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I examine, in general, how tunable interactions may be used to perform anyonic teleportation and
generate braiding transformations for non-Abelian anyons. I explain how these methods are encom-
passed by the “measurement-only” approach to topological quantum computation. The physically
most relevant example of Ising anyons or Majorana zero-modes is considered in detail, particularly
in the context of Majorana nanowires.
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I. INTRODUCTION

Non-Abelian anyons are quasiparticle excitations of
topological phases that exhibit exotic exchange statistics
governed by higher dimensional representations of the
braid group1–4. Such quasiparticles collectively possess
a multi-dimensional, non-local (topological) state space
that is essentially immune to local perturbations. This
property makes non-Abelian topological phases appeal-
ing platforms for quantum information processing, as
they allow for topologically-protected quantum compu-
tation (TQC)5,6. In the TQC approach, computational
gates may be generated through topological operations,
such as braiding exchanges of quasiparticles, in which
case they are also topologically-protected. The physical
implementation of such protected gates poses one of the
most significant challenges for realization of TQC.

The initial conception of TQC envisioned physi-
cally translocating non-Abelian quasiparticles to perform
braiding operations as the primary means of generating
gates. Proposals for moving quasiparticles include sim-
ply dragging them around (e.g. with a STM tip, if they
are electrically charged) and a “bucket brigade” series
of induced hoppings from one site to the next, originat-
ing at one location and terminating at another7. A sub-
sequent proposal, known as “measurement-only TQC”
(MOTQC)8,9, introduced methods of effectively generat-
ing braiding transformations on the state space, without
physically moving the anyons associated with the state
space. These transformations are implemented by exe-
cuting a series of measurements and anyonic state tele-
portations.

Recently, there have been a number of proposals to
utilize coupling interactions of some sort, e.g. topologi-
cal charge tunneling or Coulomb interactions, which are
used to replace (or supplement) the physical transloca-
tion of non-Abelian anyons and implement braiding op-
erations on their non-local state space10–15. I consider
these interaction-based proposals in generality and ex-
plain how this class of methods is encompassed by the
MOTQC approach. I also examine the physically most
relevant example of Ising anyons or Majorana zero modes
in detail, particularly in the context of Majorana wires.

II. FORMALISM

In this paper, I will use the diagrammatic represen-
tation of anyonic states and operators, as described by
a general anyon model. This encodes the purely topo-
logical properties of quasiparticles, independent of any
particular physical realization. For additional details
and conventions used in this paper, I refer the reader
to Refs. 9,16,17.
An anyon model is defined by a set C of conserved

quantum numbers called topological charge, fusion rules
specifying what can result from combining or splitting
topological charges, and braiding rules specifying what
happens when the positions of objects carrying topolog-
ical charge are exchanged. Each quasiparticle carries a
definite localized value of topological charge. There is
a unique “vacuum” charge, denoted I, for with which
fusion and braiding is trivial, and each charge a has a
unique conjugate ā which can fuse with a to give I. The
topological charges obey the anyon model’s (commuta-
tive and associative) fusion algebra

a× b =
∑

c

N c
abc, (1)

and where N c
ab are non-negative integers specifying

the number of ways that topological charges a and b
can combine to produce charge c. These rules pre-
scribe fusion/splitting Hilbert spaces Vcab and Vabc with
dim(Vcab) = dim(Vabc ) = N c

ab, which generate the non-
local state space through repeated fusion/splitting. A
charge a is non-Abelian if it does not have a unique fu-
sion channel for every type of charge it is fused with, or,
alternatively, if it has

∑

cN
c
aa > 1. It is clear that the

dimension of the topological state space increases as one
includes more non-Abelian anyons.
Diagrammatically, the orthonormal bra/ket vectors in

the fusion/splitting spaces are represented by trivalent
vertices:

(dc/dadb)
1/4

c

ba

µ = 〈a, b; c, µ| ∈ Vcab, (2)

(dc/dadb)
1/4

c

ba

µ = |a, b; c, µ〉 ∈ Vabc , (3)
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where µ = 1, . . . , N c
ab. The normalization factors involv-

ing da, the quantum dimension of the charge a, are in-
cluded so that diagrams are in the isotopy invariant con-
vention. States and operators involving multiple anyons
are constructed by appropriately stacking together dia-
grams, making sure to conserve charge when connecting
endpoints of lines. In this paper, I consider only anyon
models with no fusion multiplicities, i.e. N c

ab = 0 or 1,
(which includes all the cases of physical interest,) and so
will leave the basis labels µ implicit in the rest of the
paper, but the discussion may be generalized.

Associativity of fusion in the state space is encoded
by the unitary (change of fusion basis) isomorphisms

F abcd :
⊕

e Vabe ⊗ Vecd → ⊕

e V
af
d ⊗ Vbcf . These F -symbols

are similar to the 6j-symbols of angular momentum rep-
resentations. Diagrammatically, these are written as

a b c

e

d

=
∑

f

[

F abcd

]

ef

a b c

f

d

. (4)

The counterclockwise braiding exchange operator of
topological charges a and b is represented diagrammati-
cally by

Rab =
a b

=
∑

c

√

dc
dadb

Rabc c

ab

ba

(5)

where the symbols Rabc are the phases acquired by ex-
changing anyons of charge a and b, which fuse together
into fusion channel c. Similarly, the clockwise braid is

R†
ab = R−1

ab =
b a

. (6)

The projection of two anyons with topological charges
a1 and a2, respectively, onto collective topological charge
b is given by

Π
(12)
b =

√

db
da1da2

b

a2a1

a2a1

. (7)

The projection of three anyons with topological charges
a1, a2, and a3, respectively, onto collective topological
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FIG. 1: Topological charge projectors (indicated by the
shaded ovals) occurring for (a) anyons 1 and 2, (b) anyons
2 and 3, and (c) anyons 1, 2, and 3.
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FIG. 2: Interactions (indicated by the shaded ovals) occurring
(a) pairwise between anyons 1 and 2, (b) pairwise between
anyons 2 and 3, and (c) between three anyons 1, 2, and 3.

charge c is given by

Π(123)
c =

∑

b

√

dc
da1da2da3

c
b

a1 a2 a3

b

a1 a2 a3

. (8)

The planar representation of two and three anyon pro-
jectors are shown in Fig. 1. When an operator acts on
only a subset of all the anyons, it implicitly means that it

acts trivially on the other anyons, e.g. Π
(12)
b really means

Π
(12)
b ⊗ 11(3...n) when there are n anyons.
A general pairwise interaction between two anyons can

be expressed in terms of tunneling of topological charge
between the two anyons as

V (12) =
∑

e















Γe
1√
de

a1 a2

a1 a2

e
+ Γ∗

e

1√
de

a1 a2

a1 a2

e















,

(9)
where Γe is the tunneling amplitude of charge e, or in
terms of projectors as

V (12) =
∑

b

Eb Π
(12)
b (10)

where Eb is the energy associated with the two anyons
having fusion channel b. These are related by

Eb =
∑

e

(

Γe [F
a1ea2
b ]

a1a2
+ Γ∗

e [F
a1ea2
b ]∗

a1a2

)

, (11)
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and tunneling will generically fully split the fusion chan-
nel degeneracy of a pair of non-Abelian anyons18.
n-anyon interactions can similarly be defined, but they

will generally include tunneling terms or projectors that
involve up to n anyons. These will not be very important
in this paper, so I will not go into detail. The planar
representation of two and three anyon interactions are
shown in Fig. 2. The resemblance to the representation
of projectors is intended to emphasize their close relation.
No interaction can truly be turned off to exactly zero

(except with fine-tuning), since a physical system has
finite size and separations between quasiparticles. How-
ever, it is generally possible to exponentially suppress
interactions in topological phases, for example by sepa-
rating quasiparticles by distances much greater than the
correlation length. I will make no further distinction be-
tween such exponentially suppressed quantities and zero.

III. GENERATING FORCED MEASUREMENTS

USING TUNABLE INTERACTIONS

In this section, I demonstrate how adiabatic manip-
ulation of interactions between anyons may be used to
implement certain topological charge projection opera-
tors, such as those used for anyonic teleportation and
MOTQC. This can be done by restricting one’s atten-
tion to three non-Abelian anyons that carry charges a1,
a2, and a3, respectively, and have definite collective topo-
logical charge c, which is non-Abelian. The internal
fusion state space of these three anyons is Va1a2a3c

∼=
⊕

e Va1a2e ⊗ Vea3c
∼=

⊕

f Va1fc ⊗ Va2a3f .

Consider a time-dependent Hamiltonian H (t) with the
following properties:
1. H (0) = V (23) is an interaction involving only

anyons 2 and 3, for which the ground states have def-
inite topological charge value b23 for the fusion channel
of anyons 2 and 3 (i.e. they are eigenstates of the projec-

tor Π
(23)
b23

that survive projection) and there is an energy
gap to states with other topological charge values of this
fusion channel.
2. H (τ) = V (12) is an interaction involving only

anyons 1 and 2, for which the ground states have def-
inite topological charge value b12 for the fusion channel
of anyons 1 and 2 (i.e. they are eigenstates of the projec-

tor Π
(12)
b12

that survive projection) and there is an energy
gap to states with other topological charge values of this
fusion channel.
3. H (t) is an interaction involving only anyons 1,

2, and 3, which adiabatically connects H (0) and H (τ),
without closing the gap between the ground states and
the higher energy states, during 0 ≤ t ≤ τ .
In other words, the ground-state subspace of H(t) cor-

responds to a one-dimensional subspace of Va1a2a3c for
all 0 ≤ t ≤ τ , where this subspace is Va1b23c ⊗ Va2a3b23

at

t = 0 and Va1a2b12
⊗Vb12a3c at t = τ . I emphasize that, even

though the internal fusion channel degeneracy of anyons

1, 2, and 3 is broken, H (t) may still exhibit ground state
degeneracy due to the any other anyons in the system,
since it acts trivially upon them. Also, since H (t) is an
interaction involving only anyons 1, 2, and 3, it cannot
change their collective topological charge c.
It is now easy to apply the adiabatic theorem to deter-

mine the result of (unitary) time evolution on the ground-
state subspace. The adiabatic theorem states that if the
system is in an energy eigenstate and it goes through an
adiabatic process which does not close the gap between
the corresponding instantaneous energy eigenvalue and
the rest of the Hamiltonian’s spectrum, then the system
will remain in the subspace corresponding to this instan-
taneous energy eigenvalue. Since the Hamiltonian only
acts nontrivially on anyons 1, 2, and 3, and a ground state
will stay in the instantaneous ground-state subspace, the
resulting ground-state evolution operator U0(t) (i.e. the
restriction of the time evolution operator U(t) to the
ground-state subspace) at time t = τ must be

U0(τ) = eiθ
(

[F a1a2a3c ]
∗
b12b23

)−1
Π

(12)
b12

Π(123)
c Π

(23)
b23

= eiθ |a1, a2; b12〉 |b12, a3; c〉 〈a1, b23; c| 〈a2, a3; b23|

= eiθ

√

dc
da1da2da3

c

b12

a1 a2 a3

b23

a1 a2 a3

(12)

where the factor [F a1a2a3c ]
∗
b12b23

is necessary to ensure
that the operator is unitary. The (unimportant) overall
phase eiθ is the product of the dynamical phase and the

Berry’s phase. I note that Π
(123)
c commutes with Π

(12)
b12

and Π
(23)
b23

.

Thus, it is clear that applying the operator U0(τ) to
states in the t = 0 ground-state subspace has the same
effect, up to an unimportant overall phase, as does ap-

plying the projection operator Π
(12)
b12

and dividing by the

(state independent) renormalizing factor [F a1a2a3c ]
∗
b12b23

.
In other words, the effect of time evolution (from t = 0 to
τ) under this adiabatic process on a t = 0 ground state
is exactly the same as the effect of performing a pro-
jective topological charge measurement of the collective
charge of anyons 1 and 2 with predetermined measure-
ment outcome b12. This is shown schematically in Fig. 3.
Operationally, this is identical to the “forced measure-
ment” protocol8,9, which allows one to effectively perform
a topological charge measurement with predetermined
measurement outcome (in certain situations). In hind-
sight, this should perhaps not be so surprising, since the
adiabatic evolution of ground-states includes an implicit
continual projection into the instantaneous ground-state
subspace and can be thought of as the continuum limit
of a series of measurements, with the final measurement
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FIG. 3: (a) A Hamiltonian H(t) which adiabatically con-

nects the interaction V (23) with energetically preferred fusion
channel b23 to the interaction V (12) with energetically pre-
ferred fusion channel b12, without closing the gap. (b) This
Hamiltonian implements time evolution U0(t) on the ground-

state space which takes eigenstates of the projector Π
(23)
b23

that

survive projection to eigenstates of the projector Π
(12)
b12

that
survive projection. This has the same effect as applying a

projector Π
(12)
b12

to an initial ground-state, up to normalizing
factors and an unimportant overall phase.

being a projection into the final ground-state subspace.
It is always possible to write a Hamiltonian H(t) that

satisfies the enumerated properties 1 − 3, since one can
write a projector Π0(t) onto a one-dimensional subspace
of Va1a2a3c that interpolates between the initial and final
ground-state subspaces, such as

Π0(t) =

(

t

τ

)2

Π
(12)
b12

Π(123)
c Π

(12)
b12

+

(

t

τ

)(

1− t

τ

)

×
(

|a1, a2; b12〉 |b12, a3; c〉 〈a1, b23; c| 〈a2, a3; b23|

+ |a2, a3; b23〉 |a1, b23; c〉 〈b12, a3; c| 〈a1, a2; b12|
)

+

(

1− t

τ

)2

Π
(23)
b23

Π(123)
c Π

(23)
b23

. (13)

However, it is worth considering Hamiltonians that are
physically more natural and amenable to experimental
implementation. A simple and natural suggestion is to
use the linear interpolation

H (t) =

(

t

τ

)

V (12) +

(

1− t

τ

)

V (23). (14)

This Hamiltonian automatically satisfies properties 1 and
2. However, it is complicated to determine whether it
also satisfies property 3 for general pairwise interactions
V (12) and V (23) (unless Va1a2a3c is two-dimensional). In
the simple (but non-generic) case where the interactions

are given by

V (jk) = εjk

[

11− 2Π
(jk)
bjk

]

(15)

with εjk > 0, property 3 will be satisfied iff
[F a1a2a3c ]b12b23 6= 0 (which ensures that the projectors

Π
(jk)
bjk

are not orthogonal). I expect (though have not

shown) that property 3 will also be satisfied for gen-
eral interactions iff [F a1a2a3c ]b12b23 6= 0. For the cases
of greatest physical interest, property 3 is satisfied for
arbitrary nontrivial pairwise interactions, because their
state spaces Va1a2a3c are two-dimensional [and so reduce
to the case in Eq. (15)] and have [F a1a2a3c ]b12b23 6= 0.

IV. ANYONIC TELEPORTATION AND

BRAIDING

Having established that adiabatic manipulation of in-
teractions can be used to produce a forced measurement
operation, it is trivial to use it for anyonic teleportation,
braiding, and MOTQC in precisely the same way as de-
tailed in Refs. 8,9. In particular, one merely needs to
consider the case with a1 = a3 = c = a, a2 = ā, and
b12 = b23 = I. (I note that |[F aāaa ]II | = 1/da 6= 0.)
It is, however, worth reconsidering the use of measure-

ments or forced measurements more generally in these
contexts to understand how broadly the methods apply.
To this end, I will now examine the case when the topo-
logical charge values of the measurement outcomes are
not necessarily always the trivial charge I. When a par-
ticular outcome is necessary or desirable, it is understood
that one may use a forced measurement to produce this
outcome.

A. Anyonic Teleportation

For anyonic teleportation, one considers an anyonic
state Ψ partially encoded in anyon 1 and an ancillary
pair of anyons 2 and 3, which serve as the entanglement
resource. The ancillary anyons are initially in a state
with definite fusion channel b23 (which must be linked
to other anyons, which I denote A, if b23 6= I). The
combined initial state is written diagrammatically as

|Ψ(a1, . . .)〉 |A (a2, a3, . . .)〉 =
Ψ A

a1 a2 a3

b23 (16)

where the boxes are used to indicate the encoding details
of the states, including other anyons (denoted as “. . .”)
that comprise them.
To teleport the state information encoded in anyon 1

to anyon 3, one applies a projector Π
(12)
b12

to the combined
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state (and renormalizes), at which point anyons 1 and 2
become the ancillary pair. It must further be required
that b12 and b23 are Abelian charges, otherwise it will
not be possible to dissociate the state information from
the “ancillary” anyons. In this case, a1 = b12 × ā2, a3 =
b23 × ā2, c = b12 × b23 × ā2, and da1 = da2 = da3 = dc.
The post-projected state is

(

[F a1a2a3c ]
∗
b12b23

)−1
Π

(12)
b12

|Ψ(a1, . . .)〉 |A (a2, a3, . . .)〉

= eiα

Ψ A

a1 a2

a1 a2

a3

b23

b12

= eiβ

Ψ A

a1 a2

a1 f

a3

b23

b12
(17)

where eiα and eiβ are unimportant phases (that are
straightforward to compute) and f = b̄12 × b23 is an
Abelian charge. While it may at first appear that there is
still anyonic entanglement between the topological state
encoded in anyon 3 and the ancillary anyons 1 and 2, I
emphasize that this is not actually the case. Specifically,
the charge line f does not result in any nontrivial anyonic
entanglement, because f is Abelian. One must simply
keep track of this Abelian charge f as a modification to
subsequent readouts, but it does not alter the encoded
information. [It is, of course, more clear when b12 = b23,
and hence f = I, to see that there is no anyonic entan-
glement associated with this charge line, since then the
final state can be written as |Ψ(a3, . . .)〉 |A (a1, a2, . . .)〉.]
The braiding between the a3 and b12 charge lines is simi-
larly unimportant (and can also be replaced with a clock-
wise, rather than counterclockwise braiding), since b12
is Abelian, and so the braiding can only contribute an
unimportant overall phase. Thus, in this post-projected
state, the anyonic state Ψ is partially encoded in anyon 3
(up to unimportant Abelian factors), while anyons 1 and
2 form an ancillary pair that is uncorrelated with Ψ, so
this is an anyonic teleportation. The planar representa-
tion of this is shown in Fig. 4.

B. Braiding

I now consider four anyons, where anyons 2 and 3 are
again an ancillary pair and the goal is to implement a
braiding transformation for anyons 1 and 4, without mov-
ing them. I assume anyons 2 and 3 are initialized in the
fusion channel b23 (e.g. by applying a projector). Then I
apply a series of pairwise topological charge projections
(by performing measurements or forced measurements),
first projecting anyons 1 and 2 into the fusion channel
b12, next projecting anyons 2 and 4 into the fusion chan-
nel b24, and finally projecting anyons 2 and 3 into the
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h 

FIG. 4: For an anyonic state initially encoded in anyon 1
and an ancillary pair of anyons 2 and 3 in an Abelian fu-
sion channel b23, application of a topological charge projector

Π
(12)
b12

, with b12 Abelian, teleports the anyonic state informa-
tion from anyon 1 to anyon 3 (indicated by the dashed arrow),
while making anyons 1 and 2 the new ancillary pair. This pro-
jector may be generated via measurements or interactions.
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FIG. 5: Collective topological charge projectors of pairs of
anyons (a) 2 and 3, (b) 1 and 2, and (c) 2 and 4. These
projectors may be generated via measurements or interactions
and can be used to generate braiding transformations.

fusion channel b′23. The configuration of the anyons and
pairwise projections is significant for the details of the
resulting operator, so for the analysis here I assume the
configuration shown in Fig. 5. The resulting operator is
obtained by taking the product of projectors (and divid-
ing by a normalization factor)

X = C Π
(23)
b′
23

Π
(24)
b24

Π
(12)
b12

Π
(23)
b23

= C′

a1 a2 a3 a4

b23

a2 a3

b12

a1 a2

b24

a4a2

b′23

a1 a2 a3 a4

(18)

where C and C′ are constants that give the proper nor-
malizations.
It is, again, necessary to require b12, b23, b

′
23, and b24 to
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be Abelian charges. Otherwise, it would not be possible
to ensure that the collective topological charge of each
3-tuple of anyons involved in each teleportation step has
definite value (c123, c124, and c234, respectively), which
is necessary to apply the results of Sec. III, and to en-
sure that the resulting operator is unitary. Moreover, if
either b23 or b′23 is non-Abelian, it will not be possible
to dissociate the operation on anyons 1 and 4 from the
“ancillary” anyons 2 and 3.

It is useful (and often natural), though not necessary,
to also have b23 = b′23, otherwise there will be an Abelian
charge line f = b23 × b̄′23 connecting the ancillary anyons
to the operator, which makes the situation slightly more
complicated (though still manageable). Focusing on this
case, one finds that a1 = b12 × ā2, a4 = b24 × ā2, and
the b23 = b′23 charge lines can be recoupled and fully
dissociated from the operation on anyons 1 and 4, so
that the operator takes the form

X = X̂(14) ⊗Π
(23)
b23

, (19)

where the operator on anyons 1 and 4 is

X̂(14) = eiφ

a1 a4

a1 a4

g (20)

= eiφ
′
∑

c

[F a4ga4c ]a1a1 R
a4a1
c Π(14)

c (21)

= eiφ
′′
∑

c

Rā2ā2ĉ Π(14)
c (22)

where g = b12 × b̄24, ĉ = c× b̄12 × b̄24, and e
iφ, eiφ

′

, and
eiφ

′′

are unimportant overall phase factors (which may
depend on b12 and b24).

It should be clear that X̂(14) is a modified braiding
transformation, with the precise modification depending
on aj , b12, and b24. Furthermore, if b12 = b24, then

g = 0 and X̂(14) = eiφ
′′

Ra1a4 is exactly equal to the
usual braiding transformation (up to an unimportant
overall phase) obtained by exchanging anyons 1 and 4
in a counterclockwise fashion. It would be interesting to
determine whether these modified braiding operations of
Eqs. (20)–(22) can augment the computational power of
anyons models that do not have computationally univer-
sal braiding operations. This is clearly not the case for
an anyon model if the permutation of topological charge
values given by ĉ = c × b̄12 × b̄24 can be obtained from
braiding operations. (For Ising anyons, this permutation
is a σx gate and can be obtained by braiding, so these
modifications do not augment the computational power,
as will be explained in more detail in the next section.)

V. ISING ANYONS AND MAJORANA

FERMION ZERO-MODES

In this section, I consider these results in more detail
for Ising anyons, because they are an especially physically
relevant example. Ising-type anyons occur as quasipar-
ticles in a number of quantum Hall states19–25 that are
strong candidates for describing experimentally observed
quantum Hall plateaus in the second Landau level26–30,
most notably for the ν = 5/2 plateau, which has ex-
perimental evidence favoring a non-Abelian state31–33.
Ising anyons also describe the Majorana fermion zero-
modes, which exist in vortex cores of 2D chiral p-
wave superfluids and superconductors34,35, at the ends
of Majorana nanowires (1D spinless, p-wave supercon-
ductors)36–39, and quasiparticles in various proposed su-
perconductor heterostructures40–42. Recently, there have
been several experimental efforts to produce Majorana
nanowires43–46.
The Ising anyon model is described by:

C = {I, σ, ψ} , I × a = a× I = a, ψ × ψ = I,

σ × ψ = ψ × σ = σ, σ × σ = I + ψ

[F σσσσ ]ef =

[

1√
2

1√
2

1√
2

−1√
2

]

ef
[

F σψσψ

]

σσ
=

[

Fψσψσ

]

σσ
= −1

RσσI = e−i
π
8 , Rσσψ = ei

3π
8 ,

Rσψσ = Rψσσ = −i, RψψI = −1

dI = dψ = 1, dσ =
√
2

where e, f ∈ {I, ψ}, and only the non-trivial F -symbols
and R-symbols are listed. (F -symbols and R-symbols
not listed are equal to 1 if their vertices are permitted by
the fusion algebra, and equal to 0 if they are not permit-
ted.) The topological charge ψ corresponds to a fermion,
while σ corresponds to a non-Abelian anyon. In Majo-
rana fermion systems, the zero-modes correspond to the
σ anyons. In this way, the fusion rule σ × σ = I + ψ
indicates that a pair of zero-modes combine to a fermion
mode, which can either be unoccupied or occupied, corre-
sponding to the I or ψ fusion channel, respectively. The
braiding operator for exchanging Majorana zero-modes
is given by the braiding of the σ Ising anyons, up to an
overall phase ambiguity.
The braiding transformation of Ising anyons are not,

by themselves, computationally universal, as they only
generate a subset of the Clifford gates. However, they
nonetheless provide a topologically-protected gate set
that is very useful for quantum information processing
and error-correction47.
For anyonic teleportation, one considers the case where

a1 = a2 = a3 = σ. Then b12, b23, and f = b̄12 × b23 in
Eq. (17) can equal either I or ψ. When f = I, there
is no charge line connecting the final ancillary pair of
anyons 1 and 2, to anyon 3, so the state information that
was initially encoded in anyon 1 is teleported to anyon
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3, with no modifying factors. When f = ψ, the state in-
formation is similarly teleported from anyon 1 to 3, but
the overall anyonic charge of the encoded state Ψ now
has an extra fermionic parity ψ associated with anyon 3,
entering through the charge line f . The encoded state
information is not altered, but if one is attempting to
access the state information through a collective topo-
logical charge measurement including anyon 3, then one
must remember to factor out this extra fermionic parity
when identifying the state’s measurement outcome.
For the (modified) braiding transformation generated

from measurements or forced measurements, one consid-
ers the case when a1 = a2 = a3 = a4 = σ. Then b12, b23,
b24, and g = b12 × b̄24 in Eqs. (20)–(22) can equal either
I or ψ, and c̃ = g × c. When g = I, the operator

X̂(14) = eiϕRσσ (23)

is equal to the braiding exchange of the two σ anyons in
a counterclockwise fashion (apart from an unimportant
overall phase eiϕ). When g = ψ, the operator becomes

X̂(14) = eiϕ
′

R−1
σσ , (24)

which is equal to the braiding exchange of the two σ
anyons in a clockwise fashion (apart from a different

unimportant overall phase eiϕ
′

). The modification due
to g = ψ effectively reverses the chirality of the braiding
exchange.

VI. MAJORANA WIRES

It it useful and interesting to consider the results of
this paper in the context of Majorana nanowires. It par-
ticular, in the discretized model of Majorana nanowires,
the translocation and exchange of the Majorana zero-
modes localized at the ends of wires can be understood as
applications of anyonic teleportation and measurement-
generated braiding transformation, as I now explain.
Kitaev’sN -site fermionic chain model, for a spinless, p-

wave superconducting wire is given by the Hamiltonian36

H = −µ
N
∑

j=1

(

c†jcj −
1

2

)

− w

N−1
∑

j=1

(

c†jcj+1 + c†j+1cj

)

−
N−1
∑

j=1

(

∆cjcj+1 +∆∗c†j+1c
†
j

)

, (25)

where µ is the chemical potential, w is the hopping am-
plitude, ∆ = |∆|eiθ is the induced superconducting gap,
and the jth site has (spinless) fermionic annihilation and

creation operators, cj and c†j , respectively. This Hamil-

tonian exhibits two gapped phases (assuming the chain
is long, i.e. N ≫ 1):
(a) The trivial phase with a unique ground-state occurs

for 2|w| < µ.

(a)

(b)

…

…
      

      

FIG. 6: Characteristic pairing of the two gapped phases of Ki-
taev’s fermionic chain model of Eq.(25). Fermionic sites (red
dots) can be expressed in terms of two Majorana operators
γ2j−1 and γ2j (black dots). In the trivial phase (a), the dom-
inant interaction (shaded ovals) is between pairs of Majorana
operators γ on the same site. In the non-trivial phase (b), the
dominant interaction (shaded ovals) is between pairs of Ma-
jorana operators on adjacent sites and there is an unpaired
Majorana operator localized at each end of the chain.

(b) The non-trivial phase with two-fold degenerate
ground-states and zero-modes localized at the endpoints
occurs for 2|w| > µ and ∆ 6= 0.
A powerful way of understanding this model comes

from rewriting the fermionic operator cj of each site in
terms of two Majorana operators36

γ2j−1 = ei
θ
2 cj + e−i

θ
2 c†j (26)

γ2j = −iei θ2 cj + ie−i
θ
2 c†j . (27)

In this way, the two gapped phases can be qualitatively
understood by considering the following special cases in-
side each phase:
(a) µ < 0 and w = ∆ = 0, for which the Hamiltonian

becomes

Ha =

(−µ
2

) N
∑

j=1

iγ2j−1γ2j . (28)

(b) µ = 0 and w = |∆| > 0, for which the Hamiltonian
becomes

Hb = w

N−1
∑

j=1

iγ2jγ2j+1. (29)

I note that any pair of Majorana operators γj and γk
can be written as a fermionic operator c̃ = 1

2 (γj + iγk),

in which case iγjγk = 2c̃†c̃−1. Thus, the eigenvalue−1 of
iγjγk corresponds to an unoccupied fermionic state, while
the +1 eigenvalue corresponds to an occupied fermionic
state. In Ha, each Majorana operator is paired with the
other Majorana operator on the same site, such that
the fermionic state at each site is unoccupied in the
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(a)

(b)

…
   

…
   

FIG. 7: Moving the endpoint of a Majorana wire (solid blue
line) and its associated Majorana zero-mode (black dot) into
a region of topologically trivial wire (dashed grey line) by lo-
cally tuning the system, so that a segment of wire changes
from the trivial phase (a) to the non-trivial phase (b). The
rectangular box represents gates that may be used to locally
tune the system. The corresponding configuration of the dis-
cretized model is shown in each case.

ground-state. In Hb, each Majorana operator is paired
with a Majorana operator in an adjacent site (such that
their corresponding fermionic state is unoccupied in the
ground-states), except for γ1 and γ2N , which are un-
paired. These unpaired Majorana operators result in
zero-modes, which give rise to a two-fold degeneracy of
ground-states corresponding to iγ1γ2N = ±1.

The pairings exhibited for these two special cases are
characteristic of their corresponding phases, as shown in
Fig. 6. In the phase (a), the dominant interaction is be-
tween pairs of Majorana operators on the same site. In
the phase (b), the dominant interaction is between pairs
of Majorana operators on adjacent sites and there are
Majorana zero-modes localized at both ends of the chain,
giving rise to two-fold degenerate ground-states. For the
general case in the (b) phase, the ground-state degener-
acy and zero-mode localization is topological, meaning
they will generally not be exact, but rather involve cor-
rections that are exponentially-suppressed in the length
of the chain as O(e−αN ), for some constant α, and they
will be robust to deformations of the Hamiltonian that
do not close the gap.

One can now consider operations that move one of
the endpoints of the wires and, hence, the Majorana
zero-mode localized there, as shown in Fig. 7. This can
be done by locally tuning the system parameters to ex-
tend the topological wire segment into a region of non-
topological wire or retract it from a non-topological re-
gion. In the discretized model, this amounts to adiabati-
cally tuning the Hamiltonian at the interface of a trivial
segment and a non-trivial one, so that a site initially in
the (a) phase becomes the new endpoint of the wire in
the (b) phase, or vice-versa.

(a) (a’)

(b) (b’)

(c) (c’)

(d) (d’)

FIG. 8: Exchanging the endpoints of Majorana wires (solid
blue lines) and their associated Majorana zero-modes (black
dots) using a T-junction through a series of operations (a)-
(d). (Dashed grey lines indicate wire segments in the trivial
phase.) Each step in the series can be mapped to a corre-
sponding application of a projector (a’)-(d’). The dashed red
arrows indicate anyonic teleportation of encoded state infor-
mation, as in Fig. 4. This series of projections is exactly the
same as that used to generate braiding transformations in
Sec. IVB.

To be concrete, I consider the HamiltonianH(t), which
acts asHb on sites 1, . . . , N and asHa on sites N+2, N+
3, . . ., for all t, while its time-dependent action on the
Majorana operators γ2N , γ2N+1, and γ2N+2 (associated
with sites N and N + 1) is given by

H(t) =

(

1− t

τ

)[(−µ
2

)

iγ2N+1γ2N+2

]

+

(

t

τ

)

[w iγ2Nγ2N+1] (30)

for 0 ≤ t ≤ τ . This locally takes the Hamiltonian from
the form Ha at t = 0 to Hb at t = τ on site N + 1, ex-
tending the length of the (b) phase region and moving the
zero-mode from site N (associated with γ2N ) to site N+1
(associated with γ2N+2). It should be clear that this has
exactly the form of time dependent Hamiltonians satis-
fying properties 1-3 described in Sec. III. In particular,
using the mapping between Ising anyons and Majorana
fermion zero-modes explained in Sec. V, one can replace
the Majorana operators γj with σ Ising anyons, roughly
speaking. The unoccupied fermionic state of a pair of
Majorana operators corresponds to a pair of σ anyons
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fusing into the I channel and the occupied fermionic
state corresponds to them fusing into the ψ channel.
The pairwise interaction iγjγk maps to the interaction

V (jk) = 11 − 2Π
(jk)
I of Ising anyons, which energetically

favors the bjk = I fusion channel. Thus, one can view this
operation, which extends the Majorana wire and moves
the zero-mode from site N to site N + 1, as an anyonic
teleportation of the anyonic state information encoded in
anyon 2N to anyon 2N + 2, as explained in Sec. IVA.
The “ancillary anyons” in this case are drawn from and
absorbed into the bulk of the wires. The relation to any-
onic teleportation can be seen clearly by comparing the
discretized model in Fig. 7 to Fig. 4. In order to re-
tract the non-trivial wire segment, one simply needs to
run this process in reverse. The (special case) Hamil-
tonian described in this paragraph provides the cleanest
example for changing a segment between the (a) and (b)
phases and its relation to anyonic teleportation, but the
general case is qualitatively the same.
In Ref. 39, it was shown that with a wire network

involving “T-junctions,” one could perform a series of
operations that exchange the endpoints of Majorana
nanowires and, hence, the zero-modes localized at them,
and that these exchanges would result in transforma-
tions equivalent to the braiding transformation of Ising
anyons (up to overall phase). It should now be clear that
such exchange operations can similarly be viewed as a
series of anyonic teleportations that gives rise to (modi-
fied) braiding transformations as explained in Sec. IVB.

This relation is shown schematically in Fig. 8. This, in
part, explains the observation39,48 that an exchange of
the endpoints of Majorana nanowires using a T-junction
can realize either chirality of Ising braiding transforma-
tion, depending on the details of the T-junction, not just
on the chirality of the Majorana wires and order of op-
erations. In particular, as shown in Sec. V, the chirality
of the Ising transformation implemented will depend, in
part, on the (forced) measurement outcomes b12 and b24,
which translate into the signs of coupling interactions at
the T-junction.
It is straightforward to extend the results of this sec-

tion (and paper) to the Zn-Parafendleyon wires12,13,49,50.
These can be thought of as generalizations of Majorana
wires for which the zero-modes localized at the endpoints
possess 2n Abelian fusion channels, rather than two. The
results of Eqs. (20)-(22) similarly explain the possibility
of realizing different transformations when exchanging
the zero-modes (though in the general case, it is not sim-
ply the difference between counterclockwise and clock-
wise braiding chiralities)12,13.
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