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Using fermionic representation of spin degrees of freedom within the Popov-Fedotov approach
we develop an algorithm for Monte Carlo sampling of skeleton Feynman diagrams for Heisenberg
type models. Our scheme works without modifications for any dimension of space, lattice geome-
try, and interaction range, i.e. it is suitable for dealing with frustrated magnetic systems at finite
temperature. As a practical application we compute uniform magnetic susceptibility of the anti-
ferromagnetic Heisenberg model on the triangular lattice and compare our results with the best
available high-temperature expansions. We also report results for the momentum-dependence of the
static magnetic susceptibility throughout the Brillouin zone.
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I. INTRODUCTION

Properties of geometrically frustrated spin systems in
various dimensions, geometries, and temperature regimes
are at the heart of modern condensed matter physics.
Here, frustration is a technical term which refers to the
presence of competing forces that cannot be simultane-
ously satisfied. In numerous quantum antiferromagnets
frustration often has a simple geometric origin. Localized
spins on two- and three-dimensional lattices with triangu-
lar motifs, such as planar triangular antiferromagnet and
three-dimensional pyrochlore antiferromagnets, cannot
assume energetically favorable antiparallel orientation.
Of three spins forming a minimal triangle, and interact-
ing via simple antiferromagnetic pair-wise exchange in-
teraction, only two can be made antiparallel, leaving the
third one frustrated. In case of classical Ising spins, which
can point up or down with respect to some axis, this leads
to an extensive ground-state degeneracy: for example, in
a system of N Ising spins on a triangular lattice there
are ΩN = e0.323N configurations having the same (min-
imal) energy. On a three-dimensional pyrochlore lattice
of site-sharing tetrahedra, the (effectively) Ising spins of
Dy2Ti2O7, Ho2Ti2O7 and Ho2Sn2O7 realize1 fascinat-
ing spin ice physics2 where strong local ice rules (for any
given tetrahedron, two of its spins must point in, and the
other two - out) enforce long-ranged power-law correla-
tions between spins3, in effect realizing artificial magnetic
field and fractionally charged magnetic monopoles4!
Quantum spins can exploit this extensive degeneracy

via quantum-mechanical coupling between different con-
figurations – their wave function can be thought of as a
linear superposition of all degenerate microstates repre-
sented by classical patterns of up- and down-spins. In the
case of strong coupling we may arrive at a quantum spin

liquid (QSL)5,6 state in which spins never settle in one
particular configuration and continue their exploration
forever. It is clear that such a state encodes highly non-
trivial correlations between different spins when flipping
of one spin induces that of its neighbors so that as a

whole the spin system remains in the lowest-energy man-
ifold. Extensive experimental7–20 and theoretical21–30

search for materials and models which may realize this
intriguing QSL state constitutes one of the main topics
of the quantum spin physics. Currently there are several
intensely researched materials that hold promise of real-
izing the elusive spin liquid state. Among them, we men-
tion two-dimensional spin-1/2 organic triangular antifer-
romagnets EtMe3Sb[Pd(dmit)2]2

10,11,19 and κ-(BEDT-
TTF)2Cu2(CN)3

8,19, spin-1 material NiGa2S4
16, a se-

ries of inorganic quasi-two-dimensional kagomé lattice
antiferromagnets: herbersmithite ZnCu3(OH)6Cl2

12,15,
volborthite Cu3V2O7(OH)2·2H2O

7,13, and vesignieite
BaCu3V2O8(OH)2

14,18, and a three-dimensional hyperk-
agomé antiferromagnet Na4Ir3O8

9.

Taking the system of frustrated spins to a finite tem-
perature, where all experiments are done, adds thermal
randomness to the picture. At a finite temperature T
even classical spins can explore different microstates from
the lowest-energy manifold. This too leads to a strongly
correlated (although not necessarily phase-coherent, as
in the case of quantum spins at T = 0) motion of spins
which is often described by a term “cooperative param-
agnet”. Even if the ground state of spin system is not a
true spin liquid, but instead is one of the many possible
ordered states, the spins will (thermally) disorder at suf-
ficiently high temperature, T ≥ T0, where T0 stands for
the ordering temperature. In the usual, non-frustrated
magnets the ordering temperature is determined by the
exchange interaction energy J and coordination number
of the lattice z, T0 ∼ zS(S + 1)J . Quite generally, it
is of the order of the Curie-Weiss temperature θcw which
is easily determined experimentally via high-temperature
behavior of the spin susceptibility χ ∝ (T − θcw)

−1. In
antiferromagnets θcw is negative, and, in the absence of
frustration, its absolute value sets the scale at which
correlations between spins become pronounced. Thus,
T0 ∼ |θcw|. Frustrated magnets are very different as
there T0 ≪ |θcw| : despite experiencing strong interac-
tions with each other, the spins can not “agree” on one
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particular pattern which would satisfy them all. In the
case of a true spin liquid T0 = 0 and the order never
arrives. In the majority of studied situations the order
does take place, T0 > 0, but only at a temperature much
lower than the näıve estimate provided by |θcw|. This
results in a wide temperature interval T0 < T < |θcw|
where the spins are strongly interacting but remain in
a disordered cooperative paramagnet state. In fact, the
existence of such temperature (and energy) window rep-
resents a defining feature of the frustrated magnet, as
argued by Ramirez31 who introduced the frustration pa-
rameter f = |θcw|/T0 (it is not uncommon to find a sit-
uation with f ∼ 100 or greater).

Strong suppression of the ordering temperature can be
also the consequence of close proximity to the quantum
critical point, separating the spin-disordered state (such
as a putative QSL) from the more usual ordered one.
It is well established now32 that the finite-temperature
region above the quantum critical point, known as the
quantum-critical region, is as informative of the quantum
state of the many-body system as the unreachable T = 0
ground state. The quantum-critical scaling of, say, the
dynamic spin susceptibility contains information on the
spin correlation length, dynamic exponent z and other
critical exponents characterizing spin systems of different
symmetries and dimensions.

Importantly, there is a large number of high-precision
probes—neutron and X-ray scattering, nuclear magnetic
resonance, muon spin rotation, susceptibility, magneti-
zation and specific heat measurements—which allow us
to address various aspects of strange and conflicting be-
havior of frustrated quantum magnets experimentally in
a wide range of energies and temperatures. Given that
in many important cases the correlated spin-liquid re-
gion T0 < T < |θcw| occupies most of the experimentally
accessible temperature interval, unbiased understanding
of correlations and dynamics in this regime becomes the
major theoretical task.

Theoretical understanding of frustrated magnetism at
finite temperature is severely limited by the lack of nat-
ural small parameter(s). As a result, possible analyti-
cal approaches require one to study suitably ‘deformed’
models, such as, for example, very popular and well de-
veloped large-component (large-N) version of the Heisen-
berg spin model on frustrated lattices. The small pa-
rameter is then provided by 1/N , expansion in powers
of which (about the N = ∞ limit) controls the calcu-
lation. However the physical limit of S = 1/2 SU(2)
lattice spins corresponds to rather small N : 3 in the
case of O(N) generalization and 1 in the case of Sp(N).
Whether or not continuation of the results from N = ∞
to the physical value is reliable remains an open (and
case sensitive) question. Other popular ‘deformations’
include SU(2)-to-U(1) symmetry reduction(s) and quan-
tum dimer model approaches. While very insightful and
interesting in their own, applicability of these ‘modifica-
tions’ to the original problem is always an issue. While
analytical approaches are extremely useful in providing

us with qualitative physical insights and understanding,
in frustrated magnets they often fall short of quantitative
description desired by experimentalists. Numerical ap-
proaches are limited as well. Exact diagonalizations are
restricted to small systems (about 40 sites at most) due
to the exponentially large Hilbert space while standard
quantum Monte Carlo techniques usually suffer from the
infamous ‘sign problem’. Powerful series expansion meth-
ods often start to diverge in the most interesting regime
T0 < T < |θcw|. Variational tensor-network type meth-
ods are also suffering from finite-size limitations and are
mostly limited to ground state properties.

In this article we combine the most versatile theoretical
tool, Feynman diagrammatics, with the power of Monte
Carlo sampling of complex configuration spaces. The
simplest way of arriving at the diagrammatic technique
for spins is to represent them by auxiliary fermions with
imaginary chemical potential. This trick was introduced
by Popov and Fedotov for spin-1/2 systems in Ref. 33.
The ultimate strength of the diagrammatic approach as
compared, e.g. with high-temperature or strong coupling
expansions, comes from its self-consistent (skeleton) for-
mulation with automatic summation of certain classes
of graphs up to infinite order. This lead to better con-
vergence properties and the possibility of obtaining re-
liable results in the strong coupling regime. It turns
out that skeleton formulations can be easily implemented
within the sampling protocols leading to the so-called
Bold Diagrammatic Monte Carlo (BDMC)34 which ob-
tains physical answers by computing contributions from
millions of graphs and extrapolates them to the infinite
diagram order. Recently, this method was successfully
applied to the normal state of the Fermi-Hubbard model
at moderate interaction strength35 and the strongly cor-
related system of unitary fermions (the so-called BCS-
BEC crossover problem)36. It was, however, never im-
plemented for models of quantum magnetism, which, at
least at the formal level, can be also viewed as a fermionic
system with strong correlations. Here we present the first
attempt to achieve an accurate theoretical description of
the correlated paramagnetic regime within the BDMC
framework.

In what follows in Sec. II we consider a spin-1/2 Heisen-
berg type model at finite temperature and its auxiliary
fermion version which admits the standard diagrammatic
expansion. In Sec. III we formulate principles of the
BDMC technique and the specific self-consistent scheme
for dealing with skeleton diagrams based on fully dressed
lines. We proceed with detailed description of the worm
algorithm for efficient sampling of the resulting config-
uration space (updates, counters, and data processing)
in Sec. IV. Our results for the triangular lattice anti-
ferromagnet are presented, discussed, and compared to
the best available finite temperature simulations based
on numerical linked-cluster (NLC) expansions37 and ex-
trapolations of high-temperature series 38 in Sec. V. We
conclude with broader implications of this work and fur-
ther developments in Sec. VI.
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II. MODEL AND ITS ‘BOLD-LINE’

DIAGRAMMATIC EXPANSION

Consider the standard Heisenberg model

H =
∑

i,j

Jij ~Si · ~Sj , (1)

where ~S are quantum spin-1/2 operators. The dimension
of space, lattice geometry, and interaction range are as-
sumed to be arbitrary. Now, the idea is to replace spin
degrees of freedom with fermionic ones:

~Si →
1

2

∑

α,β

f †
iα~σαβfiβ . (2)

Here fiβ is the second quantized operator annihilating
a fermion with spin projection β = ±1 on site i, and
~σ are the Pauli matrices. As a result, we convert cou-
pling between spins into the standard two-body inter-

action term Jij,αβγδ f
†
iαfiβf

†
jγfjδ with matrix element

Jij,αβγδ = (1/4)Jij~σαβ · ~σγδ. By doing so we also in-
crease the Hilbert space on every site from 2 to 4 by
adding non-physical states with zero and two fermions.
The benefit of the auxiliary fermion representation

does not require explanation: once the spin model is
mapped onto a familiar problem of interacting fermions
one can employ numerous diagrammatic tricks to solve it.
However, this raises an issue of eliminating contributions
from unphysical states to the answer in a manner con-
sistent with the diagrammatic technique. Remarkably,
there is a very simple way to achieve the goal by adding
the chemical potential term to the fermionic Hamilto-
nian33 (see also Ref. 39)

HF =
∑

ij,αβγδ

Jij,αβγδ f
†
iαfiβf

†
jγfjδ − µ

∑

i

(ni − 1) , (3)

with complex µ = −iπT/2 and ni =
∑

α f †
iαfiα. The

added term commutes with the original Hamiltonian
and has no effect on properties of the physical subspace
{ni = 1} whatsoever. Moreover, the grand canonical
partition functions and spin-spin correlation functions of
the original spin model and its fermionic version are also
identical because (i) physical and non-physical sites de-
couple in the trace and (ii) the trace over non-physical
states yields identical zero on every site. As a result, we
arrive at a rather standard Hamiltonian for fermions in-
teracting through two-body terms. Complex value of the
chemical potential is essentially a zero price to pay for
the luxury of having the diagrammatic technique.
Formally, the entire setup is similar to the fractional

quantum Hall effect system because the non-interacting
part of Eq. (3) describes particles with zero dispersion re-
lation, i.e. we start building the solution from the degen-
erate manifold. There is one important difference though:
in conventional fermionic systems both the Green’s func-
tion and the spin-spin (or density-density) correlation

function contain direct physical information about the
system. In spin systems the Green’s function is rather
an auxiliary object which always remains localized on a
single site. This does not imply any pathological behav-
ior yet since the physical degrees of freedom are spins,
i.e. bilinear combinations of fermionic operators. Corre-
spondingly, the main object of interest is not the Green’s
function of the system but the spin-spin correlation func-
tion, or magnetic susceptibility:

χ(i, j, τ) = 〈TτS
z
i (0)S

z
j (τ)〉 =

1

3
〈Tτ

~Si(0) · ~Sj(τ)〉 , (4)

where Tτ stands for the imaginary time ordering opera-
tor.
To simplify the presentation below we consider lattices

with one atom per unit cell and make use of the lattice
translation invariance; otherwise one would need to keep
an index enumerating different sites in the unit cell. For
the same reason we do not place the system into the ex-
ternal magnetic field to preserve the symmetry between
up- and down-spins; in the presence of the magnetic field
H0 one has to add spin-dependent real part to the chem-
ical potential µ → µα = −iπT/2− αH0 and take proper
care of the spin index.
The diagrammatic technique itself for Eq. (3) is ab-

solutely standard40. The perturbative diagrams are
expressed in terms of the non-interacting, or ’bare’,

Green’s functions (particle propagators), G
(0)
αβ(i, τ) ≡

δi,0δα,βG
(0)(τ), and two-body interaction lines Ji−j,αβγδ.

The non-interacting Green’s function on a lattice in the
imaginary time representation reads (below the Boltz-
mann constant kB = 1)

G(0)(τ > 0) = − eµτ

1 + exp(µ/T )
=

eµτ

i− 1
, (5)

with conventional anti-periodic boundary conditions
G(0)(τ < 0) = −G(0)(1/T + τ). In what follows we com-
pletely suppress the site index for purely local quantities.
For the Heisenberg model the dependence of the interac-
tion line on spin indexes is rather simple

Ji−j,αβγδ =
Ji−j

4
M̂αβγδ ,

M̂αβγδ = αγ δα,βδγ,δ + 2 δδ,αδγ,−αδβ,−α , (6)

The first term describes diagonal coupling between the
spin densities on sites i and j, while the second spin-flip
term exchanges spin values, see Fig. 1. The magnitude
of the spin-flip process is fixed by the SU(2) symmetry
of the problem. Even when interactions are screened by
many-body effects, see below, the retarded interaction
has exactly the same dependence on spin indexes. An
arbitrary perturbative diagram of order n contributing
to, say, the free-energy is obtained by (i) placing graph-
ical elements depicted in Fig. 1 with some space/time
variables i, j, and τ ∈ (0, 1/T ) and connecting incoming
and outgoing propagators with the same spin and site
index to each other in such a way that all points in the
resulting graph are connected by some path.
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FIG. 1. (Color online) Graphic representation of allowed in-
teraction processes for the Heisenberg model.

III. BOLD DIAGRAMMATIC MONTE CARLO

SCHEME

The unique feature of diagrammatic expansions for
propagators is that there are no numerical coefficients
in the diagram weight depending on the diagram order
or structure (this is not true for other well-known series
such as virial, high-temperature, linked-cluster, strong-
coupling, etc. expansions). This leads to the diagram-
matic technique when certain infinite sets of diagrams,
e.g. in the form of geometric series, are easily dealt with
by algebraic means or reduced to self-consistently defined
integral equations.
In the skeleton technique, the diagrams are classified

according to some rule which eliminates the need for
computing repeated blocks of diagrams. In the simplest
scheme which is used in this paper, one identifies the
proper self-energy blocks which consist of diagrams where
all vertexes (points where two particle propagators and
the interaction line meet) remain connected by some path
when one removes any two lines of the same kind: two
propagator lines with the same spin index or two inter-
action lines. We will refer to this set of diagrams as
irreducible. The omitted diagrams are fully accounted
for by replacing bare propagators and interaction lines
in the proper self-energy blocks with exact propagators,
G(τ), and screened interactions, W (r, τ)M̂ . The result-
ing formulation is self-consistent and highly non-linear
since G and W depend on proper self-energies through
the Dyson type equations. If Σ is the proper self-energy
for the particle propagator, and Π is an analogous quan-
tity for the interaction line (better known as polarization
operator) then (in Fourier representation (r, τ) → (q, ωm)
for space-time variables)

G(m) =
G(0)(m)

1−G(0)(m)Σ(m)
,

W (q,m) =
J(q)

4− J(q)Π(q,m)
≡ J(q)

4
+ W̃ (q,m) . (7)

where J(q) =
∑

r e
iqrJ(r). Due to fermionic/bosonic na-

ture of propagators G/W we have different definitions

of the Matsubara frequency here, ωm = 2πT (m + 1/2)
for (G,Σ) and ωm = 2πTm for (W,Π). Note also that
we split the W function into two parts by separating
out the original coupling. This is done for technical rea-
sons explained below; here we simply point out that in
the imaginary time domain this is equivalent to pay-
ing special attention to the δ-functional contribution,
W (q, τ) = 1

4J(q) δ(τ) + W̃ (q, τ). Correspondingly, for
graphical representation of the diagrams we use wavy
lines for W̃ and dashed vertical lines for bare coupling.
The corresponding (rather standard in many-body the-
ory) G2W -skeleton scheme is illustrated in Fig. 2. The
magnetic susceptibility Eq. (4) is directly related to the
polarization operator appearing in Eq. (7) and Fig. 2

χ(q, n) =
Π(q, n)

4− J(q)Π(q, n)
. (8)
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FIG. 2. (Color online) Typical low-order diagrams contribut-
ing to the particle self-energy and polarization operator within
the G2W -skeleton scheme (red color denotes spin-exchange
coupling). Diagrams for Σ and Π, in their turn, are used to
calculate fully dressed G and W functions, see Eq. (7).

To make connection with general rules of diagrammatic
MC41,42 we formalize the problem at hand as computing
quantity Q(y, s) (where y stands collectively for space,
imaginary time, and spin variables, while s = 1, 2 labels
the proper self-energy and the polarization operator sec-
tors) from the series of multidimensional sums/integrals

Q(y, s) =
∑

nξ

∫

dx1...dxndY D(n, ξ, {xi};Y, s)δ(y − Y ) .

(9)
Here n = 0, 1, . . .∞ is the diagram order, ξ labels dif-
ferent terms of the same order, xi are internal integra-
tion/summation variables, and D is the diagram contri-
bution to the answer. Formally, one can think of the
set of skeleton diagrams for the free-energy of the system
with one line marked as ’dummy’. When the dummy line
is removed from the graph the rest is interpreted as a di-
agram for Σ(y) (in this case s = 1 and the dummy line
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is the particle propagator) or Π(y) (in this case s = 2

and the dummy line is the W̃ one). The last rule fol-
lows from the fact that Π(y) is a continuous function
of time. In the BDMC approach one interprets Eq. (9)
as averaging of ei arg(D)δ(y − Y ) over the configuration
space ν = (n, ξ, x1, . . . , xn;Y, s) with probability density
proportional to |D|.
The skeleton formulation does not cause any funda-

mental problem for Monte Carlo methods and is easy to
implement for diagrams of arbitrary order. Essentially,
at any stage in the calculation both G and W are con-
sidered to be known functions (the calculation may start
with G = G(0) and W = J/4) while Eq. (7) is used from
time to time to improve one’s knowledge about G and W
using accumulated statistics for Σ and Π and fast Fourier
transform algorithms. Moreover, we have shown34 that
BDMC methods are more stable and have better con-
vergence properties than conventional iterations. One
immediately recognizes that in the skeleton-type formu-
lation (i) the number of diagrams to be sampled in a given
order is dramatically reduced, (ii) the convergence of the
skeleton series is likely to be different than that of the
bare series, (iii) non-analytic and non-perturbative be-
havior might emerge even from a finite number of terms
due to highly non-linear self-consistent formulation (we
refer here to the famous mean-field BCS solution).

The other crucial advantage of BDMC over more con-
ventional MC methods simulating finite clusters of spins
is that it deals directly with the thermodynamic limit
of the system. In practice, in dimension d > 1 the
error bars often become too large before a reliable ex-
trapolation to the thermodynamic limit can be done. In
this sense, BDMC is not subject to the infamous sign-
problem which is understood as exponential scaling of
computational complexity with the space-time volume of
the physical system. Feynman diagrams do alternate in
sign and contributions from high-order diagrams cancel
each other to near zero. However, this behavior is better
characterized as a ’sign-blessing’, not a sign-problem, be-
cause it is crucial for convergence properties. With the
number of graphs growing factorially with their order the
only possibility for obtaining series with finite conver-
gence radius is to have sign-alternating terms such that
high-order diagrams cancel each other (the sign-blessing
phenomenon). For series with finite convergence radius
there are numerous unbiased re-summation techniques
which allow one to determine the answer well outside of
the convergence radius provided enough terms in the se-
ries are known. Relatively small configuration space for
skeleton diagrams allows one to establish if sign-blessing
takes place in a given model and to obtain accurate re-
sults for diagram orders as large as 7-10 (depending on
the model).

It should be noted that in recent years the Popov-
Fedotov trick has become popular within the functional
renormalization group (PFFRG) framework. It has
been applied to frustrated J1 − J2 model on square
lattice43, planar J1 − J2 − J3 antiferromagnet44, spa-

tially anisotropic triangular antiferromagnet45, and hon-
eycomb lattice antiferromagnet with competing interac-
tions46. These studies also attempt at attacking the
problem using Feynman diagrammatic series but are rad-
ically different in the technical implementation. While
PFFRG is also based on sums of subsets of selected di-
agrams to infinite order, it does not offer a convenient
way to check for convergence of final results as more
and more diagrams are retained. This is the most severe
drawback of PFFRG; after all the major problem with
existing theories is reliable estimate of the accuracy. The
PFFRG spectral functions are very broad in energy43

and appear to underestimate ordering fluctuations. This
also leads to significant rounding of susceptibility peaks
and makes identification of different phases difficult. In
addition, these studies are typically focused on the zero-
temperature phase diagram, not the finite-temperature
cooperative paramagnet state.

IV. NORMALIZATION AND

WORM-ALGORITHM UPDATES

To simplify notations let us write the diagrammatic
contribution from the configuration space point ν as
Dν = eiϕνDν and call the non-negative function Dν the
configuration ’weight’. Within the G2W -skeleton scheme
Dν is given by the modulus of a product which runs over
all lines

Dν = |
∏

lines

fline(ν)| , (10)

where fline(ν) stands for a collection of functions describ-
ing various lines in the diagram. At this point we notice
that equation

Q(y, s) =
∑

ν

eϕνDνδ(y − Y ) . (11)

can be always interpreted as averaging over the proba-
bility density distribution Pνs = Dν/Cs, where Cs is the
normalization factor, and thus sampled by MC methods:

Q(y, s) = Cs

∑

ν

eiϕνδ(y−Y )Pνs −→ Cs

MC
∑

ν

eiϕν δ(y−Y ) .

(12)
In the last transformation we replace the full sum over
the configuration space with the stochastic sum over con-
figurations which are generated from the probability den-
sity Pνs. This is, of course, nothing but the standard MC
approach to deal with complex multi-dimensional spaces.
We stress here that all configuration parameters are sam-
pled stochastically, including the diagram order and its
structure, making Diagrammatic MC radically different
from calculations which first create a list of all diagrams
up to some high-order and then evaluate them one-by-
one (often with the use of MC methods for doing the
integrals).
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A. Normalization

The normalization constant C can be determined in a
number of ways:
(i) using known behavior of Q(y, s) in some limiting case,
for example Q(y → y0, s) → Q0(s),
(ii) through the exact sum rule,

∫

dyQ(y, s) = Rs, if
available, or, more generically,
(iii) by measuring the ratio between the contributions of
all diagrams in Eq. (9) and diagrams which are known
either analytically or numerically with high accuracy. In-
deed, imagine that one or several diagrams, say the lowest
order ones, are known and their integrated contribution
to the answer is QN (s) =

∫

dyQN (y, s). Let Ns be their
configuration space. Then the ratio Q(y, s)/QN(s) can
be measured in the MC simulation as

[
∫

dyQ(y, s)

]

/QN (s) = (

MC
∑

ν

eiϕν )/(

MC
∑

ν

δν∈Ns
eiϕν ) .

(13)
This leads to

Cs =
QN (s)

Zs
, Zs =

MC
∑

ν

δν∈Ns
eiϕν . (14)

The diagrams used for normalization are not necessar-
ily the physical ones, i.e. they can be artificially “de-
signed” to have simple analytic structure and added as a
special sector to the configuration space {ν}, see Ref. 34.
In the latter case, the diagrams contributing to Q(y, s)
and Zs are mutually exclusive and physical contributions
have to be filtered by (1− δν∈Ns

).

In the present study we use the modulus of the Hartree
diagram to normalize statistics for Σ, and the modulus of
the lowest order GG-diagram, see the first term in Fig. 2,
to normalize statistics for Π:

QN(1) = ΣN =
∑

r

∑

α

|J(r)
4

| |G(τ = −0)| ,

QN(2) = ΠN =
∑

α

∫ 1/T

0

dτ |G(τ)G(−τ)| . (15)

Even though in the self-consistent scheme one does not
know the G(τ)-function analytically (it is tabulated nu-
merically) it takes no time to compute the normalization
factor ΠN with high accuracy. We take the modulus of
the Hartree diagrams because in the absence of external
magnetic field the spin-up and spin-down contribution
exactly cancel each other. Correspondingly,

Z1 =
MC
∑

ν

δν,(Hartree,s=1) ,

Z2 =

MC
∑

ν

δν,(n=1,s=2) . (16)

B. Worm-algorithm trick

We now proceed with the description of updates which
ensure that all points in the configuration space are sam-
pled from the probability density Pνs. Among many pos-
sibilities we seek a scheme which involves the smallest
number of lines in a single update and does not require
global analysis of the diagram structure. Such updates
are called ”local”. Typically, they are much more flexi-
ble in design, are easier to implement, and lead to more
efficient codes by having large acceptance ratios. The
reader not interested in algorithmic details may proceed
directly to the next Section.
An easy way to ensure that the diagram is irreducible

is to check that no two lines in the graph have the same
momentum—by momentum conservation laws the iso-
lated self-energy blocks cannot change the line momen-
tum. By creating a hash table where momenta of all lines
are registered according to their values one can readily
verify that momenta of updated lines are not repeated in
the graph without looking at the graph topology or ad-
dressing all other lines. This simple tool solves the prob-
lem of performing local updates within the irreducible
set. It can be applied even if diagrams are sampled in
the real-space representation, as is done in this article, by
attaching an auxiliary momentum variable to each line
and satisfying the momentum conservation law at each
vertex. In this case, the sole purpose of introducing aux-
iliary momenta is an efficient monitoring of the diagram
topology and the Dν value is independent of them.
Since the trick with auxiliary momenta is based on mo-

mentum conservation laws one is necessarily limited to ei-
ther (i) performing updates on closed loops, i.e. partially
abandoning the idea of local updates, or (ii) extending
the configuration space to include diagrams which vio-
late these conservation laws. The second strategy is the
essence of the worm algorithm. One more reason for us-
ing the worm algorithm approach is the spin projection
conservation law in the interaction process, see Eq. (6)
and Fig. 1. It also requires that updates are performed
only on closed loops of interaction lines and propagators,
unless one admits diagrams which violate the correspond-
ing conservation law. It turns out that a straightforward
extension of the worm algorithm introduced in Refs. 47
and 35 allows one to go around both hurdles.
The additional (unphysical) diagrams have the follow-

ing structure. There are two special vertexes, or ’worms’,
S and T , where momentum and spin conservation laws
are violated, see Fig. 3. In a given graph, any two ver-
texes can be special if they are not connected by the in-
teraction line. Conservation laws become satisfied if one
imagines a special line connecting S to T . This line is
not associated with any propagator and its mission is to
transfer momentum pw and spin projection 1 (doted line
in Fig. 3); otherwise special vertexes represent a drain
and a source of momentum pw and spin projection 1, see
Figs. 3 and 4. It has to be realized that the spin conser-
vation law is formulated for a pair of vertexes connected



7

by the interaction line, i.e. an interaction line contain-
ing a worm on one of its ends is unphysical and can be
described by any suitable function F (r, τ).

1W 2W

( , 1)w zp s�  

S

T

F

F W�
W�

G

FIG. 3. (Color online) Non-physical diagram with two special
vertexes (worms) S and T (marked by blue circles). Mo-
mentum and spin conservation laws would be satisfied at
all vertexes and interaction lines if one considers S/T as a
drain/source of momentum pw and spin projection 1; the same
rule is recovered by imagining a line (green dotted) which car-
ries (pw, sz = 1) from S to T . If special vertexes were not
present in the diagram, then this graph would contribute to
Σ(τ1− τ2) after removing the dummy propagator line marked

by the cross (if cross marks the dummy W̃ -line then the dia-
gram is contributing to Π).

T

,k� n

q

,wk q p� � � p

,p D� ,p q D� �

S
,k D�

q

,wk q p D� � �

,p� n ,p q� � p

, 1w zp s�  

S

T

, 1w zp s�  

,k� p

q

,wk q p� � � n

,p D� ,p q D� �

,k D�

q

,wk q p D� � �

,p� p ,p q� � n

, 1w zp s�  , 1w zp s�  

FIG. 4. (Color online) Detailed structure of S and T vertexes.
Note, that the interaction line containing a worm on one of its
ends is also unphysical and the spin conservation law applies
to a pair of vertexes.

The worm algorithm idea is based on the observation
that updates performed with the use of special vertexes
can always be made local, including non-trivial changes
in the diagram topology and order as well as transforma-
tions replacing diagonal interaction lines with spin-flip

ones. Even though unphysical diagrams are frequently
encountered in the simulation process they are excluded
from the statistics of Σ and Π which is accumulated only
on the physical set of diagrams.

C. Updates

Below we describe the simplest ergodic updating
scheme. With trivial modifications and additional filters
for proposals which would be rejected because they are
incompatible with the allowed configuration space it can
be made more efficient. This, however, would overwhelm
the presentation with minor programming details and we
choose not to discuss them here. For example, below we
will use the following algorithmic rules for dummy lines
used to identify diagrams as Σ- or Π-type: (i) the dummy
interaction line cannot be removed or created in any up-
date, (ii) if the dummy propagator originating from ver-
tex A is modified by adding/removing an intermediate
vertex C then A always remains the originating vertex
of the new dummy line. These rules can be easily mod-
ified to avoid fast rejections of updates in certain cases
at the expense of using additional random numbers to
deal with available choices and taking care of them in ac-
ceptance ratios. Alternatively, the notion of the dummy
line can be avoided altogether by designing an improved
estimator based on free-energy diagrams.
Create - Delete The pair of complementary updates

Create - Delete switches between physical and unphysical
sectors by inserting/removing a pair of special vertexes
connected by the particle propagator. It is not allowed
to have S = T or to have S and T being connected
by the interaction line, see an illustration in Fig. 5. In
Create, the particle propagator for update and the type
of special vertex to be placed at its origin (A → S or
A → T ) are selected at random. One has to verify that
flipping the propagator spin is consistent with the worm
rules or reject the proposal. The missing momentum pw
at the worm vertex is selected at random. In Delete, one
selects a worm at random, checks that the outgoing par-
ticle propagator arrives at the other worm, and proposes
to remove worms from the diagram. The corresponding
acceptance ratios are given by

RCreate =
Dν′

Dν

u2

u1
2n , RDelete =

Dν′

Dν

u1

u2

1

2n
, (17)

where n is the diagram order and ν and ν′ are configu-
ration space points before and after the update and Dν

is the product in Eq. (10). In the present case only one
propagator and two interaction lines are affected:

Dν′

Dν
=

∣

∣

∣

∣

GAB(α)FSCFTD

GAB(−α)WACWBD

∣

∣

∣

∣

, (18)

in Create and similarly, Dν′/Dν = |GWW/GFF |, in
Delete with appropriate arguments for all functions in-
volved. [If the line is labeled as W it can be either of
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J or W̃ type.] In what follows we will stop mentioning
which vertexes determine function parameters since these
can be easily recovered from the figures. Finally, assum-
ing that the protocol of deciding which update should
be implemented next is random and based on assigning
each update some probability, ui, we mention the ratio
of probabilities in the acceptance ratio (u1 for Create and
u2 for Delete).

A ,k n B

W W

C D

T,wk p� � p�S

F F

C D

Delete��Create

A ,k p� B

W W

C D

S,wk p� � n�T

F F

C D

Delete��Create

wp �

wp �

FIG. 5. Two cases for Create and Delete updates which in-
sert/remove a pair of worms at the ends of the particle prop-
agator.

Create-H - Delete-H This pair of complementary up-
dates also switches between physical and unphysical sec-
tors with an additional ingredient—it increases/decreases
the diagram order by attaching a Hartree-type bubble to
the existing graph. According to the rule ’no two lines
may have the same momentum’ the diagram remains irre-
ducible because one of the worms is placed on the bubble
vertex. The overall transformation is illustrated in Fig. 6;
the text below addresses to this figure with regards to
the procedure of selecting specific graph parameters. In
Create-H a particle propagator (going from vertex A to
vertex B) and whether to place S or T on vertex B is de-
cided at random. If the proposal is inconsistent with the
worm rules it has to be rejected. Next, a new time vari-
able for the intermediate vertex C is generated from the
probability density, t(τ), and a random decision is made

whether the new interaction line is of the J- or W̃ -type.
For the J-line (with τ ′ = τ) the position of the second
worm vertex in space is obtained from the normalized
X(r′) ∝ J(r′) distribution. For the W̃ -line this position
is obtained from some designed probability distribution
Y (r′) while the time location is drawn from the prob-
ability density, t(τ ′). The spin variable in the bubble,
the bubble momentum variable p and the worm momen-
tum pw are decided at random. In Delete-H a random
choice is made what type of special vertex must be on
the Hartree bubble provided the overall topology of lines
is identical to that on the r.h.s of Fig. 6. The proposal
is to remove worms and the bubble from the diagram. It
is rejected if either the propagator originating from C or

the interaction line attached to C is the dummy one. The
acceptance ratios for these updates are (probabilities of
calling Create-H are Delete-H are u3 and u4, respectively)

RCreate−H =
Dν′

Dν

u4

u3

23n

t(τ)

{

1/X(r′); (J)

1/Y (r′)t(τ ′); (W̃ )
(19)

RDelete−H =
Dν′

Dν

u3

u4

t(τ)

23(n− 1)

{

X(r′); (J)

Y (r′)t(τ ′); (W̃ )
(20)

with the diagram weight ratios Dν′/Dν given by
|GGFFG/GW | and |GW/GGFFG| in Create-H and
Delete-H, respectively (note that here n is the initial di-
agram order). The simplest choices for probability dis-
tributions in Eqs.(19) and (20) would be uniform distri-
butions t(τ) = T , X(r′) = 1/z, and Y (r′) = 1/V , where
V is the total number of lattice sites. One can use other
functions for better acceptance ratio. The three updates

A ,k n B

D

A ,k n T

D

DeleterH��CreaterH ,wk p� �p�
W

C

S

,pD�

FW

F

' 'r W

wp

A ,k p� B

D

A ,k p�

T

D

DeleterH��CreaterH ,wk p� � n�
W

C
S

,pD�

FW

F

r r

r r

' 'r W

wp

wp
wp�

FIG. 6. Two cases for Create-H and Delete-H updates which
insert/remove a pair of worms and increase the diagram order
by adding a Hartree-type bubble.

described next represent a random diffusion of special
vertexes along the graph lines (this places S and T on
any allowed pair of vertexes) supplemented by an update
which changes the graph topology.
Move-P In this self-complementary update one se-

lects at random S or T and proposes to shift the se-
lected worm along the incoming or outgoing propagator
line, deciding again randomly between the two choices.
Since all four case are identical in their implementation
we describe below an update shifting S along the outgo-
ing propagator line to vertex B, see upper panel in Fig. 7,
if B 6= S, of course. According to the rules, if B = T ,
or D = T , or the spin of the outgoing line is down, the
update is rejected. Finally, one has to check whether the
proposal may lead to the irreducible diagram. For the
update shown in Fig.7 the acceptance ratio is given by

RMove−P =

∣

∣

∣

∣

GWF

GFW

∣

∣

∣

∣

. (21)
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S=A ,k p� B

F W

C D

S,wk p� � n�A

W F

C D

MoverP�

MoverI�

S=A

F

B

q

A

F

S

wq p�

FIG. 7. Upper panel: An illustration of the Move-P update
shifting S along the propagator line. This move changes the
momentum of the propagator line and flips its spin as well
as the status of interaction lines between physical and un-
physical. Lower panel: An illustration of the Move-I update
shifting S along the interaction line. This move changes the
auxiliary momentum of the interaction line only.

Move-I In this self-complementary update one selects
at random S or T and proposes to shift the selected worm
along the interaction line to vertex B, see the lower panel
in Fig. 7. One has to check whether the proposal may
lead to the irreducible diagram. This update is always
accepted since it changes only the auxiliary momentum
variable.
Commute All possible topologies in a graph of order n

can be generated by randomly connecting outgoing prop-
agator lines to incoming ones. Having this observation
in mind the self-complementary Commute update pro-
poses to swap destination vertexes for propagator lines
originating at S or T , see Fig. 8. This proposal is valid
only if all vertexes have the same space coordinate and
both propagators have the same spin index. The cru-
cial advantage of the worm algorithm at this point be-
comes clear—momentum conservation law is satisfied by
absorbing the difference k− p into the worm momentum
pw → pw + k − p. This update is accepted with ratio

RCommute =

∣

∣

∣

∣

GG

GG

∣

∣

∣

∣

. (22)

In the lower panel of Fig. 8 we show a typical diagram
change produced by Commute. It always changes the
number of fermionic loops in the graph and, in partic-
ular, will transform a diagram with a bubble attached
to the worm vertex into the vertex-correction type dia-
gram. This explains, to some extent, our design of up-
dates Create-H and Delete-H.
Dummy To place the dummy line mark on any of the

G- or W̃ -lines we select one of the vertexes at random,
say vertex A, and make a random decision whether the
new dummy line should be the interaction line attached

S ,k D� A

Commute

r�

T
,pD� B

r�

S A
r�

T

,pD�

B
r�

,k D�

wp �

S T S T

wp k p� � �

FIG. 8. Upper panel: In the Commute update the diagram
topology is changed by re-directing propagators originating at
special vertexes S and T to have their destination vertexes at
B and A, respectively. Lower panel: typical transformation
produced by the Commute update.

to A (it has to be of the W̃ type) or the propagator line
originating from A. The proposal is always accepted if
the notion of the dummy mark does not change the value
of the function behind the line (which is assumed to be
the case here).

The above set of updates is sufficient for doing the
simulation. It can always be supplemented by additional
updates which do not necessarily involve special vertexes
but reduce the autocorrelation time and lead to more ef-
ficient sampling of the diagram variables. Moreover, a
non-trivial check of the detailed balance for debugging
purposes is only possible if the set of updates is overcom-
plete. Below we describe several such updates.

Insert-Remove An idea here is to increase/decrease
the diagram order by inserting/removing a ladder-type
structure. More precisely, in Insert we make a random
choice between S and T to start the construction from
the special vertex V1. Next we identify vertex A as the
destination vertex of the propagator originating from V1,
and vertex B as the originating vertex for the propagator
with the destination vertex V2, which is the other worm
end, see the upper panel in Fig. 9. If A = V2 the up-
date is rejected. The proposal is to insert new vertexes
C (intermediate between V1 and A) and D (intermediate
between B and V2) and to link them with the interaction

line of randomly chosen type, either J or W̃ , and momen-
tum q. The new time variables are generated from the
probability density t(τ). The momenta of new lines and
the worm are modified as described in Fig. 9 to satisfy
conservation laws. Finally, if one of the propagators is the
dummy line, the new dummy line has to have the same
originating vertex. In Remove we select one of the spe-
cial vertexes, V1, at random and verify that the topology
of lines connecting it to the other special vertex, V2, as
well as lines parameters are consistent with Fig. 9 (upper
panel). If either C-A or D-V2 propagator is a dummy line
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the update is rejected. The proposal then is to remove
vertexes C and D from the graph and update momenta
of the lines accordingly. The acceptance ratios are given
by

RInsert =
Dν′

Dν

u10

u9

2

t(τ)

{

1; (J)

1/t(τ ′); (W̃ )
(23)

RRemove =
Dν′

Dν

u9

u10

t(τ)

2

{

1; (J)

t(τ ′); (W̃ )
(24)

whereDν′/Dν = |GGGGW/GG| in Insert and its inverse
in Remove.

V1 ,k D� A

Remove�Insert�

B ,p E� V2

wp �

V1 ,k D� A

B ,p E� V2

wp q�

,p q E� �

,k qD� �

q

W

C

D

W�

'W�

B

,k D�

A Dress��Undress�

C

,p E�

B
,k D�

A

C

,p E�

,k qD� �

,p q E� �

q

W

D

E

W�

'W�

FIG. 9. Upper panel: Increasing/decreasing the diagram or-
der using a pair of complementary updates Insert and Re-

move. When the propagators V1-A and B-V2 are linked with
the new interaction line C-D carrying momentum q the closed
loop for momentum conservation goes as V1-C-D-V2-V1. The
same loop is used in the Remove update. Lower panel: Dia-
gram transformation when vertexes are dressed and undressed
with interaction lines.

Dress-Undress One of the easiest updates to increase
the diagram order within the G2W -skeleton formulation
is to dress an existing vertex with interaction line and
consider the smallest closed loop for transferring momen-
tum. The Dress update starts from random selection of
vertex A and identification of vertexes B and C linked to
it by propagator lines; if B = A the update is rejected
(we pay no attention in this update whether one of the
vertexes is of a special type). The proposal is to add new
vertexes D (intermediate between B and A) and E (inter-

mediate between A and C) and to link them with the W̃
line with random momentum q. The new time variables
are generated from the probability density t(τ). The mo-
menta of new lines are modified as described in the lower
panel of Fig. 9 to satisfy conservation laws. In Undress

we select vertex A at random, identify vertexes D, B, E ,
and C using links along the propagator lines, and verify
that the topology of lines and their parameters are con-
sistent with the dressed vertex configuration. If the D-E

line is not of the diagonal W̃ type or one of the propaga-
tors D-A or E-C is a dummy line, the update is rejected.
The proposal is to remove vertexes D and E from the
graph. The acceptance ratios are

RDress =
Dν′

Dν

u12

u11

n

(n+ 1)t(τ)t(τ ′)
, (25)

RUndress =
Dν′

Dν

u12

u11

n

(n− 1)t(τ)t(τ ′)
, (26)

where Dν′/Dν = |GGGGW/GG| in Dress and its inverse
in Undress.

Recolor An easy and efficient way to change the spin
index of propagator lines is to select a random vertex
and use it to construct a closed loop by following the
propagator lines attached to it. If all propagators in the
loop have the same spin index α it can be changed to
−α with acceptance ratio unity in the absence of exter-
nal magnetic field; otherwise, one has to use the ratio
of products of all propagator lines after and before the
update.

B

( )W F�

C

D

MoverT�

S

A

W

B

( )W F�

C

D

A

'W�

F

A

W

MoverT� F

'W�

S

A

FIG. 10. An illustration of the Move-T update changing the
imaginary time location of a randomly chosen vertex. One is
free to change the type of worm from S to T or to place it on
any of the vertexes in both panels.

Move-T This self-complementary update is designed
to sample time variables of the diagram without changing
its order and topology. The proposal is to select one of
the vertexes at random, let it be vertex A and update
its imaginary time variable from τ to τ ′ using probability
density distribution t(τ ′), see Fig. 10 for two alternatives.
The interaction line attached to A cannot be of the J-
type; whether it is the physical W̃ -line or unphysical F -
line does not mater. The acceptance ratio is given by

RMove−T =
t(τ)

t(τ ′)

{

|W̃ (F )/W̃ (F )| |GG/GG| (generic)

|F/F | (bubble)
.

(27)
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D. Diagram sign

With the dummy line removed, the diagram phase re-
quired to compute the self-energy and polarization oper-
ator using Eqs. (12) and (14) is determined by standard
diagrammatic rules (see also Eq. (10)):

ϕν =
∑

lines

arg(fline(ν)) + π(n+ l) , (28)

where l is the number of fermionic loops (one only needs
to know whether it is even or odd). This phase is readily
recalculated in updates without addressing the whole di-
agram since l always changes its parity when Create-H,
Delete-H, and Commute are accepted.

E. Satisfying the sum rule

The value of the spin-spin correlation function χ(r =
0, τ = 0) = 〈(Sz)2〉 = 1/4, see Eq. (4), provides an im-
portant sum rule in the Fourier space

T
∑

n

∫

BZ

dq

8π2/
√
3
χ(q, n) = 1/4 , (29)

which can be used for modifying convergence properties
of the self-consistent scheme as follows (the integral is
taken over the Brillouin zone (BZ)). When the maximum
diagram order is fixed at N the sum rule is violated by
some amount which vanishes as N → ∞. Since the final
result is claimed after taking the limit, it is perfectly
reasonable to impose a condition that the sum rule is
always satisfied by scaling Π by an appropriate factor.
This is exactly what is done in this article: after solving
the Dyson Equation we check the value of χ(r = 0, τ =
0), adjust the scaling factor for Π, and go back to solving
the Dyson Equation again until the sum rule is satisfied
with three digit accuracy.

V. TRIANGULAR LATTICE HEISENBERG

ANTIFERROMAGNET

In the diagrammatic formulation there is no concep-
tual difference in the implementation of the numerical
scheme for any dimension of space, lattice type, and in-
teraction range. Thus, sign-problem free systems, e.g.
the square/cubic lattice Heisenberg antiferromagnet with
nearest neighbor coupling, can be used for testing pur-
poses since their properties are known with high degree
of accuracy (with reliable extrapolation to the thermo-
dynamic limit) using path-integral and stochastic series
expansion MC methods. After passing such tests, we
turn our attention to the triangular-lattice Heisenberg
antiferromagnet (TLHA) which is a canonical frustrated
magnetic system with massively degenerate ground state
in the Ising limit.

The most important question to answer is whether the
sign blessing phenomenon indeed takes place, i.e. there
is a hope for obtaining accurate predictions in the strong
coupling regime by calculating higher-and-higher order
diagrams despite factorial growth in the number of con-
tributing graphs. In Fig. 11 we show comparison between
the calculated answer for the static uniform susceptibility

χu = χ(q = 0,m = 0) =

∫ 1/T

0

dτ
∑

r

χ(r, τ) , (30)

and the high-temperature expansion results37,38 at
T/J = 2. This temperature is low enough to ensure
that we are in the regime of strong correlations be-
cause χu is nearly a factor of two smaller than the
free spin answer χ0

u = 1/4T . On the other hand, this
temperature is high enough to be sure that the high-
temperature series can be described by Padé approxi-
mants without significant systematic deviations from the
exact answer37,38 (at slightly lower temperature the bare
NLC series start to diverge). We clearly see in Fig. 11
that the BDMC series converges to the correct result
with accuracy of about three meaningful digits and there
is no statistically significant change when more than a
hundred thousand of 7-th order diagrams are accounted
for. [We recall that the number of topologically distinct
diagrams within the G2W -skeleton scheme was calcu-
lated in Ref. 48; for the eight lowest orders they are
1, 1, 6, 49, 542, 7278, 113824, 2017881.] The error bar for
the 7-th order point is significantly increased due to ex-
ponential growth in computational complexity. The 4-th
order result can be obtained after several hours of CPU
time on a single processor.
Interestingly enough, when temperature is lowered

down to T/J = 1, which is significantly below the point
where the bare NLC series start to diverge (see Fig. 13),
the BDMC series continue to converge (see Fig. 12).
This underlines the importance of performing simulations
within the self-consistent skeleton formulation.
In Fig. 13 we show results of the BDMC simula-

tion performed at temperatures significantly below the
mean-field transition temperature. For all points we ob-
serve extremely good agreement (essentially within our
error bars) with the Padé approximants used to ex-
trapolate the high-temperature expansion data to lower
temperature38. Within the current protocol of dealing
with skeleton diagrams we were not able to go to lower
temperature due to the development of singularity in the
response function (and thus effective interaction W̃ at
the wave-vector Q = (4π/(3a), 0). When the denomina-
tor 4−J(q)Π(q,m) in (7) is close to zero it becomes very
difficult to control highly non-linear sets of coupled inte-
gral equations given finite statistical noise on the mea-
sured quantity Π(q,m).
This is clearly seen in Fig. 14 where we show data for

the staggered susceptibility χ(Q, 0), defined as

χs = χ(Q,m = 0) =

∫ 1/T

0

dτ
∑

r

eiQ·rχ(r, τ) , (31)
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FIG. 11. (Color online) Uniform susceptibility calculated
within the G2W -skeleton expansion as a function of the max-
imum diagram order retained in the BDMC simulation (black
dots) for T/J = 2. The result of the high-temperature expan-
sion (with Padé approximant extrapolation)38 is shown by red
square and horizontal line.
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FIG. 12. (Color online) Uniform susceptibility as a function
of the maximum diagram order (black dots) for T/J = 1. The
result of the high-temperature expansion (with Padé approx-
imant extrapolation)38 is shown by red square and horizontal
line. Its error bar is based on the difference between various
expansion/extrapolation schemes.

along with the Curie law and the uniform susceptibility,
on the double logarithmic scale.
One of the advantages of our approach is the ability

to perform calculations of susceptibility at arbitrary mo-
mentum. In Fig. 15 we show data for χ(q, 0) along the
Γ − K − M − Γ trajectory in the Brillouin zone (BZ).
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Pade

12S

13S

FIG. 13. (Color online) Uniform susceptibility as a function
of temperature (red dots) for the triangular Heisenberg an-
tiferromagnet calculated within the BDMC approach. NLC
expansion results 37 based on triangles (labeled as 7T and
8T) and sites (labeled as 12S and 13S) are shown along
with two different Padé approximant extrapolations of high-
temperature expansions38.

Here Γ is the center of the BZ, K = Q = (4π/(3a), 0),

and M = (π/a, π/(
√
3a)) is the mid-point on the face

of the hexagonal BZ (see Fig. 15). Results presented
in Figs. 14 and 15 are new because they are obtained
for the static (zero Matsubara frequency) susceptibility
in the thermodynamic limit. It is useful to note that the
static response is far more difficult to get within the NLC
method which is suited for calculations of the equal time
correlation functions, such as, for example, equal time
spin structure factor. The exception is represented by
the uniform, or zero momentum, response which is based
on the total magnetization commuting with the Hamil-
tonian. In addition, we can afford very high resolution in
momentum space which is not the case for calculations
based on clusters of finite size.

It is clearly seen in Fig. 15 that around T/J = 1 sys-
tem’s response is enhanced along the whole Brillouin zone
boundary indicative of the frustrated behavior. Only at
temperatures below T/J = 0.5 it becomes evident that
the system wants to develop correlations commensurate
with the K point. We confirm previous observation49

that even at T/J = 0.375 the spin correlation length,
which can be estimated from the half-width of the peak
around K point, is still of the order of lattice constant
a. This can be checked even more explicitly by looking
on the static spin correlations in real space. Figure 16
shows that while the sign structure of short-range spa-
tial correlations is consistent with the three-sublattice
120◦ state, the magnitude of the correlations becomes
exponentially small on the scale of a few lattice periods.
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FIG. 14. (Color online) Staggered susceptibility at the wave
vector Q as a function of temperature (black dots) plotted for
comparison along with the Curie-Weiss law (blue curve) and
uniform susceptibility (red dots and line).
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FIG. 15. (Color online) Static spin-spin correlation function
along the characteristic trajectory in the Brillouin zone.

Closer look also reveals dramatic suppression of correla-
tions between site 0 (say, sublattice A) and sites 3 and 7
both of which would belong to sublattice C in the per-
fectly ordered 120◦ classical state. Moreover, at slightly
higher temperature T/J = 0.5 the sign of correlations
on sites 3 and 7 changes sign and turns ferromagnetic,
similar to A-sublattice spins, though with much smaller
amplitude. This temperature induced reversal of cor-
relations is a remarkable effect specific for a frustrated
system.
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FIG. 16. (Color online) Modulus of the spin susceptibility
in real space at T/J = 0.375 on the logarithmic scale. Lat-
tice points are enumerated according to their distance from
the origin. Spins on red sites (0, 2, 5, 6, 10) are correlated
ferromagnetically while spins on blue and black sites are cor-
related anti-ferromagnetically with the spin at the origin. At
slightly higher temperature T/J = 0.5 black points (3, 7)
start to correlate ferromagnetically with the spin S0 at the
origin, contrary to the classical ground state pattern depicted
to the right.

It has been noted some time ago that short wavelength
spin excitations contribute significantly to the finite tem-
perature properties of triangular lattice antiferromagnet
at not too low temperature50. This has to do with sub-
stantial phase space volume these excitations occupy as
well as with their relatively weak dispersion51. It is con-
ceivable that particularly weak correlations between sub-
lattices A and C noted above have to do with these ex-
citations as well. All of these features can be extracted
from the retarded spin susceptibility χ(q, ω) calculation
of which requires analytic continuation of our Matsubara-
frequency susceptibility χ(q, ωm) to the real frequency.
We plan to address this important issue in the near fu-
ture.

VI. CONCLUSIONS

This paper describes novel approach to frustrated spin
systems. Obtained numerical results for the spin-1/2 tri-
angular lattice Heisenberg model, Section V, show the
power and competitiveness of our approach in compari-
son with other well established numeric techniques.
Future work has to address the issue of performing

simulations at lower temperature in the regime charac-
terized by the large correlation length. Technically, this
translates into being close to zero in the denominator
of Eq. (7) for some momentum values. Progress in this
direction should allow us to better describe the cross-
over/transition from the cooperative paramagnet to the
long-range ordered (albeit frustrated) state.
Yet perhaps the most promising line of attack has to

do with applying our technique to the geometrically frus-
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trated models that do not support magnetically ordered
state at all. In two dimensions this singles out quantum
kagomé lattice antiferromagnet which have recently be-
ing shown to realize a long-sought Z2 spin liquid state27.
This task will require extension of our approach to sys-
tems with several (three in this case) spins in a unit cell.
The added matrix complexity does not represent any fun-
damental difficulty.
Moving one dimension higher brings one to the most

frustrated antiferromagnet in the world – spin-1/2 py-
rochlore antiferromagnet52–54. Pyrochlore Ising-like
model realizes beautiful quantum spin-ice physics55 while
the fate of spin-1/2 Heisenberg model is an open ques-
tion. It is widely believed that ‘cooperative paramagnet’
region is most extended in this three-dimensional system.
Unlike many lower-dimensional frustrated system, spin-
1/2 pyrochlore is essentially not accessible by quantum
Monte-Carlo technique due to large unit cell (4 spins).
We believe that our Diagrammatic MC approach is there-

fore uniquely suited for studying the finite-temperature
dynamics of this outstanding frustrated magnet.
Recently we have generalized the Popov-Fedotov trick

to a universal technique of fermionization which leads to
a well-defined standard diagrammatic technique for arbi-
trary lattice spin, boson, and fermion system with con-
straints on the on-site Fock states39. This development
creates a broader context for the present work: success-
ful implementation of the BDMC method for models of
quantum magnetism may lead to the universal numer-
ical tool for arbitrary strongly correlated lattice models
within the fermionization framework when diagrammatic
expansion do not involve large parameters.
We thank M. Rigol for communicating us data ob-

tained within the NLC method. This work was sup-
ported by the National Science Foundation under grants
PHY-1005543 (S.K., N.P., B.S., and C.N.V.) and DMR-
1206774 (O.A.S.), and by a grant from the Army Re-
search Office with funding from the DARPA.
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