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Precision measurements of active and reactive components of in-plane microwave surface
impedance were performed in single crystals of optimally doped Fe-based superconductor
Ba(Fe1−xCox)2As2 (x =0.074, Tc = 23 K). Measurements in a millimeter wavelength range
(Ka−band, 35 to 40 GHz) were performed using whispering gallery mode excitations in the ultra-
high quality factor quasi-optical sapphire disk resonator with YBa2Cu2O7 superconducting (Tc =
90 K) endplates. The temperature variation of the London penetration depth is best described by
a power law function, ∆λ(T ) ∼ Tn, n = 2.8, in a reasonable agreement with radio-frequency mea-
surements on crystals of the same batch. This power-law dependence is characteristic of nodeless
superconducting gap in the extended s-wave pairing scenario with a strong pairbreaking scatter-
ing. The quasiparticle conductivity of the samples, σ1(T ), gradually increases with the decrease
of temperature, showing no increase below Tc, in a notable contrast with the behavior found in
the cuprates. The temperature-dependent quasiparticle scattering rate was analyzed in a two-fluid
model, assuming the validity of the Drude description of conductivity and generalized expression
for the scattering rate. This analysis allows to estimate the range of the values of a residual surface
resistance from 3 to 6 mΩ.

INTRODUCTION

Determination of the superconducting gap structure
plays important role in identification of the mechanism
of superconductivity in recently discovered iron-arsenide
superconductors [1]. That is why this problem was ex-
perimentally studied using a plethora of techniques, see
e.g. reviews [2–8].

Measurements of London penetration depth, λ(T ) pro-
vide an important insight into the temperature variation
of the superfluid density, directly related to a supercon-
ducting gap structure. Several techniques were employed
so far to study λ(T ) in iron pnictides. In particular, op-
timally - doped Ba(Fe1−xCox)2As2 (x ≈0.07) has been
studied by using several techniques that cover a wide
range of frequencies. Single crystals were measured us-
ing essentially DC measurements by magnetic - force mi-
croscopy and scanning SQUID [9, 10], radio - frequency
tunnel - diode resonator [11–13] and muon spin rotation
(µSR) in vortex state [14, 15] and in Meissner state [16],
as well as microwave - range measurements [14–17]. THz
and optical refelectivity measurements were performed
on thin films [18, 19].

Among these techniques, measurements of surface
impedance allow determination of both active and reac-
tive components of complex conductivity. This brings
insight not only into the temperature-dependent Lon-
don penetration depth, but also into the temperature-
dependent quasi-particle scattering rate. Since anoma-
lous scattering in the normal state is directly linked to
the superconducting pairing strength [20], extension of

these measurements into a superconducting state is of no-
table interest. So far, only cavity perturbation technique
has been used for microwave - range measurements [14–
17] and here we report the measurements using high Q−
factor quasi-optical resonator with high-Tc superconduct-
ing end-plates. All these techniques consistently showed
non - exponential power-law low - temperature behavior,
∆λ(T ) = ATn, with n ≈ 2 − 2.8 at the optimal doping
in Ba(Fe1−xCox)2As2 (“BaCo122”) [10–13, 15, 16]. Such
behavior was ultimately attributed to the effect of strong
pair - breaking scattering [13, 21, 22], which actually sup-
ported s± pairing model [13], although a possibility re-
mains that nodes in predominantly c-axis direction may
influence the in - plane penetration depth as well, since
the latter is calculated by a full average over the Fermi
surface [23]. Fully gapped superconductivity in BaCo122
at the optimal has been confirmed by measurements of
thermal conductivity [24, 25].

In this paper we report microwave surface impedance
study of optimally - doped BaCo122 using novel and
potentially very precise technique utilizing a high Q−
factor quasi-optical resonator with high-Tc supercon-
ducting end-plates. Microwave surface impedance mea-
surements allowed us to determine London penetration
depth, which compares well with the results obtained on
crystals from the same batch, providing a good reference
point for our relatively novel measurement approach. We
have also determined temperature - dependent quasi-
particle scattering time, which monotonically increases
upon cooling below Tc.
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EXPERIMENTAL

Single crystals of Ba(Fe1−xCox)2As2 (BaCo122 in the
following) were grown from FeAs:CoAs flux, as described
in detail in Ref. 26. Cobalt doping level, x = 0.074, was
determined using wavelength dispersive electron-probe
spectroscopy (WDS). Superconducting transition tem-
perature Tc =22.8 K, as determined in our microwave
measurements, was in a good agreement with that deter-
mined on samples from the same batch in magnetization
[26], TDR [11] and resistivity [27] measurements. For mi-
crowave surface impedance measurements samples were
cleaved into a rectangular parallelepiped with dimensions
2.50× 3.50× 0.10 mm3.

Temperature-dependent microwave surface
impedance, Zs = Rs + iXs was measured in Ka-band
(35 - 40 GHz range) using sapphire disk quasi-optical
resonator excited at whispering gallery modes (WGM).
The resonator with conducting endplates (CEP) was
developed earlier for the millimeter-wave impedance
characterization of the cuprate high-Tc films [28, 29].
For study of iron-pnictides it was modified into a disk
resonator with a radial slot as illustrated in Fig. 1. This
resonator geometry using CEPs made of YBa2Cu3O7

(YBCO) films with Tc ≈ 90 K was described in Ref. 30.
It was developed specifically for precision measure-
ments of microwave impedance properties of small-size
superconductors with Tc less than 90K.

The resonator assembly, combining the sapphire disk
excited at millimeter-wave WGMs and high-temperature
superconducting CEPs, gives high quality factor, Q ≈
105, in temperature interval from 4.2 K up to about 30 K.
The technique allows studying the microwave properties
of unconventional superconductors in a range from mil-
limeter to submillimeter wavelengths. For our measure-
ments we used a novel technique for determining the fre-
quency response of the resonators in the case of a partial
removal of mode degeneration [31], as well as perturbed
Lorenz form of the resonance line. Both modifications al-
lowed us making precise determination of the resonance
frequency and of the Q−factor [34], thus accurate mea-
surements of the surface impedance. The measured Q(T )
and f(T ) for the empty resonator and the resonator with
crystal under study are shown in Fig. 2. The measure-
ments of Q factor were performed with the weak coupling
of the resonator with the dielectric waveguides. The cou-
pling is limited by the sensitivity of the measuring appa-
ratus (HP8510C vector network analyzer). The obtained
value ofQ can be taken as the intrinsicQ-factor with high
accuracy. The accuracy of the determined resonance fre-
quency depends on the Q-factor. In our case the accuracy
of the resonant frequency is about few kHz in the K band.
The decreased accuracy of frequency shift measurement
at T > Tc is due to a considerable decrease of the res-
onator Q−factor when the sample becomes normal above

FIG. 1. Schematics of the slotted sapphire disk res-
onator experiment. The sapphire disk with single crystal
of Ba(Fe1−xCox)2As2 placed in the slot is sandwiched be-
tween superconducting YBa2Cu3O7 film endplates. Whis-
pering gallery mode excitation at a Ka band frequency (35 to
40 GHz) produces an electric field E parallel to the conduct-
ing plane of the sample, enabling measurements of in-plane
surface impedance.

Tc.

ANALYSIS OF SURFACE IMPEDANCE

To obtain Rs(T ) and Xs(T ) from measured Q(T ) and
f(T ) we used known expressions (see Refs. 28, 29, and
35). The surface resistance Rs(T ) of the sample can be
determined from the variation of the Q−factor of the
resonator as:

AsRs(T ) = ∆Q−1(T ) (1)

Since it is impossible to determine accurately the eigen-
value of the frequency of the resonator with perfectly
conducting elements (this obstacle is general for all types
of the resonators), one can obtain the expression for the
temperature variation of the surface reactance ∆Xs(T )
through the temperature change of the resonator fre-
quency ∆ω(T ) as:

As∆Xs(T ) = −2∆ω(T )/ω(T ), (2)

where ω = 2πf , As is the filling factor that depends on
the geometry and dimensions of the sample as well as
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FIG. 2. Temperature-dependent (a) quality factor and (b)
the resonant frequency shift of the resonator with single crys-
tal Ba(Fe1−xCox)2As2 (curves 1) and of the empty resonator
(curves 2). Inset in panel (a) shows Q(T ) of the empty res-
onator in the temperature interval up to the superconducting
transition of YBCO film endplates (Tc=90K).

on the field distribution (mode) in the resonator. The
coefficient As can be calculated analytically by solving
the resonator electromagnetics problem [28]. If the an-
alytical solution cannot be found, the value of As can
be determined by a calibration procedure, using samples
with known properties [29]. In this work we evaluated As
by simulating the resonator response by using CST Mi-
crowave Studio program assuming perfect dielectric loss
(tan δ=0), perfect CEP (RCEPs = 0, see below) and a
conductor with the preselected surface resistance Res(T )
with the dimensions identical to those of our sample. In
this case the following equation can be used:

(Qeos)
−1 = AsR

e
s (3)

Since the CST Microwave Studio program does not ac-
count for radiation losses, the calculated value of (Qeos)

−1

for the preselected Res and the mode in the resonator
gives the undetermined constant As = 1/ResQ

e
os. For

Res=50mΩ we obtained Qeos=70672 and As = 2.83×10−4

mΩ−1 for the interaction of HE1610-mode with a sample
of 2.50× 3.50× 0.10 mm3.

In our case of the open dielectric resonator, instead
of using Eq. (1) it is necessary to use more general
approach taking into account additive character of mi-
crowave losses in the resonator with the sample under
test and without it:

Q−10 = k tan δ +ACEPs RCEPs +Q−1rad0 (4)

Q−10S = k tan δ +ACEPs RCEPs +AsRs +Q−1radS (5)

Here ACEPs and RCEPs (T ) are the filling factor and sur-
face resistance values of CEP, k is the coefficient very
close to 1 [28], tan δ is the loss tangent of the sapphire
dielectric, Qrad is the Q-factor determined by the ra-
diation losses. Unlike the case of the homogeneous sap-
phire disk QDR, where CEP Q−1rad,0 < 10−9 and radiation
loss can be neglected [28], in the radially slotted QDR a
value of Q−1rad becomes comparable with other losses in
Eqs.(4) and (5). In addition, the values of Q−1rad0 and
Q−1radS are different and cannot be determined with suit-
able accuracy, which does not allow finding Rs directly
from Eqs.(4) and (5). However taking into account tem-
perature independence of Q−1rad, one can find the tem-
perature difference ∆Rs(T ) in comparison with Rs at a
certain reference temperature Tref . In this case, instead
of Eq.(3), we can obtain a simpler expression:

∆Rs(T, Tref ) =
∆Q−10S (T, Tref )−∆Q−10 (T, Tref )

As
, (6)

here ∆Q−10S (T, Tref ) = Q−10S (T ) − Q−10S (Tref ), and
∆Q−10 (T, Tref ) = Q−10 (T ) − Q−10 (Tref ). As a rule,
Tref is the lowest available temperature. Evidently
∆Rs(T, Tref ) = Rs(T ) − Rs(Tref ) and ∆Rs(T >
Tc, Tref ) = Rs(T > Tc) − Rs(Tref ). Because in the
normal state Rs(T > Tc) = Xs(T > Tc), we can write
Rs(Tref ) = Xs(T > Tc) −∆Rs(T > Tc, Tref ). Thus we
have R′s(T ) = Rs(Tref ) + ∆Rs(T, Tref ). The measured
temperature dependence ∆Rs(T, Tref ) allows us to ex-
trapolate R′s(T ) to Rs(T → 0) = Rres and obtain the
whole temperature dependence,

Rs(T ) = Rres + ∆Rs(T ) (7)

where Rres is residual resistance, which has certain value
but difficult to assign because of its small magnitude.

Surface reactance Xs(T ) is also an important charac-
teristic of the sample. However, it is difficult to obtain
the absolute value of Xs(T ), with the main problems
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coming from the impossibility to determine the eigen-
value frequency of the resonators with perfect conduct-
ing surfaces, as mentioned above, and insufficient repro-
ducibility of the frequencies upon reassembling the res-
onator. Evidently, in our case of the radially slotted
QDR, similar to other resonator techniques, the most
appropriate approach is to determine reactance variation
Xs(T ) using the following relation [29]

∆Xs(T, Tref ) = Xs(T, Tref )−Xs(Tref ) (8)

Because Xs(T ) = ω(T )µ0λ(T ), where λ(T ) is London
penetration depth, we can write

∆Xs(T, Tref ) = ω(T )µ0∆λ(T, Tref ), (9)

where

∆λ(T, Tref ) = λ(T )− λ(Tref ) (10)

From (2) and (9) ∆λ(T, Tref ) can be expressed as

∆λ(T, Tref ) = −2∆ω(T, Tref )

Asω2(T )µ0
(11)

where ∆ω(T, Tref ) = ω(T )− ω(Tref ). Using λ(0) deter-
mined from other measurements and the experimental
∆λ(T, Tref ) extrapolated to T → 0, λ(T ) can be cal-
culated as: λ(T ) = λ(0) + ∆λ(Tref , 0) + ∆λ(T, Tref ).
Usually ∆λ(Tref , 0) � λ(0), therefore the error in find-
ing this value does not influence noticeably the accuracy
of Xs(T ) determination

Xs(T ) = ωµ0[λ(0) + ∆λ(Tref , 0)]− 2∆ω(T, Tref )

Asω(T )
(12)

It should be noted that in ∆ω(T, Tref ), the variations
of ∆ωε(T, Tref ) and of ∆ωd(T, Tref ) determined by the
temperature dependence of both of sapphire permittivity,
ε , and of the disk dimensions, are removed by subtracting
the f(T ) = ω/2π curve from the curve obtained from the
experimental data (see Fig. 2b).

Using known values of Rs andXs at ωτ � 1, where τ is
the quasiparticle scattering time, one can find conductiv-
ities σ1 and σ2 from Zs = [iωµ0/(σ1−iσ2)]1/2 = Rs+iXs,
as (see Ref. 36)

σ1 = 2ωµ0
RsXs

(R2
s +X2

s )2
(13)

σ2 = ωµ0
(X2

s −R2
s)

(R2
s +X2

s )2
(14)

where σ1 = σn is the real part of the quasiparticle
conductivity in a microwave range (it represents the

loss related to the conductivity of the normal carriers
quasiparticles), and σ2 = 1/(ωµ0λ

2) = −iσs repre-
sents the kinetic energy of the superconducting carri-
ers. Assuming that both Drude formula for conductiv-

ity, σn = e2nnτ
m

1
(1+Iωτ) , at ωτ � 1, and the equation

ns(0)− ns(T ) = nn(T ) for two-fluid model are valid, we
can obtain the expression for the quasiparticle scattering
rate in a form of

τ−1(T ) =
1− λ(0)2

λ(T )2

µ0σ1(T )λ(0)2
(15)

In a more general case of arbitrary τ , the quasiparticle
conductivity also becomes a complex number, σ1 = σ′1−
iσ′′1 , where σ′′1 = ωτσ′1. In this case we have to replace
the σ1 by σ′1 and the σ2 by σ2 +σ′′1 in equations (13) and
(14). It should be emphasized that only σ′1 and σ2 + σ′′1
are determined based on the experimental values Rs and
Xs. Then the ratio of values σ2 and σ′1 can be obtained:

σ2/σ
′
1 =

(X2
s −R2

s)

2XsRs
− ωτ (16)

and on the other hand the following expression can be
obtained:

σ2/σ
′
1 =

ns
nn

[1 + (ωτ)2]

ωτ
(17)

Using the condition, ns(0) − ns(T ) = nn(T ), and ex-
pressions (16) and (17) we derive the following expres-
sion:

1 + (ωτ)2

ωτ
=

1
λ2
L
(T )

λ2
L
(0)
− 1

(
X2
s −R2

s

2XsRs
− ωτ) (18)

The square of the London penetration depth, λ2(T ),
can be rewritten in terms of σ2(T ) as λ2(T ) = 1

ωµ0σ2(T )

and further in terms of Rs and Xs using expression (16):

λ2L(T ) =
1

ωµ0σ′1

1
X2

s−R2
s

2XsRs
− ωτ

(19)

Equations (18) and (19) are now used to obtain a re-
lation for the scattering rate

τ−1(T ) =
1

µ0λ2(0)σ′1
− X2

s −R2
s

2ωXsRs
, (20)

connecting it with the measured experimental quantities,
Rs andXs. Equation (20) is true for arbitrary correlation
of Rs(T ) and Xs(T ). When Rs(T )� Xs(T ), or ωτ � 1,
the relation (20) can be reduced to (15).



5

RESULTS AND DISCUSSION
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FIG. 3. Temperature-dependent surface impedance of the
single crystal of optimally - doped Ba(Fe1−xCox)2As2, x =
0.074. Inset shows Rs(T ) in the low temperature range.

The experimentally determined Rs(T ) and Xs(T ) are
shown in Fig. 3. The value of Xs(T ) in the nor-
mal state was determined from the measured ∆Xs(T )
and calibrated using the value of the penetration depth
λ(0)=210 nm determined by the tunnel-diode resonator
technique [37]. The Rs(T ) was determined by measuring
Q-factors of the resonator with the sample and without
it and using Rs(T ) = Xs(T ) at T ≥ Tc. The resid-
ual surface resistance (per square, so it is measured in
Ohm), Rres ≈ 3 − 6 mΩ was estimated from T → 0
extrapolation of Rs(T ) (see inset in Fig. 3). The accu-
racy of thus determined Rres depends on the accuracy
of both Xs(T ) at low temperatures and of Rs(T ) and
Xs(T ) at T > Tc. The precise determination of Rres
is especially important for unconventional superconduc-
tors, because often the values of Rres in these materials
are much higher than in conventional BCS superconduc-
tors [36] and the nature of this phenomenon is so far not
understood [32, 33]. A value of Rs(T > Tc) can also be
found using experimental measurement of the sample re-
sistivity ρ as Rs = (ωµρ/2)1/2. Thus determined values
are shown in Fig. 3 with the dotted line. One can see
that these values are a slightly smaller than Rs(T > Tc)
obtained from the calibration using λ(0)=210 nm. This
discrepancy can be explained by the roughness of the
sample surface, because Rs can only increase compared
to an ideally smooth surface, or by adding some anoma-
lous character to the normal skin-effect.

The London penetration depth λ(T ) determined at low
temperatures, T < Tc/2, from microwave data is shown
in Fig. 4. The observed temperature variation is best de-
scribed by the power-law, ∆λ(T ) ∼ Tn with n = 2.8 from
low temperatures up to at least 0.6Tc. This dependence
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FIG. 4. The London penetration depth λ(T ) in single crys-
tal of optimally - doped Ba(Fe1−xCox)2As2, x = 0.074, at
T < Tc/2. The solid line is the power - law fit, ∼ T 2.8, the
dashed and the dot-and-dashed lines correspond to the exper-
imental data of Refs. 11 and 12, respectively. The open circles
represent experimental data. Inset shows λ(T ) in a broader
temperature range.

is similar to the one obtained in the radio - frequency
TDR measurements [6], especially on the high-quality
crystals [13]. A similar exponent was determined in an-
other microwave impedance study performed by cavity
perturbation technique at 13 GHz, indicating the expo-
nent of n =2.66 [17]. The variation, ∆λ(T ) = λ(T )−λ(0)

and the full superfluid density, ns(T ) = [λ(0)/λ(T )]
2

are
commonly used to analyze the penetration depth data
and compare the results with calculations for various su-
perconducting gap structures [6]. In Fig. 5, tempera-
ture - dependent ns(T ) was constructed from λ(T ) de-
termined from σ2(T ) under the condition of ωτ � 1 in
eq. (14). Solid line shows a power - law fit, corresponding
to ∆λ(T ) ∼ T 2.8 and the dashed line shows expectation
for isotropic weak coupling single - gap s-wave BCS su-
perconductor with ∆ = 1.76kBTc. Inset in Fig. 5 com-
pares calculated ns(T ) with ∆λ(T ) ∼ T 2.8 and for the
exponential variation with ∆ = 0.75kBTc obtained from
the best exponential fit at the low temperature interval.
Clearly, power-law behavior with n =2.8 provides the
best description of the data. However in the low temper-
ature interval it is impossible to say what temperature
dependence gives better fitting. The fact that lowest
temperatures can also be described by the exponential
fit with smaller than weak - coupling 1.76kBTc value of
0.75kBTc simply means that we are dealing with a two -
gap system. The convex shape of ns(T ) at the elevated
temperatures supports the multi - gap behavior [6].

Figure 6 shows the temperature-dependent quasiparti-
cle conductivity σ1, calculated using eq. (13). The quasi-
particle conductivity σ1(T ) increases on cooling, - a be-
havior similar to that found previously in YBCO cuprate
superconductor [38] and recently in Fe-based pnictides
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FIG. 5. The temperature-dependent superfluid density in a
single crystal of optimally - doped Ba(Fe1−xCox)2As2, x =
0.074. The solid lines correspond to the power - law ∆λ ∼
T 2.8. A dashed line corresponds to a single - gap isotropic
s-wave BCS superconductor with ∆ = 1.76kBTc. Inset shows
ns(T ) calculated with ∆λ(T ) ∼ T 2.8 (solid line) and the best
exponential fit resulted in ∆ = 0.75kBTc (dash-dotted line).

PrFeAsO1−y [39], Ba1−xKxFe2As2 [40] and FeSe0.4Te0.6
[41]. However the accurate value of σ1(T ) in our measure-
ments depends strongly on the correct determination of
the residual surface resistance Rres (see discussion above)
and needs further studies. The observed σ1(T ) can be
explained by a strong temperature dependent quasiparti-
cle scattering rate decreasing rapidly with temperature.
Similar tendency was found in FeSe0.4Te0.6 [41] where
the Authors propose a crossover from dirty at Tc to clean
limit at the low temperatures to explain the convex shape
of ns(T ) and this idea requires further investigation.
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FIG. 6. Temperature-dependent quasiparticle conduc-
tivity, σ1(T ), in a single crystal of optimally - doped
Ba(Fe1−xCox)2As2, x = 0.074, calculated for different values
of Rres.

Another important feature of σ1(T ) (Fig. 6) is the ab-
sence of a peak below or at Tc. σ1(T ) changes mono-
tonically through Tc, similar to previous microwave mea-

surements, Ref. 17. This contradicts the results obtained
from measurements on thin films in terahertz [18] and
optical [19] domains. This may point to significant dif-
ference between high - quality single crystals and thin
films of Fe - based superconductors.
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FIG. 7. The temperature-dependent quasiparticle scat-
tering rate, τ−1, in single crystal of optimally - doped
Ba(Fe1−xCox)2As2, x = 0.074, calculated for different values
of Rres.

Figure 7 shows that the temperature dependence of
τ−1(T ) is determined by the quasiparticle conductivity.
This suggests that inelastic scattering plays an impor-
tant role in iron pnictide superconductors even at very
low temperatures deep into the superconducting state.
It also follows from Fig. 7 that the selection of Rres=1
mΩ gives unphysical result of the scattering rate that
would increase as T → 0. This allows us to narrow the
range of Rres from 3 to 6 mΩ. The strong temperature
dependence of τ−1(T ) was also observed in the cuprates
[35] as well as in other pnictides, FeSe0.4Te0.6 [41] and
Ba1−xKxFe2As2 [42]. It seems to be a general feature for
all of the unconventional superconductors.

CONCLUSION

In conclusion, microwave (35 to 40 GHz) measure-
ments of the in-plane London penetration depth and
quasiparticle conductivity using high quality - factor
quasi - optical resonator with high-Tc superconducting
end-plates were performed on single crystals of opti-
mally - doped Ba(Fe1−xCox)2As2, x = 0.074, Tc=22.8 K.
The London penetration depth varies as a power-law,
∆λ(T ) = ATn with the exponent n=2.8, consistent with
previous studies. The temperature-dependent quasipar-
ticle conductivity, σ1(T ) does not show a peak below or
at Tc, consistent with another microwave study at the
lower frequency of 13 GHz [17], but in a stark disagree-
ment with optical and THz measurements on thin films
[18, 19] and with rather low frequency measurements at
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50 kHz [43]. The quasiparticle conductivity increases
monotonically on cooling below Tc suggesting strong in-
elastic scattering even at low temperatures.
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