally minimize the energy with respect to the
one-particle density matrix (5). In fact, it involves second
derivatives of the functional and the full second deriva-
tives of the magnetization densities (18). Moreover, in
the case of a meta-GGA functional, the same integra-
tion by parts does not allow to express the direct depen-
dence of the energy on the kinetic energy density (16) as
a derivatives with respect to ~m. Therefore, Eq. (19) can-
not be extended to meta-GGA. It cannot be extended
also to hybrid functionals because the exact exchange is
nonlocal in nature.
In addition to the ability of visualizing ~m(~r)

and ~Bxc(~r), another important interpretation tool for
noncollinear DFT solutions is the partitioning of the total
magnetization into atomic contributions. In the present
work, we employ an extension of the Hirshfeld popula-
tion analysis34 to periodic systems. This approach, orig-
inally derived for calculating atomic charges, relies on
the idea of describing the difference between non-bonded
atoms and molecules. This analysis can be extended to
other continuous variables as it partitions space into sin-
gle atomic regions. In other words, in this scheme one
defines a ”pro-crystal” density that is composed of spher-
ically averaged ground state densities of the atoms of the
crystal (ñ),

npro(~r) =
∑

~L

∑

A

ñA(~r − ~L),

where we split the summation over the unit cell replicas
and atoms in the unit cell. We also define the sharing
function ũA,

ũ
~L
A(~r) = ũA(~r − ~L) =

ñA(~r − ~L)

npro(~r)
.

An integrated value (Q) of a given continuous quantity
q(~r) can be therefore expressed as (u.c. denotes unit cell),

Q =

∫

u.c.

d~r q(~r) =
∑

A

∑

~L

∫

u.c.

d~r q(~r)ũ
~L
A(~r)

Using the periodic symmetries of the quantity of interest
and the sharing function, we change the integral over the
unit cell to an integral over the whole space. Then,

Q =
∑

A

[

∫

d~r q(~r)ũ
~0
A(~r)

]

=
∑

A

QA,

where the sharing function is now centered in the unit
cell 0. This partitions the quantity Q into atomic com-
ponents QA. In the actual calculation we also introduce
the standard DFT integration weights35. We applied the
Becke-weights modified by Stratmann et al. .36

III. RESULTS AND DISCUSSION

A. Computational Details

As a prototypical application of our methodology,
we have studied two-dimensional spin-frustrated lat-
tice models with chromium atoms at the nodes. The
distance between individual atoms corresponds to the
inter-atomic separation of the Ag (111) surface.37 We
have adopted this specific geometry following Ref. 18.
For each lattice, we have carried out calculations em-
ploying a representative functional from each class of
commonly used DFT approximations. For the local
ones, we have used the LSDA with Dirac exchange and
the Vosko, Wilk and Nusair parametrization of cor-
relation (SVWN5).38 As a model GGA functional we
have chosen the Perdew-Burke-Ernzerhof (PBE)39 func-
tional. For the meta-GGA we have chosen the Tao-
Perdew-Staroverov and Scuseria (TPSS)40 functional.
From the hybrid functionals, we have employed two
range-separated models, the Heyd-Scuseria-Ernzerhof
(HSE)19,20 and the Henderson-Izmaylov-Scuseria-Savin
(HISS).33 The former separates the exchange operator
into short- and long-ranges, whereas the latter addition-
ally introduces a middle-range. We should stress at this
point, that our approach is readily applicable to any func-
tional belonging to any of the above classes.
Even though our implementation supports spin-orbit

coupling terms via relativistic core potentials, we have
not included them in the present calculations. Instead,
we have restricted ourself to scalar-relativistic effective
core potentials, substituting the Ne core, of Dolg et

al.41 We have adapted the corresponding basis set to
periodic calculations by removing basis functions with
exponent below 0.095 bohr−2. We have also neglected
the g-functions. All calculations were carried out using
the GAUSSIAN suite of programs.42 The default (tight)
GAUSSIAN convergence criteria, which corresponds to
convergence of at least 10−7 on the root-mean-square of
the density matrix, has been used. The DFT numerical
quadrature has been set to a pruned grid of 225 radial
points and 974 angular points. The reciprocal space was
sampled with 2116 points.

B. Triangular lattice

The first lattice that we have studied is a triangu-
lar one. It is known18 that this system exhibits a non-
collinear antiferromagnetic Néel state, where the magne-
tization around each of the lattice points in the magnetic
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TABLE I. The calculated net magnetic moments of chromium
atoms (in µB) for the lattices considered in this work.

Functional

LSDA PBE TPSS HSE HISS

triangular 2.11 2.15 2.18 2.26 2.15

Kagomé ~q=0 2.25 2.29 2.32 2.37 2.28

Kagomé
√
3×

√
3 2.27 2.31 2.33 2.39 2.30

y

x

FIG. 1. The structure of the triangular Cr lattice. The blue
points represent the magnetic unit cell employed in the cal-
culations. The dark blue arrows present the converged mag-
netization obtained with the HSE functional, partitioned ac-
cording to the Hirshfeld scheme. Additionally, the translation
vectors are presented (green arrows).

unit cell is oriented at an angle of 2π/3 with respect to
each other. Not surprisingly, each of the tested func-
tionals properly identified this state. We have observed
good agreement between the ideal and computed angle
between the atomic magnetization vectors. The geome-
try of the lattice is shown in Fig. (1).
Despite this qualitative agreement, the total value of

the magnetization divided into atomic contributions re-
veals quantitative differences. The results are presented
in Table I. We have observed that the total mag-
netic moment increases as one climbs Jacob’s ladder of
functionals,43 with the exception of the HISS functional,
which predicts the norm of the magnetization to be very
similar to the PBE value. We note that the magnetic mo-
ment of the chromium atom obtained with LSDA, 2.11
µB, is in fairly good agreement with the value reported
by Sharma et al.18 of 2.0µB.
Now let us turn our attention to the key point of

the present work, namely, abandoning the collinearity
constraint between the local magnetization vector and
the exchange-correlation magnetic field. Even though
our formalism does not impose such a constraint on
any of the functionals (except LSDA where it natu-
rally arises), we shall discuss this point only using pure

FIG. 2. The direction of the magnetization (red arrows)
and the exchange-correlation magnetic field (blue arrows) ob-
tained with the PBE functional. The color map depicts the
magnitude (in atomic units) of ~m× ~Bxc in the direction per-
pendicular to the Cr surface. The black points indicate the
actual magnetic unit cell used in the calculations.

GGA examples for the reason mentioned in II C. How-
ever, let us stress that exact exchange is fully nonlocal
and unconstrained, therefore the problem of locally van-

ishing magnetic torque, ~m × ~Bxc, does not apply for
the Hartree-Fock part of hybrid functionals. Addition-
ally, calculations carried out within the Optimized Ef-
fective Potential, where the local representation of the
exchange-correlation magnetic field is accessible for ex-
act exchange, have shown a non-vanishing local torque

between ~m and ~Bxc.
18

In Fig. (2) we present the local distribution of the
aforementioned quantities obtained with the PBE func-
tional. In the present work, we do not reverse the orien-

tation of the ~Bxc with respect to ~m, as we have done in
Ref. 16. In analogy to previous studies14,18, we find that
the magnetization tends to be highly collinear in the core
region, with rather strongly accented boundaries where
it changes orientation. These boundaries coincide with
the domains where the calculated exchange-correlation
magnetic field deviates the most from the collinear
alignment with respect to ~m. It is clear, that the
exchange-correlation magnetic torque is non-negligible
and exhibits rich structure. This, obviously, cannot be
captured by previous generalizations of GGA functionals

to noncollinear SDFT, in which ~Bxc was still constrained
to be everywhere parallel to ~m.13–15
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FIG. 3. The structure of the Kagomé ~q = 0 lattices of the positive (left) and negative (right) chirality. The blue points represent
the actual magnetic unit cell used in the calculations with arrows representing the converged magnetization obtained the HISS
functional partitioned according to Hirshfeld scheme. For the clarity of the picture, the magnetization for the negative chirality
has been rotated to stress the difference to the left panel. Additionally, the translation vectors are presented (green arrows).

FIG. 4. The direction of the magnetization (red arrows) and the exchange-correlation magnetic field (blue arrows) obtained
with the PBE functional for the Kagomé lattice of positive (left) and negative (right) chirality. The color map depicts the

magnitude (in atomic units) of ~m× ~Bxc in the direction perpendicular to the Cr surface. The black points indicate the actual
magnetic unit cell used in the calculations.

C. Kagomé Lattice

Let us turn our attention to the second type of lat-
tice considered in the present work, the Kagomé lattice.
We have decided to examine this example using our for-
malism for two main reasons. First, this lattice exhibits
interesting noncollinear spin arrangements, identification
of which can further validate the quality of our approach.
Second, materials that display this type of idealized lat-
tice have been realized experimentally.3,8,10 To the best of

our knowledge, the theoretical treatment of these systems
has not been attempted with realistic electronic structure
Hamiltonians, but rather with models such as the Heisen-
berg Hamiltonian.44–47 Because of the complex chemical
environment in real materials, we believe that a fully ab
initio treatment, as provided by our formalism, is impor-
tant in studying such systems.

We have started our investigation with a three-atom
magnetic unit cell. In this arrangement, we expect to
identify two non-equivalent spin structures. These are
known as the ~q = 0 spin states48 which differ by the
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chirality of the spin magnetization, not by a global rota-
tion in spin space. In the positive (negative) chirality, the
magnetic moments are rotated clockwise (anti-clockwise)
when each of the triangles is traversed clockwise.8 These
lattices correspond to the classical ground states of the
2D Heisenberg antiferromagnet with inclusion of inter-
actions beyond the nearest-neighbour (nn), which lifts
the high degeneracy in the nn-models.49,50 The structure
of the lattice is presented in Fig. (3). This figure also
depicts the converged magnetic moments for the HISS
functional. Because the spin-space is independent of the
geometry of the systems in our calculations, we have ro-
tated the partitioned magnetization for the negative chi-
rality to facilitate comparison with the positive one.

With all of the functionals employed, we have been able
to identify these magnetic orderings. Additionally, we
have found that all methods studied predict both chiral
arrangements to be exactly degenerate, which is in agree-
ment with the calculations based on the model Hamil-
tionians, without explicit inclusion of perturbations that
can lift this degeneracy.10,44 In agreement with the trian-
gular lattice, the values of the atomic magnetic moments
follow the rungs of Jacob’s ladder. Again, the HISS func-
tional is an exception and its predictions of this quantity
closely follow those of PBE. On the other hand, going
from the triangular arrangement to the Kagomé lattice,
we observe a significant increase of the norm of the mag-
netic moments. The values of the atomic magnetization
obtained within Hirshfeld approach are given in Table I.

In Fig. (4), we present the local distribution of the
magnetization and exchange-correlation magnetic field.
Once again, we notice a dominantly collinear arrange-
ment in the core region with significant variations over
the atomic boundaries. It is also clear that the high spin
frustration of the underlying lattice gives rise to an in-
teresting map of the local exchange-correlation magnetic
torque, which could not have been captured with the pre-
vious generalization of collinear SDFT to the noncollinear
regime.

Finally, let us discuss an alternative magnetic unit cell
for the Kagomé lattice that we have employed in the
present study. This is known as the

√
3×

√
3 alignment,

where corner sharing triangles differ by chirality. The
lattice, together with the magnetic unit cell, is presented
in Fig. (5). This ordering is also a known ground state
for the 2D Heisenberg Hamiltonian with beyond nearest-
neighbours interactions. With all the methods studied,
we succeeded in identifying solutions to the KS equa-
tions that correspond to this state. We have found that
the atomic magnetic moments of the chromium atoms
increase slightly as compared to the ~q = 0 states (please
refer to Table I for actual values). This observation
was confirmed by all xc functionals tested. The non-
equivalent magnetic structure lead to a slightly different
energy per site. We have found that the ~q = 0 lattice is
stabilized by 12, 14, 9, 3 and 15 meV per chromium atom
with the LSDA, PBE, TPSS, HSE and HISS function-
als, respectively. Lifting the degeneracy between these

two magnetic orderings has been also discussed in the
literature50 with the connection to the sign of the next-
nearest neighbour interaction.

IV. CONCLUSIONS

We have presented a generalization to periodic sys-
tems of the recently suggested extension of spin den-
sity functional theory to the noncollinear regime.
Our methodology is suitable for all commonly em-
ployed exchange-correlation density functionals, includ-
ing successful range-separated and screened ones. We
have shown that our approach does not constrain
the orientation between the magnetization and the
exchange-correlation magnetic field. In other words, this
extension does not suffer from the limitation of a vanish-
ing local magnetic torque. We would like to stress the
importance of this fact from the perspective of possible
future spin dynamics studies. Our approach is free of nu-
merical instabilities. We have not encountered problems
converging our equations to tight criteria.
We have applied our methodology to spin frustrated

atomistic lattice models. We believe that our approach,
which allows applying accurate solid-state functionals in
the noncollinear regime, will prove useful for calculations
of magnetic properties. The formalism presented here
can be readily employed in the study of other materi-
als, including those containing f electrons. Results along
these lines will be presented in due course.

V. ACKNOWLEDGEMENTS

We would like to acknowledge Dr. Thomas M. Hen-
derson for carefully reading the manuscript. The work at
Rice University is supported by DOE, Office of Basic En-
ergy Sciences, Heavy Element Chemistry program under
Grant No. DE-FG02-04ER15523.



9

�

�

�

��

�

FIG. 5. The structure of the
√
3 ×

√
3 Kagomé lattice. The blue points represent the magnetic unit cell employed in the

calculations with arrows representing the converged magnetization obtained with the TPSS functional, partitioned according
to Hirshfeld scheme. Additionally, the translation vectors are presented (green arrows).
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