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Reading, writing and squeezing the entangled states of two nanomechanical resonators

coupled to a SQUID

Guy Z. Cohen∗ and Massimiliano Di Ventra†

Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

We study a system of two nanomechanical resonators embedded in a dc SQUID. We show that
the inductively-coupled resonators can be treated as two entangled quantum memory elements with
states that can be read from, or written on by employing the SQUID as a displacement detector or
switching additional external magnetic fields, respectively. We present a scheme to squeeze the even
mode of the state of the resonators and consequently reduce the noise in the measurement of the
magnetic flux threading the SQUID. We finally analyze the effect of dissipation on the squeezing
using the quantum master equation, and show the qualitatively different behavior for the weak and
strong damping regimes. Our predictions can be tested using current experimental capabilities.

I. INTRODUCTION

In recent years nanoelectromechanical systems1,2

(NEMs), nanoscale mechanical oscillators coupled to
electronic devices of comparable dimensions, have at-
tracted substantial research effort. A major motivation
for this effort is the ability to observe quantum behav-
ior in a macroscopic system under realizable experimen-
tal conditions3,4. Indeed, NEMs today can be fabri-
cated with vibrational mode frequencies of 1 MHz-10
GHz and quality factors in the range of 103 − 105, al-
lowing the quantum regime to be reached at milli-Kelvin
temperatures for high frequency oscillators5,6. Possible
quantum effects in NEMs under such conditions include
quantized energy levels, superposition of states, entan-
glement and squeezing7–9. In addition, NEMs are ap-
plied to high-sensitive detection of mass10–12, force13

and displacement14, electrometers15, and also to classical
memory elements16,17.

Observing or changing the state of NEMs requires
some type of transducer which couples to them. Op-
tical coupling18 can be performed, e.g., by a microwave
cavity19, but is difficult to integrate in circuits and suffers
from the diffraction limit and heating of the NEMS. Non-
optical coupling methods are therefore more common in
experiments today. With magnetomotive coupling20, the
magnetic force on a thin metallic layer on the NEMS
is measured. Capacitive coupling can take many forms,
one of which uses a normal or superconducting single
electron transistor (SET)8,21. The NEMS changes the
island charging energy in the SET and hence the tunnel-
ing rates, which can be read electronically. Other forms
of capacitive coupling use Cooper pair boxes22,23, flux
qubits24, quantum point contacts25 and quantum dots26.

An inductive coupling scheme with a potential for
displacement precision greater than the standard quan-
tum limit is obtained by integrating a doubly clamped
micron-scale beam within a superconducting quantum in-
terference device (SQUID). In a dc SQUID the motion
of the resonator changes the area of the SQUID loop
and hence the magnetic flux and the current through it,
which is then measured. This system was only recently
implemented27,28. A more sophisticated design, where

the dc SQUID, and hence the resonator, is coupled to a
charge qubit, was also proposed9. For an rf SQUID it
was found29 that the change in the magnetic flux due to
the motion of the beam affects the visibility of Rabi os-
cillations in the SQUID levels. The detection of discrete
Fock states in a resonator integrated with an rf SQUID
was suggested in another work30.

Squeezed states, originally introduced in quantum
optics31, are defined as minimum-uncertainty states with
less noise in one field quadrature than a coherent state32.
Several methods to generate squeezing in NEMs were
suggested. Coupling to a charge qubit7,9 as means of gen-
erating squeezing was proposed, while another work de-
scribed squeezing by periodic position measurement with
a weakly-coupled detector8. Squeezing in nanoresonators
can be applied to decrease the noise in force or dis-
placement measurements to below the standard quantum
limit, greatly improving the sensitivity of the device7,33.

In this work, we present a scheme to create quantum
entanglement and squeezing in two nanoresonators in-
tegrated in a dc SQUID. A previous study34 analyzed
a similar system but introduced many approximations
that are difficult to implement experimentally, whereas
our present study is closer to an experimentally realizable
system. For instance, we do not overlook the generally
non-negligible self-inductance of the SQUID as done in
previous work34, and we assume mega-Hertz frequency
nanomechanical oscillators rather than giga-Hertz fre-
quency resonators, which are difficult to integrate with a
SQUID. Lastly, we do not require the SQUID to be pre-
pared in a high-|α| coherent state in order to have squeez-
ing, as the previous study does34, and require instead a
thermal equilibrium state, which is easier to accomplish.
Finally, we consider different aspects of the system and
draw conclusions, e.g., on the reading and writing pro-
cesses, that were not advanced in previous literature.

The paper is organized as follows. In Sec. II we present
the system model and its classical Lagrangian and Hamil-
tonian formulations. We then proceed to quantize the
Hamiltonian for the non-dissipative case and derive the
effective Hamiltonian. Next, in Sec. III we treat the
system as a quantum memory and explain how one can
read its quantum state or write on it. In Sec. IV we
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FIG. 1. Schematic of the device we study: Two nanomechan-
ical beams oscillating in plane are embedded in a dc SQUID
with area A when beams are at rest. Uniform magnetic field
B threads the SQUID, and bias current Ib is assumed. The
two identical Josephson junctions on the SQUID have phase
drops γi (i = 1, 2). The currents I3 and I4 create additional
magnetic fields B1 and B2 at the resonators.

put forward a scheme for generating quadrature-squeezed
states of the nanomechanical beams when dissipation is
neglected, whereas in Sec. V we use a quantum master
equation approach to test the range of validity of our re-
sults in the the presence of dissipation. Lastly, we discuss
our results and present the conclusions in Sec. VI.

II. SYSTEM MODEL AND HAMILTONIAN

Our system consists of a dc SQUID, shown schemat-
ically in Fig. 1, in which each arm includes a Joseph-
son junction and an integrated doubly clamped beam of
length li and mass mi that can oscillate mechanically in
the plane of the SQUID with an angular frequency ω̃i

(i = 1, 2). The notation we use is similar to the one
in Ref. 35. A uniform magnetic field B is applied per-
pendicularly to the plane of the loop, and a dc bias cur-
rent Ib flows through it after splitting to I1 and I2 in
the lower and upper arms, respectively. Two current-
carrying wires with currents I3 and I4 create additional
magnetic fields B1 and B2 at the positions of the first
and second beams, respectively. The beam amplitudes
are much smaller than the beam-wire distance, allowing
these fields to be approximated as being spatially uni-
form. For simplicity, the two Josephson junctions on the
SQUID arms are taken to be identical and their gauge-
invariant phase changes are denoted by γi. The critical
current and shunting capacitance of each junction are
taken as Ic and C, respectively, and are used to define the
characteristic junction energy scales: the Josephson en-
ergy EJ = h̄Ic/2e and the charging energy EC = e2/2C.
The plasma frequency ωpl =

√
2EJEC/h̄ sets the typical

time scale for the SQUID dynamics.
The area of the SQUID loop depends on the center

of mass positions of the nanomechanical resonators, de-
noted by xi and defined as zero when the beam is at rest,
and positive when it is inside the loop. Since the su-
perconducting order parameter is single valued, we must

have

γ1 − γ2 − 2πΦ
Φ0

= 2πp, (1)

Φ = BA−∑
i

(B +Bi)lixi + L(I1 − I2)/2, (2)

where p is an integer, Φ is the total magnetic flux thread-
ing the loop, A is the loop area when the beams are
at rest, Φ0 = h/2e is the flux quantum, L is the self-
inductance of the loop, and Ii is the current in its ith
arm. The first term in Eq. (2) comes from the exter-
nal magnetic field and the second, responsible for the
coupling of the mechanical and magnetic degrees of free-
dom, from the oscillation of the beams. The difference
between lixi and the actual area enclosed by the ith beam
is negligible, being of third order in the ratio of the beam
amplitude to its length. Lastly, the third term originates
from the magnetic flux induced by the circulating current
in the SQUID.
The kinetic and potential energies of the system are

functions of four dimensionless variables defined by γ =
(γ1 + γ2)/2, φ = Φ/Φ0 and ξi = (B + Bi)lixi/Φ0. They
are

T =
∑
i

( h̄2

4EC

1
Ω2

i

1
A2

i

ξ̇2i ) +
h̄2

2EC
γ̇2 + π2h̄2

2EC
φ̇2, (3)

U = EJ [−2 cosγ cos(πφ) − Ib
Ic
γ +

∑
i

((−1)iπ Ib
Ic
ξi +

ξ2i
2A2

i

)

+ 2π
βL

(φ − ξ1 − ξ2 − φe)
2], (4)

where mechanical dissipation was assumed to be neg-
ligible, and where we define the screening parameter
βL = 2LIc/Φ0 and external flux φe = BA for the SQUID,
while the dimensionless magnetic field

Ai =

√
EJ

mi

(B +Bi)li
ω̃iΦ0

(5)

and oscillation frequencies Ωi = ω̃i/ωpl are defined for
each of the beams. The first term in Eq. (3) corresponds
to the kinetic energy of the beams, while the second and
third terms to the capacitive energy of the junctions. The
first term in Eq. (4) relates to the Josephson junctions
energy, while the second term is the washboard poten-
tial term36. The third term corresponds to the Lorentz
force on the beams in the classical equations of motion
(EOMs), and the fourth term to the beams’ elastic poten-
tial, taken to be harmonic, as nonlinear terms are neg-
ligible at the amplitudes concerned37. Lastly, the fifth
term corresponds to the inductive energy of the SQUID.
The classical EOMs for the four variables γ, φ, ξ1 and

ξ2 are the Euler-Lagrange equations for the system La-
grangian L = T − U . Before writing the Hamilto-
nian, we expand the potential in series about a minimum
(φ, γ, ξ1, ξ2), around which the system oscillates. Under
current experimental conditions27,28 such a minimum ex-
ists, as the Hessian matrix for U there, proportional to
the one in Eq. 8, is positive definite. The well con-
taining the minimum can accommodate ∼ 20 states in
γ and ∼ 900 in φ. If we take these two parameters to
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be “frozen” at their respective ground states, as we will
later assume, we find the well to be infinitely deep for the
ξi parameters. This assumption also allows us to neglect
in the series expansion of U terms higher than quadratic
ones in φ − φ and γ − γ. With these approximations in
mind the Hamiltonian H reads

H = T + U =
∑

i

EC

2h̄2
p2i +

∑

i,j

EJVijqiqj , (6)

where the coordinates qi are given by

q1 = γ−γ, q2 = π(φ−φ), q2+j =
1√

2ΩjAj

(ξj−ξj) (7)

(j = 1, 2), and the canonically conjugate momenta pi are
pi = (h̄2/EC)q̇i. In addition,

V =




r −s 0 0

−s r + 2
πβL

− 2
√
2Ω1A1

βL
− 2

√
2Ω2A2

βL

0 − 2
√
2Ω1A1

βL
Ω2

1(1 +
4πA2

1

βL
) 4πΩ1A1Ω2A2

βL

0 − 2
√
2Ω2A2

βL

4πΩ1A1Ω2A2

βL
Ω2

2(1 +
4πA2

2

βL
)



,

(8)
where r = cos γ cos

(
πφ

)
and s = sin γ sin

(
πφ

)
were in-

troduced. We see that the beam oscillations are coupled
inductively via the V34 term. This coupling can be used
to generate squeezed states in the beams as we will show
below.
The Hamiltonian is quantized in the standard way by

converting the coordinates qi and their canonically conju-
gate momenta pi to operators and postulating the canon-
ical commutation relation [q̂i, p̂j ] = ih̄δij . In terms of
creation and annihilation operators q̂i and p̂i are

q̂i =
1
2 (

2EC

EJVii
)1/4(a†i + ai), (9)

p̂i = ih̄(EJVii

2EC
)1/4(a†i − ai), (10)

and the quantized Hamiltonian is given by

H =
∑
i

h̄ωi(a
†
iai +

1
2 )

+ 1
4 h̄ωpl

∑
i6=j

ωpl√
ωiωj

Vij(ai + a†i )(aj + a†j), (11)

where ωi = ωpl

√
Vii. We note the frequencies ω3 and

ω4 are the same as the resonators frequencies, ω̃1 and
ω̃2, apart from each having a factor due to the magnetic
field at the resonator. Thus we see that the Lagrangian
classical memory variables ξ1 and ξ2, in complete analogy

with memory variables in electronic circuits38, become
memory quanta in the Hamiltonian.
Taking the same experimental conditions27,28 and tun-

ing B to make r of order unity results in h̄ω1 ≫ kBT
and h̄ω2 ≫ kBT . Consequently, the first and second har-
monic oscillators are “frozen” at their respective ground
states. Moreover, since ω1, ω2 ≫ ω3, ω4, exciting the
nanomechanical oscillators will not budge them from
their ground state. Removing constant terms, we are
then left with the effective Hamiltonian

H = h̄ω3a
†
3a3 + h̄ω4a

†
4a4 + Ṽ (a3 + a†3)(a4 + a†4), (12)

where the interaction coefficient reads

Ṽ =
2πh̄

√
ω̃1ω̃2A1A2

βL(1 +
4πA2

1

βL
)1/4(1 +

4πA2

2

βL
)1/4

. (13)

III. READING AND WRITING QUANTUM

INFORMATION

We now wish to employ this system to create entan-
gled nanomechanical quantum memory that can be read
from and written on. We assume the beams are cooled
to a temperature low enough so as to reduce the equi-
librium state to the ground state for each of the beams.
This is possible today, e.g. by coupling to a supercon-
ducting microwave resonator39, even if the environment
of the beams, which includes the SQUID, has a higher
temperature.
If the interaction term in Eq. (12) is small relative

to the other two terms, perturbation theory gives first-

order energy corrections in Ṽ only when |ω3−ω4| ≪ Ṽ /h̄.
Thus, we will henceforth assume the beams are identical.
The Hamiltonian (12) is quadratic in the ladder oper-
ators and is thus amenable to an exact solution at all
interaction strengths40. This solution is found by mov-
ing to the differential representation and then diagonal-
izing the quadratic form of the potential by a canonical
transformation to even and odd coordinates,

xe,o =
1√
2
(x1 ± x2), pe,o =

1√
2
(p1 ± p2), (14)

where xi and pi are the position and momentum coordi-
nates of the ith beam.
Applying Eq. (14) on the ladder operators, we find

a5 =
1

2
√
2

[
(

√
ω5

ω3
+

√
ω3

ω5
)(a3 + a4) + (

√
ω5

ω3
−
√
ω3

ω5
)(a†3 + a†4)

]
, (15)

a6 =
1

2
√
2

[
(

√
ω6

ω3
+

√
ω3

ω6
)(a3 − a4) + (

√
ω6

ω3
−
√
ω3

ω6
)(a†3 − a†4)

]
, (16)
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where a†5 corresponds to creation of an even mode quan-

tum in which both beams oscillate in phase, and a†6 to
creation of an odd mode quantum, where the beams os-
cillate in anti-phase. The even and odd oscillation fre-
quencies are given by

ω5,6 =

√
ω2
3 ± 2Ṽ ω3/h̄. (17)

Using this transformation and omitting constant
terms, the Hamiltonian (12) is reduced to

H = h̄ω5a
†
5a5 + h̄ω6a

†
6a6. (18)

We see that the even mode is decoupled from the odd
mode in this Hamiltonian, which is thus separable to
an even and an odd part. The energy spectrum of this
Hamiltonian is given by

Enm = nh̄ω5 +mh̄ω6, (19)

while the eigenstates are

|nm〉 = 1√
n!m!

(a†5)
n(a†6)

m|00〉, (20)

which, upon substitution of Eqs. (15) and (16), are seen
to be highly entangled states of the two beams.
The quantum state of the system is read by measuring

the magnetic flux threading through the SQUID, which
is done by a current measurement in the standard way36.
The operator for this observable is

Φ̂ = −(B +B1)l1x1 − (B +B2)l2x2, (21)

where the constant term BA was omitted. With the
assumption of B1 = B2, we have

Φ̂ = −
√
2(B +B1)l1λ3(a5 + a†5), (22)

where the zero-point fluctuation, the resonator displace-
ment uncertainty at the ground state, is defined as
λi =

√
h̄/2m1ωi+2 with the definition extended also for

i = 3, 4.
We thus see, as expected, that the measurement of the

magnetic flux cannot detect the odd mode, since oscilla-
tions in this mode do not amount to a change in the area
of the SQUID loop. We therefore set to read and write
quantum information only in the n quantum number in
the state |nm〉. Moreover, we note that for the eigen-

states of the Hamiltonian we have 〈Φ̂〉 = 0, implying
that a better observable would be the standard devia-
tion 〈∆Φ̂〉. This is indeed true, with the values of this
observable on the eigenstates being

〈∆Φ̂〉 =
√
2(B +B1)l1λ3

√
1 + 2n, (23)

enabling us to measure the value of n.
Having established the reading process, we now set to

describe how to write quantum information on this sys-
tem. It would seem the best way to excite the system is

via a resonant ac current of frequency ω5 in the external
wires that, according to the Hamiltonian (18), will pump
the beams to their excited state. However, such a current
will also pump the beams to even higher excited states,
since the energy level difference is fixed in this system.
A better method would be to use constant currents in
the external wires. The addition to the potential (4) due
to such currents, keeping only first-order terms in B1/B
and B2/B, is

H1 =
πEJ l1
IcβLΦ0

{−B1x1[4Ic(φ− φe) + IbβL]

+B2x2[IbβL − 4Ic(φ− φe)]} (24)

where constant terms were omitted and only linear terms
in xi were kept, owing to the quadratic terms being
smaller by several orders of magnitude.
Since reading can be done only for the even mode,

and the Hamiltonian (18) is separable into odd and even
components, we do not consider the odd part in Eq. (24),
and by choosing also B1 = B2, the even part of Eq. (24)
is

H1,e = −4
√
2π
EJ l1λ3(φ− φe)

βLΦ0
B1(a5 + a†5)

≡ f(B1)(a5 + a†5), (25)

where constant terms were again omitted. The even part
of the total Hamiltonian H +H1 is therefore

He = h̄ω5a
†
5a5 + f(B1)(a5 + a†5). (26)

The idea of writing is then the following: We create
a constant magnetic field B1, which shifts the harmonic
potential and then let the system relax to its new ground
state. We then suddenly revert B1 to zero thereby ob-
taining an excited state of the original system. The
Hamiltonian in the differential representation is

He = − h̄2

2m1

d2

dx2
+

1

2
m1ω

2
5x

2 + λ−1
3 f(B1)x, (27)

where the mass m1 is the beam mass. Apart from a
constant, the Hamiltonian (27) is

He = − h̄2

2m1

d2

dx2
+

1

2
m1ω

2
5(x+∆x)2, (28)

∆x =
f(B1)

m1λ3ω2
5

. (29)

According to the scheme described above, we wish to
maximize the probability Pnn = |〈ψ0(x + ∆x)|ψn(x)〉|2,
with ψn(x) being the nth harmonic oscillator wavefunc-
tion, to obtain the desired state |n〉 by tuning B1 and
with it ∆x. Using standard results of the quantum har-
monic oscillator to write the integral 〈ψ0(x+∆x)|ψn(x)〉
and then using the generating function of the Hermite
polynomials to find its value for every n, we find the
maximum value of Pnn is reached when ∆x = 2

√
nλ3
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FIG. 2. Graph of the maximum probability of the ground
state of the shifted harmonic potential having a |n〉 com-
ponent in the unshifted potential. We have P00 = 1 and
P11 = e−1. The values for non-integer n were interpolated by
n! = Γ(n+ 1).

with the probability then to measure k phonons after B1

is removed given by

Pkn = (k!)−1e−nnk, (30)

which is a Poisson distribution with mean n. The Pnn

function is plotted in Fig. 2. We see that the probability
drops sharply for small n and evens out for larger values.
The limit at n → ∞ is 0. Although the writing process
does not create a pure number state |n〉, the standard
deviation in the number of phonons, by the properties of
the Poisson distribution, is

√
n, which is reasonably low.

IV. SQUEEZED STATES

Having shown how to read and write quantum infor-
mation in this system, we now wish to demonstrate the
possibility of creating squeezed states. In an effort to
mimic the Hamiltonian of a degenerate parametric am-
plifier from quantum optics32, we set the external wires
magnetic fields to oscillate at double the frequency of the
even mode, namely,

B1 = B1,0e
2i〈ω5〉t + c.c,

B2 = B2,0e
2i〈ω5〉t + c.c, (31)

where 〈ω5〉 denotes the time average of ω5, and the oscil-
lations of ω5 about this average are small since Bi ≪ B.
The non-interacting Hamiltonian is found from Eq.

(18) to be

H0 = h̄〈ω5〉a†5a5 + h̄〈ω6〉a†6a6. (32)

Keeping only terms to first order in Bi/B, the addition
to the potential (4) due to the oscillating magnetic field
in the rotating wave approximation (RWA), valid here
due to the weak damping, is

H1 =
4πEJ l

2
1B

Φ2
0βL

{(B1 +B2)x1x2 +B1x
2
1 +B2x

2
2}. (33)

We write this addition in terms of ladder operators,
take B1,0 = B2,0 to be pure imaginary and eliminate con-
stant terms to find the interaction picture Hamiltonian
in the RWA to be

HI =
8πi〈λ3〉2EJ l

2

1
B|B1,0|

Φ2

0
βL

{a25 − (a†5)
2}, (34)

which is the squeezing Hamiltonian. In writing Eq. (34)

we neglected the time-dependent term (ω5−〈ω5〉)a†5a5 +
(ω6 − 〈ω6〉)a†6a6, since it is negligible relative to the
squeezing term under the assumed experimental condi-
tions. It is interesting to note that squeezing of the odd
mode is not possible using this scheme, even if ω5 is re-
placed with ω6 in Eq. (31). The fundamental reason for
this is Lenz law, which makes the coefficient of x1x2 in
Eq. (33) positive and thus excludes terms proportional to
a26 in Eq. (34). The coefficient is positive because moving
both beams in the positive direction costs energy, since
both movements decrease the magnetic flux.
We now consider the effect of squeezing in this system

and devise means to observe it. We assume dissipation is
weak, and both beams are initially in the ground state.
Conforming to standard notation, the squeezing param-
eter is

g =
16π〈λ3〉2EJ l

2
1B|B1,0|t

h̄Φ2
0βL

, (35)

which is real, and the squeezing operator reads

S(g) = exp[g(a25 − (a†5)
2)/2]. (36)

The time evolution of the a5 operator in the interaction
picture is given by

S†(g)a5S(g) = a5 cosh g − a†5 sinh g. (37)

In the rotating frame the uncertainty in the positions
and momenta of the beams are

〈∆xi〉 = λ4(1 + tanh(g + ln(ω5/ω6)/2))
−1/2, (38)

〈∆pi〉 =
h̄

2
λ−1
4 (1− tanh(g + ln(ω5/ω6)/2))

−1/2, (39)

where Eqs. (7), (9), (15), (16) and (37) were used. We
see that we have limited squeezing to below the stan-
dard quantum limit in the positions and unlimited anti-
squeezing in the momenta, as the even mode is squeezed,
while the odd mode is not. The interaction modifies the
squeezing by adding the positive term of ln(ω5/ω6)/2 to
the squeezing parameter. In addition, with the product
of the uncertainties being

〈∆xi〉〈∆pi〉 =
h̄

2
cosh(g + ln(ω5/ω6)/2), (40)
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we see that due to the interaction the minimum uncer-
tainty is no longer attained before squeezing takes place.
It is interesting to write the wavefunction for the

beams in the differential representation in the presence
of squeezing. This wavefunction can be found by using
the relation between the two-photon coherent states and
the squeezed states32 to write for the squeezed state |g〉

(cosh ga5 + sinh ga†5)a6|g〉 = 0. (41)

After moving to the differential representation, Eq. (41)
is solved to find a wavefunction of the form

ψ(xe, xo) = C1e
−m1ω5

2h̄
e2gx2

ee−
m1ω6

2h̄
x2

o , (42)

with C1 being a normalizing constant. When we trans-
form this wavefunction to the beam coordinates via Eq.
(14) we find that the new wavefunction is in a jointly
Gaussian form, namely

ψ(x1, x2) = C1 exp(−
x2

1

σ2

1

+
x2

2

σ2

2

− 2rx1x2

σ1σ2

2(1− r2)
), (43)

where σ1 = σ2 =
√
2〈∆x1〉, with 〈∆x1〉 given by Eq.

(38), and the correlation coefficient given by

r = − tanh(g + ln(ω5/ω6)/2). (44)

We note that the factor of
√
2 in σi comes from

|ψ(x1, x2)|2, rather than ψ(x1, x2), being the probabil-
ity distribution. In addition, we see that, as before, the
beam interaction results in an addition to the squeezing
parameter, which gives negative correlation even at t = 0.
The correlation due to the squeezing is negative, because
the influence of the odd mode, which is not squeezed,
increases with time, producing perfect anti-correlation
when the squeezing parameter goes to infinity.
Lastly, we consider the effect of the squeezing on the

measurement of the magnetic flux in the SQUID. Using

Eq. (22), we find the standard deviation of Φ̂ in the
rotating frame to be

〈∆Φ̂〉 =
√
2(B +B1)l1λ3e

−g, (45)

which is fully squeezed, while in the lab frame we have

〈∆Φ̂〉 =
√
2(B +B1)l1λ3

×
√
cosh(2g)− sinh(2g) cos(2ω5t), (46)

which characteristically oscillates between fully squeezed
values at t = (π/ω5)p, corresponding to Eq. (45), and
fully anti-squeezed values at t = (π/ω5)(p+ 1/2), where
p is an integer. We conclude that the squeezing effect
is measurable, and that the squeezing parameter can be
found from the measurements.

V. EFFECT OF MECHANICAL DAMPING

In reality, the damping of the beam oscillations is weak
but nonzero. With regard to reading and writing quan-
tum information, this is not a problem, so long as the

reading or writing is performed within a period much
shorter than the characteristic decay time. The squeezed
states, however, are measurably degraded even by very
weak dissipation, as we show in this section.
Many models were devised for describing dissipation

in quantum systems41. We choose here to work with
the quantum master equation. In the interaction picture
with the Hamiltonian (34), the quantum master equation
takes the form42

∂
∂tρ(t) = LSρ(t) + Ldisρ(t), (47)

LSρ(t) =
1
2ζ[a

2 − (a†)2, ρ(t)], (48)

Ldisρ(t) = − γ
2 (ncav + 1){[a†, aρ(t)] + [ρ(t)a†, a]}

− γ
2ncav{[a, a†ρ(t)] + [ρ(t)a, a†]}, (49)

where ζ = g/t is the squeezing rate and for brevity we
write a instead of a5 and ω instead of ω5. In Eqs. (47-
49) ρ(t) is the statistical operator for the system, LS and
Ldis are the Liouville operators for the squeezing and
dissipation, respectively, γ = ω/Q is the damping rate of
the even mode, where Q is the beam quality factor, and
ncav = (eh̄ω/kBT −1)−1 is the average phonon occupation
in the even mode.
The system can be equivalently described by the

Wigner quasi-probability distribution W (α, α∗) instead
of by the statistical operator ρ(t), where we omit the
explicit time dependence in W (α, α∗) to make the nota-
tion concise. The parameter α = X1 + iX2 is a complex
number that is related to the phase space coordinates
via α = 1

2λx + iλ
h̄ p, where x and p are the even mode

position and momentum coordinates, respectively, and
λ =

√
h̄/2m1ω as before. We convert7,41 Eq. (47) to an

equation for the Wigner distribution to find

∂W (X1,X2)
∂t = [ζ(X1

∂
∂X1

−X2
∂

∂X2

) + γ
2 (

∂
∂X1

X1 +
∂

∂X2

X2)

+ 1
4γ(ncav +

1
2 )(

∂2

∂X2

1

+ ∂2

∂X2

2

)]W (X1, X2), (50)

where we note that the original Wigner function W (x, p)
is related to the one used here by W (α, α∗) =
W (X1, X2) = 2h̄W (x, p).
Equation (50) is seen to be a special case of the Fokker-

Planck equation with W (u) corresponding to the prob-
ability distribution P (u; t), where u = (X1, X2). Put in
this form, the equation can be formally written as

∂W (u)

∂t
= −∇ · [F(u)W (u)] +

D0

2
∇2W (u), (51)

where F = (−(ζ + γ
2 )X1, (ζ − γ

2 )X2) and D0 =
1
2γ(ncav + 1

2 ) are the force and diffusion constant, re-
spectively. Due to the form of the force in Eq. (51),
we can use separation of variables to break this equa-
tion into two one-dimensional Fokker-Planck equations
with solutionsW1(X1) andW2(X2), whereW (X1, X2) =
W1(X1)W2(X2). These solutions are given by (i = 1, 2)

Wi(Xi) =
1√

2πσi(t)
exp(− X2

i

2σ2
i (t)

), (52)
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σi(t) =

√
(
1

4
− D0

ki
)e−kit +

D0

ki
, (53)

k1 = 2ζ + γ, (54)

k2 = γ − 2ζ, (55)

where ki are the decay rates.
Equations (52-55) indicate that a steady-state solution

always exists for W1(X1) and is given by Eq. (52) with

σ1(t) =
√
D0/k1. This finite distribution width corre-

sponds to a saturation in the squeezing in contrast with
the dissipationless case, when the field quadrature X1

is squeezed without limit.32 For W2(X2) on the other
hand, we have a steady-state solution only at the strong
damping regime, γ > 2ζ, and this solution exhibits
σ2(t) =

√
D0/k2. When the strong damping condition

is not satisfied, k2 is negative, there is no steady state,
and X2 is anti-squeezed as in the dissipationless case32,
but at a slower pace since the leading behavior in ∆X2

is e(ζ−γ/2)t instead of eζt as in the dissipationless case.
The knowledge of the Wigner function in Eq. (52)

enables us to calculate of system properties via the
relation41

〈{ar(a†)s}sym〉 =
∫
d2ααr(α∗)sW (α, α∗), (56)

where {·}sym indicates the average of all the permutations
of the ladder operators, and d2α = dX1dX2. Working
in the rotating frame, the resulting uncertainties in the
positions and momenta of the beams read (i = 1, 2)

〈∆xi〉 =
√
2λ3

√
1

4

ω5

ω6
+ σ1(t)2, (57)

〈∆pi〉 =
1√
2
h̄λ−1

3

√
1

4

ω6

ω5
+ σ2(t)2, (58)

which reduce to Eqs. (38-39) when γ = 0.
We see that the squeezing in the position coordinates,

already limited to
√
ω3/2ω6 of the standard quantum

limit, λ1, in the dissipationless case of Eq. (38), is limited
here as well with the same limit, where we take ncav =
0 due to the previous assumption of h̄ω ≫ kBT . The
momenta uncertainties, in comparison, are anti-squeezed
only in the weak damping regime, γ < 2ζ, compared with
being always anti-squeezed in Eq. (39), when there is no
damping. As with the quadrature field X2, the momenta
anti-squeezing in the weak damping regime has a slower
rate relative to the dissipationless case with a leading
behavior of e(ζ−γ/2)t vs. eζt for the dissipationless case.
The product of the position and momentum uncertainties
in Eqs. (57-58) gives the lowest uncertainty at t = 0 and
higher values afterwards.
As in Sec. IV, we wish to find here the effect of squeez-

ing on the measurement of the magnetic flux. Using Eq.
(22), we find the standard deviation in the rotating frame
to be

〈∆Φ̂〉 = 2
√
2(B +B1)l1λ3σ1(t), (59)
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FIG. 3. Normalized deviation in the SQUID magnetic flux
∆Φ(t)/∆Φ(t = 0) as a function of t/T1, where ncav = 0,
T1 = 2π/ω and ζ = 0.1/T1. (a) No damping (γ = 0): Lower
and upper limits are 0 and ∞. (b) Weak damping (γ = ζ):
Lower and upper limits are 1/

√
3 and ∞. (c) Strong damping

(γ = 3ζ): Lower and upper limits are
√
3/2 and

√
3.

which is squeezed, though only to a finite extent unlike
the dissipationless case in Eq. (45), where it is fully
squeezed. In the lab frame we have

〈∆Φ̂〉 = 2
√
2(B +B1)l1λ3

×
√
cos2(ωt)σ2

1(t) + sin2(ωt)σ2
2(t), (60)
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which oscillates between squeezed values at t = (π/ω)p,
corresponding to Eq. (59), and squeezed/anti-squeezed
values, depending on the damping regime, at t =
(π/ω)(p + 1/2), where p is an integer. In the dissipa-
tionless limit of γ = 0 Eq. (60) reduces to Eq. (46). Eq.
(60) is plotted in Fig. 3 with normalized units for the no-
damping, weak-damping and strong-damping cases. We
conclude again that the squeezing effect is detectible and
leads to reduced variation in the measured magnetic flux
in the SQUID.

VI. CONCLUSIONS

In this work we have demonstrated that a system com-
posed of two nanomechanical resonators embedded in a
dc SQUID can be used as two units of quantum mem-
ory and that only the even mode in these two units is
readable by the SQUID. We showed how the state of the
beams can be altered, corresponding to writing quantum
information, and proved the amplitude distribution of
the number states in the resulting state is Poisson dis-
tributed. We then proposed a scheme to squeeze the
even mode of the resonators and thus decrease the noise
in the SQUID magnetic flux. Taking dissipation into
account, we found a criterion that separates the weak
damping regime, where a steady state exists only in one
field quadrature, from the strong damping one, where
both field quadratures exhibit steady states. We then
predicted the form of the fluctuations in the magnetic
flux in the SQUID, by which squeezing can be observed.
The approximations and assumptions made during our

derivations hold well for reasonable experimental values.
For instance, for two identical 8 MHz resonators of length
25 µm and quality factorQ = 2·104, an external magnetic
field of 10 T, beam temperature of 0.1 mK, SQUID tem-
perature of 20 mK and other parameter values similar to
the ones in Refs. 27 and 28, we find the energy level dif-
ferences in the Hamiltonian (18) to be much larger than
both kBT and the level widths. Moreover, for the reading
process, Eq. (23) gives a required SQUID sensitivity of
1.3·10−5 Φ0√

Hz
for n ∼ 1 and sensitivity of 1.3·10−5 1√

2n

Φ0√
Hz

for n ≫ 1. A typical SQUID with a flux sensitivity of
10−6Φ0/

√
Hz satisfies these conditions for n < 80.

Regarding the squeezing, a major question is whether
substantial squeezing can be achieved within the decoher-
ence time for the states. The decoherence time for the
resonators here can be made to be at least 5 µs19,43,44,
while substituting the parameters above in Eq. (35)
gives a characteristic squeezing time of τsq ∼ 2 µs. We
therefore conclude that substantial squeezing is achiev-
able within the dephasing time.
The experimental realization of this system will be

an important demonstration of macroscopic quantum
behavior and squeezing in a nanomechanical system.
In addition it can be used for detecting the position
of the embedded nanomechanical beams with accuracy
higher than the standard quantum limit. Stacking such

SQUIDS in series, with the upper arm of the lower
SQUID being also the lower arm of the upper one, can
form a quantum data bus45,46, lead to a multi-mode en-
tangled state47, and possibly multi-mode squeezing32.
Another application of this system or a close variant of
it is that of a quantum gate47 acting on the two states
by means of currents in the external wires. A series of
such quantum gates can form the basis of a nanomechan-
ical quantum computer48,49. We leave the development
of these ideas for future studies.
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