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We report on magneto-transport experiments investigating the effect of a regular array of
nanoscale holes on the anisotropic response in the transition temperature of a superconducting
niobium thin film. We find that the angle dependence of the critical temperature exhibits two
strong anisotropic effects: Little-Parks oscillations whose period varies with field direction and a
smooth background arising from one-dimensional confinement by the finite lateral space between
neighboring holes. The two components of the anisotropy are intrinsically linked and appear in
concert with one superimposed on top of the other.

PACS numbers: 74.78.-w, 74.81.Fa, 74.25.Op

When the dimensions of a material are reduced to a
characteristic length, new behavior emerges governed by
a new set of mechanisms due to confinement-induced
changes in the wave function of the charge carriers and
other fundamental quantities1–10. For example, the cir-
culation of Cooper pairs confined in a path with lat-
eral dimensions comparable to the superconducting co-
herence length ξ produces the Little-Parks effect1,8–13.
A superconducting strip narrower than its penetration
depth λ cannot sustain a complete flux exclusion, result-
ing in lower diamagnetic energy which then leads to a
higher critical field Hc

14,15. An example is the parallel
critical field Hc‖ of a superconducting thin film, whose

value is increased by a factor of 2
√
6λ/t over its bulk

value, where t is the film thickness14,15. Such confine-
ment effects can imbue an isotropic non-spherical three-
dimensional (3D) superconductor with anisotropic prop-
erties when its dimensions are reduced to the order of λ,
as evidently demonstrated by the well-known Tinkham
formula15 Hcθ cos θ/Hc⊥ + (Hcθ sin θ/Hc‖)

2 = 1 for the
angle dependent critical field Hcθ of a 2D superconduct-
ing film. Here, Hc⊥ is the critical field for the magnetic
field perpendicular to the film surface and θ is the angle
between the magnetic field and the normal to the film.

Superconducting films with arrays of nanoscale holes
have been explored widely to enhance vortex pin-
ning and hence the current carrying capability of
superconductors16–20. More broadly, these nano-
patterned superconducting films can also serve as model
systems to study emergent phenomena that appear across
many physical systems such as frustration and to explore
the dynamics of driven periodic elastic media through
an array of obstacles21–25. The two characteristic length
scales in a superconductor, the coherence length, ξ, and
the penetration depth, λ, become highly temperature de-
pendent close to the zero-field critical temperature Tc0.
Tuning the distances between neighboring holes in a su-

FIG. 1. (Color online) SEM micrograph of Sample A. The
inset shows definitions of the magnetic field direction θ, film
thickness t, and lattice constant D of the hole-array.

perconducting film with a nano-patterned hole-array so
that they are comparable to ξ or λ, creates a unique plat-
form for exploring confinement-induced phenomena.

Here we present the first report on the anisotropy of
the critical temperature Tc of a superconducting niobium
film with a triangular hole lattice. We find a remark-
ably strong Tc(θ) anisotropy with magnetic field orienta-
tion, θ, that can be divided into two components: strong
Little-Parks oscillations arising from the confinement of
the Cooper pairs and a smooth background anisotropy
that arises from incomplete flux exclusion in the regions
between neighboring holes. Since the Little-Parks effect
and the background anisotropy in Tc(θ) reveal that the
lateral extent of superconducting sections between neigh-
boring holes is quasi one-dimensional (1D), our results
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TABLE I. Parameters of the patterned Nb films

Sample
D d t Tc0 ξ(0) α⊥ α⊥ T ∗

(nm) (nm) (nm) (K) (nm) -Cal. -Exp. (K)

A 150 50 60 5.961 8.6 0.6 0.587 5.81

B 300 50 60 6.949 9.5 0.24 0.325 6.91

demonstrate that the hole-array can transform the char-
acteristic of the film from 2D to 1D. This finding not only
demonstrates a new paradigm of confinement-induced di-
mensionality change but it also directly impacts our pre-
vious understanding of phenomena reported in supercon-
ducting films with hole-arrays. For example, in experi-
ments using hole-arrays as vortex pinning centers, one
assumes that the dimensionality of the film is not af-
fected by the hole-array, even though the transport mea-
surements are conducted at temperatures near Tc0

26–28.
Our results may also shed light on the properties of other
types of perforate structures where the confining hole ge-
ometry makes the width of the sections between neigh-
boring holes comparable to the characteristic length scale
of the investigated phenomena29–34.

Niobium films (60 nm thick) with contacts for four-
probe DC transport measurements were deposited onto
silicon substrates with 200 nm thick oxide layers via DC
magnetron sputtering. A triangular array of holes with
diameter d ≈ 50 nm was fabricated into the Nb film
with focused-ion-beam (FIB) milling35. Two samples
with hole-hole distances D = 150 nm (Sample A) and
300 nm (Sample B) were investigated using a constant
current mode. A continuous film was also measured as a
reference. Figure 1 shows a scanning electron microscopy
(SEM) image of Sample A. The inset shows a schematic
of the magnetic field and applied current geometry. The
sample was placed on a stepper-controlled rotator with
an angular resolution of 0.05◦. The critical temperature
Tc, was obtained from measurements of the temperature
dependence of the resistance at fixed magnetic fields and
field angles, using a criterion of 0.5RN where RN is the
normal state resistance. Additional parameters for Sam-
ples A and B are presented in Table I.

The two panels in Fig.2 show Tc(θ) curves at various
fixed magnetic fields for Samples A and B and represent
the central experimental results of this study. Unlike the
monotonic increase of that expected for a 2D continuous
film as the magnetic field is away from the perpendicu-
lar orientation with respect to the film, the Tc(θ) of the
patterned films show two dominant features: an oscilla-
tion with decreasing period in angle superimposed on a
smooth increasing background. A quantitative compari-
son of Sample A and the reference film presented in the
inset of Fig.2b for Tc(θ) curves obtained at 900 G shows
that the Tc(θ) of the patterned film increases at a signif-
icantly slower rate when the field orientation approaches
the parallel direction (θ = 90◦). This clearly shows that

FIG. 2. (Color online) Tc(θ) obtained at various fixed mag-
netic fields for Sample A (upper panel) and Sample B (lower
panel). The curves are measured values and the symbols are
calculated based on an analysis procedure described in the
text. For clarification we showed only the calculated data at
900 G for Sample B. Inset (a) presents Tc(θ) at 1 T for Sample
A, demonstrating the failure of the scaling at low T (< T ∗).
Inset (b) shows comparisons of Tc(θ) data from Sample B and
the reference film measured at H = 900 G.

the superconducting transition temperature anisotropy
has been dramatically altered by the hole-array. Com-
parison of Samples A and B in Fig.2 also shows that
the periodicity in Tc(θ) changes with hole-hole separation
distance. We show below that these oscillations in tilted
fields arise from Little-Parks fluxoid quantization by the
hole-array and that the smooth background arises from
1D flux confinement in the sections between the holes.
Both features are quantitatively described on their en-
tirety by experimentally determined scaling laws.

In a regular square superconducting wire network
where the width of the sections between neighboring
square holes is of the order of the superconducting coher-
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ence length, fluxoid quantization in perpendicular fields
causes Little-Parks oscillations to appear in the field de-
pendence of the critical temperature Tc(H)9. Here, the
kinetic energy of strong shielding currents required to
maintain fluxoid quantization in the holes lowers the
superconducting condensation energy and depresses the
critical temperature. The period of the oscillation re-
flects the applied field required to add an additional
flux quantum into each hole in the array, as described
by Pannetier et. al.9. The Tc(H⊥) phase diagram for
perpendicular fields in Fig.3a for Sample A show sim-
ilar oscillations with a period in field of 1070 ± 50 G,
consistent with the calculated value of H1⊥ = 1062 G
at which each hole traps a single flux quantum. Fur-
thermore, the oscillatory component ∆Tc(H⊥) in the
Tc(H⊥) curve generally follows a smooth upper-bound
background curve (green solid line in Fig.3a), similar
to that observed in a superconducting aluminum wire
network9, suggestive of the Little-Parks effect. The
smooth background curve in Tc(H⊥) without the Little-
Parks oscillations follows a parabolic relationship9,36 and
can be derived by scaling Tc(H‖) at θ = 90◦ where in this
geometry, the applied field has no perpendicular compo-
nent to induce additional Tc suppression37. As shown
in Fig.3a, the Tc(H‖) curve indeed forms a nearly per-
fect upper-bound for Tc(H⊥) curve after multiplying H‖

with a scaling factor of α⊥ = 0.587. By numerically
subtracting this upper-bound parabolic background from
the experimental Tc(H⊥) curve, we can obtain the Little-
Parks effect induced oscillatory Tc suppression ∆Tc(H⊥)
which is shown in the inset of Fig.3a. The maximum
∆Tc(H⊥) ≈ −28 mK is very close to the theoretical value
∆Tc = −0.18ξ0lTc0/R

2 = −26 mK for a thin Nb ring of
radius R = 75 nm in the dirty limit15, where ξ0 = 38 nm
and l = 3.6 nm were chosen for the calculation16. The
decay in the amplitude of ∆Tc(H⊥) with increasing mag-
netic field may originate from the slight imperfections in
the arrangement of the holes in the triangular lattice38

and/or the finite width of the circulating supercurrent
path39,40.

As the field is tilted away from the film normal, the
oscillation period in Tc(H) continuously increases, as
demonstrated by the data in Fig.3b. Quantitatively, it
follows the relationship H1θ = H1⊥/ cos θ, as illustrated
by the solid line in the inset of Fig.3b where H1⊥ is the
oscillation period in perpendicular orietation. This angu-
lar dependence implies that the oscillations in tilted mag-
netic fields respond only to the perpendicular component
of the applied field. Such a behavior is a consequence of
the thin film geometry of the hole-array where the shield-
ing currents are prohibited from having a perpendicular
component. Consequently, a field H applied at angle of θ
will cause the same ∆Tc as a field ofH cos θ applied at 0◦.
That is, ∆Tc(θ) at any angle θ at a fixed magnetic field H
can be the derived from ∆Tc(H⊥) by converting H⊥ to θ
through a relationship θ = arccos(H⊥/H). The data for
∆Tc(θ) at H = 2500 G are presented in Fig.4a (red open
circles) as an example. It is evident that the oscillation

FIG. 3. (Color online) (a) Tc(H) data of Sample A for θ = 0◦

(open circles) and 90◦ (solid squares). The open squares delin-
eates a upper-bound for the Tc(H⊥) curve and was obtained
by multiplying the H‖ values with a scaling factor of 0.587.
The green line represents the 1D fit to this upper-bound back-
ground data. Inset shows ∆Tc(H⊥) by subtracting the green
line from the experimental Tc(H⊥) curve. (b) Tc(H) data for
θ = 0◦, 30◦, 45◦, 60◦, 75◦, and 90◦ for Sample A. The inset
shows the angular dependence of the oscillation period H1.

of the calculated ∆Tc(θ) is consistent with that of the
measured Tc(θ) at the same field. That is, the oscillation
in Tc(θ) comes from that in Tc(H⊥).

Following the procedure to derive the upper-bound
background curve in the Tc(H⊥) (Fig.3a), we obtained
an angle dependent scaling factor which is plotted in the
inset to Fig.4b for both Samples A and B. Since the scal-
ing factor αθ is in fact the ratio of the critical field at
θ (Hcθ) and that at 90◦ (Hc‖) of the film in the ab-
sence of the influence of the holes, we first attempted
to understand this anisotropy with Tinkhams 2D thin
film formula15 which now can be rewritten in terms of
the scaling factor α as: αθ cos θ/α⊥ + [αθ sin θ/α‖]

2 = 1
with αθ = Hcθ/Hc‖, α⊥ = Hc⊥/Hc‖, and α‖ = 1. This
derived αθ should have a cusp at θ = 90◦, in contrast
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to the rounded behavior at θ = 90◦ shown in the ex-
perimental data in the inset of Fig.4b. Hence with this
formula, we see a significant deviation from our Sam-
ple A data as indicated by the red dashed line (inset of
Fig.4b), demonstrating that the anisotropy of our pat-
terned film differs from that of a continuous film even
without the consideration of the oscillations. Instead,
the background anisotropy follows that of a 1D strip35,
Hcθ = Hc⊥(cos

2 θ + γ−2 sin2 θ)−1/2 with γ = Hc‖/Hc⊥.
Rewriting this dependence in terms of the scaling factor
α yields αθ = α⊥(cos

2 θ + α2
⊥ sin2 θ)−1/2 which fits the

observed scaling factors very well. This implies that a
patterned superconducting film displays the critical field
anisotropy of a 1D strip if the contribution from the
Little-Parks effect is excluded. The quality of the fit from
the scaling analysis for all fields, temperatures and an-
gles is shown in the main panel of Fig.4b where the data
are plotted as H/α vs Tc. It shows that the experimental
curve at θ = 90◦, when properly scaled for 1D confine-
ment, universally accounts the backgrounds for all data
at all angles.

The 1D confinement is understandable in terms of the
transverse dimensions of the narrowest sections between
neighboring holes. These sections are confined in both
thickness t and width w ≈ D − d, similar to that in a
1D strip, although the width varies slightly due to the
configuration of the circular hole. As discussed in the in-
troduction, the critical field of a superconductor can be
size-dependent if its dimensions are smaller than λ(T ).
Since ξ(T ) < λ(T ) in Nb, ξ(T ) is the characteristic length
to define the confinement. In our experimental tempera-
ture range both w and t are comparable to the coherence
length ξ(T ) as indicated by the temperatures T ∗ (given
in Table I) above which both w and t are less than the
1D criterion of 1.84ξ(T )39. This leads to the calculated
α⊥(= Hc⊥/Hc‖ = t/w) to be consistent with the exper-
imental values. The dependence of the 1D confinement
on the hole configuration is also confirmed by comparing
Samples A and B, where the hole separation (and there-
fore the confinement length) differs by approximately a
factor of two.

The 1D scaling of the background anisotropy in Tc(H)
allows us to calculate the background curves in Tc(θ)

41.
As an example, the solid line in Fig.4a presents the de-
rived background curve for Tc(θ) obtained at H = 2500
G. Adding this 1D anisotropy background to the oscilla-
tory component ∆Tc(θ) (red open circles) gives the sum
(blue open circles). The same procedure was used to pro-
duce the comparison of the calculated and experimental
full phase boundary curves for Samples A and B as a
function of angle shown in Fig.2. A remarkably good fit
is obtained using the combination of the 1D anisotropy
and the Little-Parks oscillation governed by the perpen-
dicular magnetic field.

In conclusion, the superconducting phase boundary
of a superconducting thin film with a triangular array
of holes in the presence of a magnetic field displays
strong anisotropy consisting of two parts: an oscillatory

FIG. 4. (Color online) (a) Angle dependence of Tc(θ) and
∆Tc(θ) obtained in a magnetic field of 2500 G: the red cir-
cles represent ∆Tc(θ) derived from ∆Tc(H⊥) by converting
H⊥ to θ through a relation θ = arccos(H⊥/H); the blue
curve represents the calculated Tc(θ) curve without the hole-
contribution; the blue circles are the sum of the red circles and
the blue curve while the open purple squares are the experi-
mentally measured values. (b) Scaling behavior of the Tc(H)
data in Fig.3b (the same symbols). Inset shows the angular
dependence of the scaling factor and fits with formulas for
thin film (dashed line) and 1D strip (solid lines).

Little-Parks depression of the critical temperature and
a smooth background. Quantitative analysis shows that
the Little-Parks oscillations respond only to the perpen-
dicular component of the magnetic field, reflecting the in-
plane nature of supercurrent circulating the holes. The
smooth background differs from the expected 2D con-
finement expressed by the Tinkham thin film formula.
Instead, it arises from 1D confinement of the supercon-
ductor to the lateral regions between neighboring holes
and is fully determined by the hole configuration. The
smooth background can be obtained from the experimen-
tal parallel field phase boundary using a scaling factor
whose anisotropy follows the 1D confinement form.
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