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Abstract

We have studied the magnetic microstates arising from single-shot thermalization processes that

occur during growth in artificial square spin ices. The populations of different vertex types can be

controlled by the system’s lattice constant, as well as by depositing different material underlayers.

The statistics of these populations are well-described by a simple model based on the canonical

ensemble, which is used to infer an effective temperature for an arrested microstate. The normalized

energy level spacings of the different magnetic vertex configurations are found to be very close to

those predicted for a point dipole model: this is shown to be a very good approximation to energy

level spacings calculated for finite-sized cuboid magnetic bodies. States prepared with a rotating

field (an athermal method commonly used to lower the energy of these systems) cannot be described

by this model, showing that such a method does not induce a near-equilibrium state.

PACS numbers: 75.50.Lk, 75.10.Hk, 75.25.-j, 75.75.-c
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Theories of magnetism have long provided models for more complex statistical mechan-

ical systems in physics and beyond. For instance, the venerable Ising model of a strongly

anisotropic ferromagnet (famously exactly solved in two dimensional systems by Onsager,1

and infamously unsolved in three dimensions) has been used in the context of describing

the phase stability of ordered alloys,2 the unbinding of DNA,3 the structure of surfactant

solutions,4 and the behavior of neural networks.5 Understanding systems that depart from

equilibrium remains a challenge across all these fields.

The approach of constructing model magnetic systems that are comparatively easy to

understand can be extended from theory to experiment in order to address this challenge.

This is accomplished in the designer metamaterials known as artificial spin ices. They

comprise an array of single-domain ferromagnetic islands, built using nanolithography,6 that

replicates much of the physics of pyrochlore crystal spin ice systems,7 which in turn replicate

the geometrical frustration of the proton disorder in water ice.8 As all the parameters of

the array may be engineered during fabrication, they allow for much wider exploration of

phase space than the mere handful of naturally-occurring spin ices allow. Moreover, they are

embodiments of statistical mechanical vertex models where the exact magnetic configuration

(microstate) may be directly observed using advanced magnetic microscopy techniques.9–11

Inspecting the microstate allows for such important statistical mechanical properties as the

effective temperature of the system,12,13 and its entropy,14 to be directly determined from

magnetic images, once the appropriate theoretical apparatus is in place.

The artificial square ice system we study here is depicted in Fig. 1(a). It is convenient

to think of it as a lattice of vertices, at each of which four elements meet,6,9,15 giving rise to

six pairwise magnetostatic interactions of which at least two are frustrated. Hence, in the

artificial square ice geometry there are four vertex types, according to the scheme defined

in Ref. 6 by Wang et al., which are depicted in Fig. 1(b). The magnetic moments at type

1 and type 2 vertices obey the two-in/two-out ice rule, satisfying four pairwise interactions,

however, type 2 has a slightly higher energy as the two frustrated interactions are stronger.

Both are magnetically charge neutral, although type 2 has a dipole moment. The twofold

degenerate ground state consists of an antiferromagnetic tiling of the two type 1 vertices.16

These two types contain all the vertices in the six-vertex model of square ice developed

by Wu17 and Lieb18 to describe two-dimensional antiferroelectrics. The full sixteen vertex

model has two more vertex types. Type 3 violates the ice rule, with a three-in(out)/one-
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FIG. 1. (color online) Artificial square spin ice. (a) A scanning electron micrograph of one of our

samples, showing the square lattice of vertices. (b) The various possible vertices, grouped into the

four conventional types, denoted Ti for type i. Magnetic moments of the individual elements are

represented by black arrows. T1 and T2 obey the ice rule. The magnetic charges of T3 and T4 are

denoted by red and blue circles, and the net dipole moments of T2 and T3 by green arrows.

out(in) arrangement of the moments, hence it possesses both a magnetic charge and dipole

moment, analogous to the monopole excitation of Castelnovo et al.19 Type 4 has the highest

energy, with all the moments pointing either in or out, and has a double magnetic charge

but no dipole moment.

In their most common incarnations, artificial spin ices are athermal; the magnetostatic

energy scales associated with the elements’ local anisotropy and with their interactions

exceed thermal energies by orders of magnitude at room temperature. (A recent exception

has been reported by Kapaklis et al.20, and some very preliminary data of thermally activated

reversal are shown by Arnalds et al.21) Hence any dynamics in the system must be driven by

the application of an external magnetic field. A number of reports have recently addressed

dc-field magnetic reversal processes,22–28 whilst low energy states are typically prepared using

a rotating field ac demagnetization protocol,6,10,23,29–31 which nevertheless does not lead to

the ground state.9 We have recently shown that thermally activated dynamics can take place

during sample fabrication under the right conditions,16 yielding a much closer approach to

the ground state, although our sample too was in an arrested athermal state once fully
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formed.

Our arrays were fabricated using electron beam lithography, evaporation of Permalloy,

and lift-off.16 Here we examined two sets of spin ice arrays. In the first set the magnetic

elements were of size 270 nm × 115 nm × 25 nm, with variation between samples of the

lateral dimensions of roughly ±5 nm. The patterns were written together before being

diced to allow the separate deposition of different underlayers (2 nm of Ti, 2 nm of Cr,

or no underlayer, i.e. directly on the Si wafer surface). The deposition of the magnetic

material for all these samples was then done simultaneously. The total size of each array

was 0.5 mm × 0.5 mm, with lattice constants a ranging from 400–600 nm in order to vary

the interaction strength.6 Crucially, it has been shown that this deposition process leads to

magnetic microstates that are thermalized,16 which we have reproduced here in these new

samples. As the elements grew, so did the energy scale of their magnetic shape anisotropies

and interactions, eventually suppressing superparamagnetism and arresting their magnetic

microstates. Each sample was subsequently imaged by magnetic force microscopy (MFM)

over 13 µm × 13 µm areas in its as-grown state at five locations distributed across it. Error

bars in any measured quantity hence arise as the standard error from averaging over these

five images. The second set all had underlayers (2 nm of either Ta or Ti), and were slightly

smaller (250 nm × 80 nm laterally), patterned over ∼ 1 mm2 total areas from multiple closely

spaced 20 µm × 20 µm fields, but were otherwise very similar. These were ac demagnetized

after growth, using rotating field protocols similar to those described in Ref. 29, and the

microstates were also imaged by MFM at multiple locations.

In 2010, Nisoli et al. reported a formalism for inferring the effective temperature of such

an athermal system from the vertex populations in its arrested microstate.12 (The idea

of effective temperatures in athermal systems is well known in the context of structural

glasses32,33 and granular media.34) The formalism defines vertices of type i to have fractional

population ni (with
∑

i ni = 1), degeneracy qi and energy Ei. It can be seen from Fig. 1b

that q1 = 2, q2 = 4, q3 = 8, and q4 = 2. The vertex energy for each type Ei may then

be calculated within a suitable magnetic model35. For the purposes of the calculations that

follow, it is convenient to set the lowest energy E1 ≡ 0 and measure the others relative to

this, scaled such that E3 ≡ 1.

Similarly to Ref. 12, we assume that the samples were close to thermal equilibrium up to

the time at which they became arrested. These arrested states can then be described by a
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canonical ensemble with a scaled temperature parameter βeff , defining the effective tempera-

ture Teff = 1/kBβeff , where kB is Boltzmann’s constant. For the field-demagnetized samples,

the description is not so clear. Also following Ref. 12, we shall make a mean-field approxi-

mation, neglecting correlations between vertices. By Boltzmann’s law, the probability of a

given vertex being observed as type i is then given by

ni =
qi exp(−βeffEi)

Z
, (1)

where Z is the partition function and, to mean-field level, Ei is the energy of the four

nanomagnets involved in a type-i vertex, in the presence of a surrounding medium of uncor-

related dipoles. A vertex randomly inserted into that state, and therefore uncorrelated with

it, would have interactions with it that average to zero for all i, (the same will be true for an

antiferromagnetically ordered state such as the ground state) so that only the six pairwise

interactions of the vertex’s four dipoles contribute to Ei,
11,15,36 which we have calculated

using the same point-dipole approximation as in our previous work.16 (Note, this yields dif-

ferent values of Ei from the four-charge Coulomb approximation used by Nisoli et al.35) For

a typical microstate observed, the total energy calculated by a full sum over all pair-wise

dipolar interactions differs by less than ∼ 2 % from
∑

iEini, attributable to the fast decay of

dipolar interactions with distance, and net long range interactions which largely cancel out

due to a strongly demagnetized state (as well as possible statistical fluctuations due to the

finite field-of-view of the MFM.) This same “counting vertices” calculation has previously

been shown to work well for states consisting of excited vertex configurations on a ground

state background.16

Eq. 1 leads straightforwardly to

βeffEi = ln
(

qi
2

n1

ni

)

. (2)

Choosing i = 3, for instance, this allows βeff to be determined from experimentally observed

vertex populations in units of E−1
3 . In Fig. 2 we show two examples, prepared via the two

routes, for which this formula yielded some of the lowest effective temperatures that we have

observed. Fig. 2(a) shows an as-grown state that has thermally approached very closely to

the ground state during deposition, before arrest — the image is featureless apart from a

single domain wall that divides two incommensurate domains of ground-state order. We

can use Eq. 2 to determine βeffE3 = 7.4 ± 0.5, corresponding to a rather low Teff . (Indeed
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FIG. 2. (color online) MFM images of arrested magnetic microstates, with magnetic charge contrast

shown using a red–white–blue color scheme. (a) An as-grown state in a sample of lattice constant

466 nm and no underlayer that closely approaches the ground state, with βeffE3 = 7.4± 0.5 based

on the ratio n1/n3. (b) An icy state prepared by rotational ac demagnetization of a sample with

lattice constant 500 nm, with βeffE3 = 2.18 ± 0.05 determined in the same way.

we have several images of this scale that show pure ground state order, yielding an effective

temperature of zero, which is less useful for our later analysis since βeff diverges.) Fig. 2(b)

shows a state prepared using the rotating field protocol29 (∼ 10 Hz rotation frequency, initial

field 1.3 kOe, field step size 10 Oe, field dwell time 7 s) where we find a much lower value

βeffE3 = 2.20± 0.04. As expected, the sample that looks more magnetically disordered has

the higher effective temperature.

In Fig. 3 we show our experimental data for a series of as-grown samples, with βeffE3

determined using Eq. 2.37 The differently shaped data markers indicate which underlayer

(or lack thereof) the samples were grown on. All data acquired from the as-grown samples

are well-described by the straightforward mean-field evaluation of the canonical ensemble

expressed in Eq. 1, plotted as the solid lines in Fig. 3. We would like to emphasize that
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these curves are not fitted to the data, they simply represent the predictions of the canonical

ensemble with no free parameters.

We reach values of βeffE3 ≈ 7 for the most strongly interacting arrays, much higher than

the values achieved in Ref. 12 using the rotating field protocol, and also much higher than

any we have achieved by that route. Empirically, we find that stronger interactions allow

the system to more closely approach the ground state, and so the effective temperature

is lower for more closely spaced arrays: within each series, increasing βeffE3 corresponds

to smaller lattice constants,37 as recently predicted in a comprehensive model of as-grown

thermalization.13

By comparing the statistics for a given lattice constant,37 we can see that this tendency to

order is counteracted by the changes imparted by the different underlayers - βeffE3 is reduced

with respect to the sample made directly on the Si surface. We infer that the additional

surface roughness provided by the metal underlayers (which will be greater than that of the

bare Si substrate) increases the level of quenched disorder in the system, broadening the

distribution of magnetic island and vertex properties,38–40 creating therefore an additional

randomizing influence on the microstates formed. Within our model of the system as vertices

of identical Ising point dipoles, increased interaction strength (quenched disorder) alters the

equilibrium vertex distribution to yield a lower (higher) effective temperature by correlating

(decorrelating) the system. Both are parameters by which the final statistical state of the

system may be tuned,6,41,42 consistent with Monte Carlo studies of thermally annealed square

ice systems.41

This analysis is significantly simpler than the extended model presented by Nisoli et al.

to describe their data from samples demagnetized with a rotating field.12 The predictions

of that model are shown as dotted lines in Fig. 3. Although it described the data from

their rotating field samples extremely well for βeffE3 < 3, it performs poorly for our as-

grown samples, especially for high values of βeff , where it fails to predict an approach to

the ground state. We would like to emphasize that both models make the same vertex

gas approximation, so it is remarkable that our simplified model works so well at high βeff ,

where correlations are expected to be important. A feature common to both protocols is the

randomizing influence of quenched disorder which may be responsible for the acquisition of

“thermal-like” vertex distributions following ac demagnetization, and at least appears to be

a larger hinderance to GS formation during both thermal and field “annealing” of artificial
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FIG. 3. (color online) Variation of vertex populations ni with βeff . Experimental data points for

as-grown samples on different substrates are shown with differently shaped data markers. The

solid lines are the expected populations based on the simple canonical ensemble model with point

dipole energies, whilst the dotted lines are the predictions of the extended model given in Ref. 12

that uses four-charge energies. The predictions of the models are very different for low effective

temperatures (high βeffE3), with the extended model not approaching the ground state as the data

do.

square Ising lattices than the systems’ frustrated geometries.38,42,43

The calculations in Ref. 12 differ from our simpler model based on the canonical ensemble

in two ways. First, in order to modify the populations of the various vertex types, that ex-

tended model invented a distinction between the type 2 vertices that belonged to the uniform

background provided by the high starting field and those that arise during demagnetization.

It is this modification that prevents the dashed lines in Fig. 3 from approaching the ground

state (n1 → 1) as βeff becomes large. Instead, the extended model predicts a residue of

type 2 vertices which tends to exactly one-third as βeff increases, which our samples do not

display. As the concept of initial (background) and final (defect) states has no meaning in

thermal equilibrium we do not require this background of additional type 2 vertices.

Second, the vertex energies were calculated by Nisoli et al. by summing the Coulomb

interactions of the four charges at the vertex, giving the ratio E2/E3 = 0.453,12 whereas

in our point dipole calculation, E2/E3 = 0.692. Here, we used our previously described

point dipole model,16 which we found was required to obtain a good match between our

experimental data and the model used to describe them that is evident in Fig. 3. Aside
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FIG. 4. (color online) The percentage departures of the energies Ei given by a calculation based

on finite-sized magnetic bodies from the point dipole model, which are remarkably small even at

small lattice constant a. E1 and E3 are not shown as they are defined to be 0 and 1.

from the fact that the data in Fig. 3 are well described by it, the use of this model, which

might näıvely be expected to perform poorly for dense (strongly interacting) lattices, can

be further justified.

We have used the model of Phatak et al.44 to calculate exact values for the vertex ener-

gies in square ice for rectangular prism-shaped islands of our dimensions using the general

framework proposed by De Graef and Beleggia for calculating the interactions of finite mag-

netic bodies.45 The results of these calculations show that whilst the absolute energies for

realistically shaped islands diverge from the point dipole approximation as a decreases, by

as much as approximately a factor of two for shortest a, the ratios of these energies—on

which our calculations here depend—are very closely reproduced by this model: to within

better than 5 per cent, as shown in Fig. 4.46 Whilst a marginally more accurate description

of the system is possible using these exact energy calculations, the convenience of using the

point dipole values for Ei is that they are a-invariant. Thus, all our data can be represented

with a single model, at little expense to the energy approximation.

On the basis of Eq. 2, this energy ratio can be determined experimentally from the

observed vertex populations as the ratio of ln(4n1/2n2) to ln(8n1/2n3). Figure 5 shows the

relevant population data for all our as-grown samples, which again show good agreement

with the prediction of the point dipole model (which is shown as a solid line), further

justifying this choice. The slope returned by a proportional fit is 0.64 ± 0.02, suggesting

that in reality there are some small departures from the energy levels predicted by this

model. This difference can be accounted for partly by noting that the exact finite-body
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FIG. 5. (color online) The ratio of vertex energies E2/E3 can be determined experimentally as the

slope of this plot. The data for our as-grown thermalized samples (circles) are well-described by

the the point dipole model (solid line). The data from some rotating field demagnetized samples

(triangles), which cluster at βeffE3 ≈ 2.2, sit between the predictions of the point dipole and

four-charge approximation of Nisoli et al. (dashed line). Note that this line has an intercept of

ln(4n1/2n2) = ln(4/5), rather than passing through the origin, for consistency with the way that

the model of Ref. 12 treats background vertices.

energy for E2 is slightly less than that predicted by the point dipole model for most values

of a (as seen in Fig. 4). The discrepancy can also be partly explained by considering

that the magnetization of the real islands will depart slightly from the perfectly uniform

state assumed in the calculations of Ref. 44, as has been shown to be the case by Lorentz

microscopy studies,27 which slightly relaxes the energy of type 2 vertex configurations.

It is striking that when the equivalent plot47 was made in Ref. 12 for rotating field

samples, a slope of 0.441 was obtained, implying that the four-charge model (not consistent

with the mean field approach) better represents the energetics under those circumstances.

We reproduce that calculation as a dashed line in Fig. 5, which clearly does not describe

our data. It is interesting to consider the statistics of our field-demagnetized samples in

this light: we plot the (rather closely clustered) points for three such samples as triangles in

Fig. 5. Whilst they are too few to be conclusive, the data points lie between the predictions

of the point dipole model and four-charge model. A fitted line (in this case using an intercept

of ln(4/5) due to the additional degeneracy of the background vertex type) returns a gradient

of E2/E3 = 0.58± 0.03.
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To conclude, we have confirmed that our close-to-ground state samples16 have truly cap-

tured a thermally equilibrated state that can be described simply within the canonical en-

semble, and that the degree of magnetic disorder, as captured by the effective temperature,

may be controlled during the growth process, allowing for acquisition of strong GS order

over a large parameter range. We have obtained states with effective temperatures that span

a wide range, reaching a factor of two lower than those obtained using the athermal rotating

field protocol.12 Moreover, such athermally-prepared states require a theoretical description

that requires the simple canonical ensemble picture to be modified quite drastically. They

do not therefore correspond to an arrested snapshot of any thermally equilibrated state, as

might be expected since the rotating field samples only ever make downward transitions in

the energy landscape during the preparation of their microstate. These statistical differences

in vertex-type population are experimentally detectable within the scheme of interpretation

that we discuss here: a sample thermalized at a real temperature T and then arrested will not

have the same statistics as a sample athermally prepared to have an effective temperature

Teff .
48 In both cases, the effective temperature may be an instructive means of parameter-

izing the ratio between the contrary effects of interaction strength and quenched disorder

in such systems. Pushing the limits of the nanofabrication of such magnetic arrays to give

small enough element volumes to allow the onset of thermal fluctuations will permit us to

explore the crossover between these regimes in a model system where the Hamiltonian is

specified by design.

Note added in Proof: Since submitting the final version of our manuscript, we have

become aware of related work on thermal routes to the ground state of square ice systems,49

where the island thickness dependence of the vertex populations, shown in the inset of Fig.

5 of that report, is in good accord with the data we show here in Fig. 3.
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