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Motivated by a recent experiment by Bergeal et al., we reconsider incoherent pair tunneling in a
cuprate junction formed from an optimally doped superconducting lead and an underdoped normal
metallic lead. We study the impact of the pseudogap on the pair tunneling by describing fermions in
the underdoped lead with a model self-energy that has been developed to reproduce photoemission
data. We find that the pseudogap causes an additional temperature dependent suppression of the
pair contribution to the tunneling current. We discuss consistency with available experimental data
and propose future experimental directions.
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I. INTRODUCTION

Upon lowering the temperature, the superconducting
gap in underdoped cuprates evolves smoothly from an
energy gap already present in the normal state.1 Even
after decades of debate, the nature of this ‘pseudogap’ in
the normal metallic regime of the underdoped cuprates
still remains a puzzle,2 and new experiments are needed
to shed light on its nature.

One such experiment was proposed by Janko et al..3

The experimental set up consists of a junction formed
by a superconducting and a normal metallic lead in the
pseudogap phase, separated by a tunneling barrier. If the
pseudogap is due to the presence of preformed Cooper
pairs, the current-voltage (I − V ) characteristics of such
a junction should show characteristic signatures due to
pair tunneling that differ from the standard result based
on gaussian fluctuations.3

The proposed experiment was recently done by Bergeal
et al.,4 and their data appear to be consistent with gaus-
sian fluctuations. However, even if preformed pairs is
not a correct description, the pseudogap, regardless of
its origin, still affects the fermions in the normal metallic
lead, and thereby the gaussian result should not hold. A
similar observation has recently been made in the con-
text of the Nernst effect in the pseudogap phase of un-
derdoped cuprates.5 Current vertices calculated within a
model that reproduces photoemission data in the pseu-
dogap phase6,7 show an additional temperature depen-
dence, which suppresses the Nernst signal relative to the
gaussian result, consistent with experimental data.

In the present paper, we study if a similar effect of the
pseudogap changes the I−V characteristics in the above
mentioned tunnel junction. We compare to experimental
findings by Bergeal et al. and discuss possible further
directions to improve the understanding of the incoher-
ent pair tunneling in the pseudogap phase of cuprates.
Throughout the paper we set ~ = 1 and kB = 1.

II. FLUCTUATING PAIR TUNNELING

A direct experimental test of pairing fluctuations above
Tc is the second order Josephson effect,3,8–11 which has
been observed in conventional superconductors12 and
more recently in cuprates.4 The effect is exhibited in a
junction involving two leads, in the cuprate case, one un-
derdoped (UD), the other optimally doped (OD), with
critical temperatures such that TUD

c < T < TOD
c . The

rigid pair field of the optimally doped superconductor
then plays the role of the external field in a typical (lin-
ear response) susceptibility measurement.

The net effect is that the fluctuating pairs produce an
additional contribution Ipair to the current-voltage char-
acteristics of the junction that is directly proportional
to the imaginary part of the pair susceptibility χ of the
pseudogap lead,

Ipair(V,H) ∝ e C2χ′′(q(H), ω(V )). (1)

Here the frequency ω(V ) = 2eV is linear in the bias volt-
age V , and momentum q(H) is linear in the in-plane
magnetic field H . The magnitude of the pair contribu-
tion to the tunneling current is controlled by the vertex
C which describes the pair transfer between the leads and
depends on specifics of the junction. A measurement of
the excess current Ipair as a function of V and H allows
one to trace the frequency and momentum dependencies
of the fluctuating pair susceptibility.

A. Microscopic theory

In a microscopic calculation, the lowest order pair con-
tribution to the tunneling current arises in fourth or-
der perturbation theory,9,14 diagrammatically depicted in
Fig. 1. Assuming a particle-particle t-matrix for the pseu-
dogap lead with pairing instability in the d-wave channel,
and keeping only the relevant d-wave part of the tunnel-
ing matrix element, the incoherent pair contribution to
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FIG. 1: Incoherent pair tunneling contribution, Ipair =
2e tr

(

FAV ABGBGBtBGBGBV BAFA
)

, to the tunneling cur-
rent. Here the trace includes summations over momenta and
frequencies, double and single lines correspond to Gor’kov
functions FA

p (iǫn) of the optimally doped (OD) lead A, and

single particle Greens functions GB
k (iǫn) of the underdoped

(UD) pseudogap lead B, respectively, circles represent one-
electron tunneling matrix elements V AB

pk ,13 and the wavy line
denotes the particle-particle t-matrix for the pseudogap lead
B (here for q=0). To arrive at Eq. (2) in the text, we as-
sumed a pairing instability in the d-wave channel tRk,k′,q(ω) =

LR
q (ω) cos(2ϕk) cos(2ϕk′ ) and kept only the relevant d-wave

part ∝ V1 in the harmonic expansion of the tunneling ma-
trix elements 〈|V AB

pk |2〉 = |V0|2 + |V1|2 cos(2ϕp) cos(2ϕk), see
Refs. 3,13.

the tunneling current is of the form (see Fig. 1 for details)

Ipair(V,H) = 4eSa2 C2χ′′(q(H), ω(V )) (2)

where χ′′(q, ω) = ImLR
q (ω) with LR the retarded compo-

nent of fluctuating pair propagator, V and H the applied
voltage and in-plane magnetic field, and S and a2 the
junction area and the lattice spacing, respectively. The
vertex

C =
γT

N2

∑

ǫn

∑

p,k

F sc
p (iǫn,∆A)Gk(iǫn)G−k(−iǫn)

× cos(2ϕp) cos
2(2ϕk) (3)

describes the tunneling of an incoherent pair3 and sets
the magnitude of the pair current. We assume that the
c-axis is perpendicular to the junction, and all momenta
and coordinates contain only two-dimensional in-plane
components. Here

F sc
p (iǫn,∆) =

∆p

ǫ2n + ξ2p +∆2
p

(4)

denotes the anomalous Gor’kov function of the supercon-
ducting lead A, with ǫn (fermionic) Matsubara frequen-
cies, ∆p = ∆cos(2ϕp) with ϕp = arctan(py/px), and
Gk(iǫn) is the single particle propagator of the pseudo-
gap lead B (specified below). Finally, γ = ni|V1|2/N2

with N the number of sites in a layer and ni the number
of impurity scattering sites per unit area of the insulating
junction. |V1| is defined in Fig. 1.3

The precise form of the pair susceptibility χ varies de-
pending on the particular scenario adopted to describe

the pseudogap phase. In this paper, we will adopt the
standard gaussian form for the pair propagator

LR
q (ω) = − 1

N0

1

ǫ− iαω + ηq2
(5)

Here, ǫ = (T − Tc)/Tc, N0 the density of states, α =
π/8T and η = πD/8T where D is the diffusion constant.
Alternate forms, where α is complex (in a preformed pairs
scenario due to a BCS-BEC crossover between diffusive
and propagating pairs3,15,16) seems to be ruled out by
Bergeal et al..4

However, even if the pseudogap is not due to preformed
pairs and a gaussian approach (Eq. 5) is relevant, the
pseudogap will still affect the tunneling current through
the vertex C. A similar observation has recently been
made in the context of the Nernst effect in the pseudo-
gap phase of underdoped cuprates.5 Calculation of the
current vertices within a model6,7 which reproduces pho-
toemission data in the pseudogap phase leads to an addi-
tional T -dependent suppression of the Nernst effect rel-
ative to that predicted by the gaussian model, consis-
tent with experimental data. We will now determine if
a similar modification occurs for the tunneling current,
independent of whether the pseudogap is due to pairing
or not. Before doing so, we recall that within the GG0

approximation employed by Janko et al.,3 the vertex is

C ≃ π2

4
ni|V1|2NA(0)NB(0) (6)

with NA(0) and NB(0) the single-particle density of
states per spin per site for superconducting lead A and
pseudogap lead B, respectively.

B. Pseudogap vertex

We next investigate implications of the the pseudogap
for the pair tunneling. Following Refs. 5,17 we calculate
the vertex (3) using the Greens function

Gk(iǫn,∆B) =
iǭ0,n + ξk

(iǭ1,n − ξk)(iǭ0,n + ξk)−∆2
B,k

(7)

which is based on a phenomenological self-energy describ-
ing photoemission data in the pseudogap phase.6,7 Here
∆k = ∆cos(2ϕk) is the momentum dependent pseudo-
gap, ξk are the single particle energies measured from
the Fermi level µ, and (i = 0, 1) ǭi,n = ǫn + Γi sign(ǫn)
with Γ0 the inverse pair lifetime proportional to T − Tc

(i.e., ǫ/α), and Γ1 the single-particle scattering rate. For
Γ = Γ1 = Γ0, Eq. (7) reduces to the single lifetime model

Gk(iǫn,∆B) = − iǭn + ξk
ǭ2n + ξ2k +∆2

B,k

(8)

Eq. (8) gives a good description of the T dependence of
the Fermi arc if Γ ∝ T .7
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To compute the vertex (3) we first derive that the mo-
mentum sum for the two lifetime model is

N−1
∑

k

Gk(iǫn)G−k(−iǫn) cos
2(2ϕk)

=
NB(0)

∆B

Xn

2

{ 1

X2
n

[E(Xn)−K(Xn)]

+
[

1 + Z2
0,n

]

K(Xn)− Y 2
nZ1,nZ

3
0,nΠ(Yn, Xn)

}

≡ NB(0)

∆B
Mpg(T,Γ0,Γ1,∆B) (9)

where we introduced

1

X2
n

= 1 +
(Γ0 − Γ1)

2

4∆2
B

+
ǭ1,nǭ0,n
∆2

B

(10)

1

Y 2
n

= 1 +
ǭ1,nǭ0,n
∆2

B

(11)

Zi,n =
ǭi,n
∆B

(12)

and K(z), E(z), and Π(w, z) are the complete elliptic
integrals of the first, second and third kind.
The momentum sum over the Gor’kov Greens function,

on the other hand, is

N−1
∑

p

F sc
p (iǫn,∆A) cos(2ϕp)

=NA(0)kn

(

E(kn) +
ǫ2n
∆2

A

[E(kn)−K(kn)]

)

≡NA(0)Msc(T,∆A) (13)

where k2n = 1/(1 + ǫ2n/∆
2
A).

The vertex is then obtained by completing the Mat-
subara sum,

C =
3π2

32
ni|V1|2NA(0)NB(0)A(T,Γ0,Γ1,∆A,∆B) (14)

Here we have included the numerical prefactor for later
convenience, and the temperature dependent, dimension-
less function

A(T,Γ0,Γ1,∆A,∆B)

=
32

3π2

T

∆B

∑

n

Msc(T,∆A)Mpg(T,Γ0,Γ1,∆B) (15)

It may then be verified that approximating in A
the elliptic functions by their value at zero ar-
gument describes well the temperature dependence
of Eq. (15) (see below). Using that the ellip-
tic functions at zero argument take the value π/2
we may thus approximate A(T,Γ0,Γ1,∆A,∆B) ≃
A1(T/∆B,Γ0/∆B,Γ1/∆B,∆A/∆B) where the tempera-
ture dependent function, normalized as A1(0, 0, 0, 1) = 1,
(zn = ǫn/∆B)

A1(x0, x1, x2, x3) =
4x3x0

3

∑

n

(zn + x1)[2zn + x2 + x1] + 1
(

[z2n + x3]
[

(zn + x2)(zn + x1) +
(x1−x2)2

4 + 1)
])1/2

[(zn + x2)(zn + x1) + 1]

(16)

In the single lifetime model, we may
introduce the corresponding functions
B(T,Γ,∆A,∆B) ≡ A(T,Γ,Γ,∆A,∆B) and analogously
B1(T/∆B,Γ/∆B,∆A/∆B) for Eq. (16) in the same
limit. As can be verified (see below), taking the ‘zero-T ’
limit in order to convert the sum over Matsubara fre-
quencies into an integral gives a good description of the
vertex in the single lifetime model. We may thus further
approximate B(T,Γ,∆A,∆B) ≃ B0(Γ/∆B,∆A/∆B),
where

B0(x1, x3) =
4x3

3π

∫

∞

0

dz
2(z + x1)

2 + 1
√
z2 + x3 [(z + x1)2 + 1]

3/2

(17)

Comparing then to Eq. (6) in the previous section,
we find that taking into account the pseudogap within

the two and single lifetime models (7) and (8) re-
sult in a renormalization of the pair contribution to
the tunneling current by the T dependent functions
A2(T,Γ0,Γ1,∆A,∆B) and B2(T,Γ,∆A,∆B) (their ap-
proximations A2

1 and B2
0 , respectively).

So far we have neglected any external magnetic fields.
Variation of an in-plane field allows one to trace the mo-
mentum dependence of the fluctuating pair propagator,
see Eq. (2). If the relevant field scale on which the pair
contribution gets suppressed is small enough so as to not
affect the single particle contribution, the magnetic field
allows one to separate these two contributions to the tun-
neling current. We will address this matter further in the
next section.
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FIG. 2: T -dependence of the vertex C2 within the sin-
gle lifetime model for the pseudogap lead, where C ∝
B(T,Γ,∆A,∆B). Here T ∗ is the pseudogap temperature,
∆A ≃ ∆B = ∆, and Γ/∆ =

√
3T/T ∗ so that the Fermi

arcs connect at T = T ∗. The solid line shows the exact result
with B given in (15) and Γ0 = Γ1 = Γ, and the dashed-dot
line shows the approximation B0 given in (17).

C. Comparison to experiment

The recent tunneling experiment by Bergeal et al.
4

using a YBCO/NdBCO junction with optimally doped
(OD) NdBCO and underdoped (UD) YBCO was de-
signed to test Eq. 5 and alternate forms suggested by
Janko et al.

3 The corresponding critical temperatures,
TOD
c = 90K and TUD

c ≃ 61K (the pseudogap temper-
ature for the UD sample is T ∗ ≃ 250K), allow for a
comparison to predictions in a range of temperatures ex-
tending over a considerable fraction of Tc. Provided the
vertex C changes only weakly with temperature, the data
reported by Bergeal et al. are consistent with a standard
model of gaussian fluctuations with a susceptibility given
by Eq. 5

χ′′(q, ω) ∝ αω

(ǫ+ ηq2)2 + (αω)2
(18)

The extracted pair contribution to the tunneling current
is in good agreement with a Lorentzian with a width that
was 1.6 times ΓGL = 8(T − Tc)/π at T − Tc = 6K and
1.3 times at T − Tc = 9K. This is in good accord with
ARPES, where Γ0 was found to be approximately twice
ΓGL.

6

The vertex renormalization within the single lifetime
model, B2(T,Γ,∆A,∆B), is depicted in Fig. 2 for a T
independent maximal value of the energy gap in the su-
perconducting and pseudogap phase ∆A ≃ ∆B = ∆ with
Γ scaling as T . The scaling factor used to describe the
photoemission data is Γ/∆ =

√
3T/T ∗, implying that the

T dependence of B2(T,Γ,∆A,∆B) is controlled by the
pseudogap temperature T ∗ (at which the spectral gap
‘fills up’ in the antinodal region of the Brillouin zone).
For the UD sample T ∗ ≃ 250K and the temperature
range in which pair tunneling is detected by Bergeal et
al. (∼ 15K) is too narrow to observe any noticeable
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FIG. 3: T -dependence of the vertex C2 within the
two lifetime model for the pseudogap lead, where C ∝
A(T,Γ0,Γ1,∆A,∆B). Here ∆A ≃ ∆B = ∆ and param-
eters similar to Ref. 6, Γ1 = 200meV , ∆ = 50meV , and
Γ0 = (16/π)(T − Tc), twice ΓGL, where Tc = 80K. The solid
line shows the exact result A given in (15) and the dashed-dot
line shows the approximation A1 given in (16).

deviations from predictions of the simple gaussian for-
mula Eq. (18). To test the predicted rapid suppression at
higher temperatures coming from B2(T,Γ,∆A,∆B) will
require using a magnetic field to cleanly separate the pair
tunneling current from the much larger normal tunneling
current.

Within the two lifetime model, the vertex renormal-
ization depends on the ratios Γ0/∆B and Γ1/∆B. Since
Γ0 has a rapid T dependence near Tc, one might sus-
pect a stronger effect as compared to the single lifetime
model. From (15) one finds, however, that for any reason-
able value of Γ1/∆ comparable to that found from pho-
toemission, the dependence of A2(T,Γ0,Γ1,∆A,∆B) on
temperature is qualitatively similar to that in the single
lifetime model, see Fig. 3. It becomes more pronounced
only for small values of Γ1/∆ ≪ 1. We note that a zero-
T approximation similar to (17) is not applicable for the
two lifetime model.

Finally, some remarks about the magnetic field depen-
dence. The length scale which sets the Fraunhofer pat-
tern (i.e. the field dependence) of the Josephson current
is Z = XA + XB + d, where X = λ tanh(W/2λ), with
λA,B and WA/B the a/b penetration depth and thickness

of films A and B, and d the thickness of the barrier.18 In
the two limits of wide and thin films X(λ,W ) ≃ λ and
X(λ,W ) ≃ W/2, respectively. Referring then to the ex-
perimental configuration of Bergeal et al., WA = 200nm,
WB = 100nm, d = 30nm, and the junction length
L = 5000nm. For the optimally doped superconduct-
ing film (A) λA = 100nm, and for the underdoped film
(B) λB = 200nm if it were superconducting. How-
ever, the latter is above TUD

c and has no long range or-
der, i.e. lead B is in the thin film limit XB ≃ WB/2.
Therefore, XA = λA tanh(WA/2λA) ≃ 76nm and Z =
XA +WB/2+ d ≃ 156nm. The corresponding field scale
H is then estimated from HLZ = φ0 where φ0 is the
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flux quantum, yielding H ≃ 25 Gauss. Since the normal
contribution to the current should not change much at a
field of 25 Gauss, while the pair contribution is strongly
suppressed at this field, this allows one to distinguish
the two contributions. This could be exploited in future
experiments.
In this context notice that, in contrast to YBCO, in

the case of BSCCO (suggested by Janko et al.
3), one has

a stack of Josephson junctions. The effect due to the
stack would be to create a new length scale Z ′ equal to
the bilayer-bilayer separation,19 which is of the order ∼
1.5nm. The resulting small length scale corresponds to a
field scale H for the stack about two orders of magnitude
larger than Z, meaning that the presence of a stack would
not affect the I−V characteristics of the A-B junction on
the field scale discussed above, and thus this complication
can be ignored.

III. SUMMARY

Implications of the pseudogap on transport17 and the
Nernst effect5 have been previously studied within a
phenomenological model used to describe photoemission
data. Here we study the implications of the pseudogap

on the pair tunneling, as recently measured by Bergeal
et al..4 We find that accounting for the pseudogap within
a single lifetime model leads to a suppression of the pair
contribution to the tunneling current relative to gaus-
sian theory as the temperature is increased. Within the
rather small temperature range tested in the experiment,
however, this effect would not be noticeable. To deter-
mine this would require differentiating the pair current
from the much larger normal current, which would re-
quire the application of a small in-plane magnetic field.
We contrast this with the Nernst effect, where the nor-
mal background is significantly smaller. Therefore, we
suggest that such field dependent measurements be done
in the future that would not only help identify effects due
to the vertex, but also test the validity of Eq. 5 in the
context of specific theories for the pseudogap phase.20
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