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We formulate a model for magnetic and superconducting ordering in one-dimensional nanostructures at
LaAlO3/SrTiO3 interfaces containing both localized magnetic moments and itinerant electrons. Though these
both originate in Ti 3d orbitals, the former may be due to electrons more tightly-bound to the interface while
the latter are extended over several layers. Only the latter contribute significantly to metallic conduction and
superconductivity. In our model, the interplay between the two types of electrons, which is argued to be ferro-
magnetic, combined with strong spin-orbit coupling of the itinerant electrons, leads to magnetic ordering. Fur-
thermore, we propose a model for interfacial superconductivity, consisting of random superconducting grains in
the bulk STO driven, via coupling to the interface conduction band, towards long-ranged or quasi-long-ranged
order. Most interestingly, the magnetic order and strong spin orbit coupling can lead in this manner to uncon-
ventional interfacial superconductivity, yielding a possible realization of Majorana physics.

I. INTRODUCTION

It was recently discovered that, although LaAlO3 and
SrTiO3 are both insulators, the interface between them
is metallic1. Furthermore, the electrons at this interface
have shown a variety of remarkable properties, including
magnetism2–5 and superconductivity6. Magnetism and super-
conductivity often appear in the phase diagram of strongly-
correlated materials, where they compete. However, it is very
unusual for them to occur simultaneously, which appears to
be the case at the LAO/STO interface4,5,7. A basic question,
then, is whether the same electrons are exhibiting both super-
conductivity and magnetism or if, instead, there is a precise
sense in which there are two species of electrons – two differ-
ent electronic bands, for instance – one of which is supercon-
ducting and the other of which is magnetic. In the former case,
the superconductivity must be exotic, perhaps p-wave super-
conductivity or a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
state8–11. This would contradict the conventional wisdom that
the interface electrons are simply exhibiting the superconduc-
tivity of doped SrTiO3, which is presumed to be a phonon-
mediated s-wave superconductor.

The experiments that reveal interesting magnetic behavior
fall into two classes, those which deduce magnetism from
transport and those which attempt to measure it more directly.
The former include experiments that observe hysteresis in the
electrical resistance as a function of magnetic field2,3, which
show that there is a magnetic field-driven first-order phase
transition which has a large effect on the resistance. A mag-
netic transition is the most natural hypothesis. These signa-
tures are found up to temperatures in excess of 200K. The lat-
ter include a torque magnetometry measurement4 that shows
that a field as small as a few milliTesla leads to a large mag-
netization, approximately 0.3µB per interface unit cell. This
implies that the system has ferromagnetic domains which be-
come aligned by even a very small field. This experiment
shows that the magnetic moment, which points in the plane,

has an onset temperature that is at least as high as 40K and per-
sists below the superconducting Tc. Finally, scanning SQUID
magnetometry5 finds micron sized ferromagnetic domains in
a paramagnetic background. From their estimates, most of the
interfacial electrons which are predicted by polar catastrophe
arguments1 are paramagnetic. An order of magnitude smaller
number of electrons are in ferromagnetic regions, and a two
orders of magnitude smaller number of electrons are in su-
perconducting regions. There does not appear to be any cor-
relation between the magnetic and superconducting regions
(unless there is spatial segregation in the z direction), which
implies that magnetism in a region does not prevent super-
conductivity from occurring in that region, counter to conven-
tional wisdom. Taken together, these experiments constitute
strong evidence that there are ferromagnetic domains at the
LAO/STO interface that strongly affect normal state transport
and are also present in the superconducting state.

Since neither LAO nor STO is magnetic, there is clearly a
puzzle here: what is the cause of (at least local) ferromag-
netism at their interface? It has been suggested that there is
a narrow band at the interface12 which gives rise to itinerant
electron ferromagnetism. Alternatively, the magnetism may
be due to localized electrons which don’t participate in the
metallic (or superconducting) behavior. To make matters even
less clear, there is evidence for strong spin-orbit coupling due
to the broken inversion symmetry of the interface13–17 (Rashba
spin-orbit coupling), which would ordinarily be antithetical to
a uniform ferromagnetic moment.

An equally vexing problem is how ferromagnetism can co-
exist with superconductivity18. Even if there were a sense in
which different electronic bands were becoming ferromag-
netic and superconducting, one would expect the magnetic
moments of the former electrons to destroy superconductivity
in the latter. One possibility is that the system is in an exotic
inhomogeneous superconducting state, e.g. the FFLO-like
state, as suggested in Refs. 10 and 11. This scenario assumes
that superconducting pairing originates from an attractive in-
terparticle interaction within the same conduction band. Al-
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ternatively, one could imagine larger scale inhomogeneity, so
that the system breaks up into domains, some of which are su-
perconducting while others are ferromagnetic. But the ferro-
magnetic moment would be anti-correlated with superconduc-
tivity in either type of inhomogeneous state. This, however,
disagrees with the experimental finding of Ref. 5. Another
possibility which is natural to consider is the formation of a
p-wave superconducting state. This scenario begs the ques-
tion of what the superconducting mechanism is. Presumably,
p-wave superconductivity must be due to electron-electron in-
teractions, rather than the electron-phonon coupling. Thus,
superconductivity at the LAO/STO interface is a puzzle. It
is generally assumed that it is related to superconductivity in
doped STO, but this assumption does not provide any clues to
how it can coexist with ferromagnetism.

In this paper, we present a physical picture for magnetism
and superconductivity in one-dimensional nanostructure at
the LAO/STO interface. Density functional theory calcula-
tions show that there are t2g bands at the interface, corre-
sponding to Ti 3d orbitals, with dxy and dxz,yz symmetry
respectively12,17,19–21. We hypothesize that the dxy band forms
a band of localized electrons which accounts for most of the
charge required by the ‘polar catastrophe’22. According to our
picture, the dxy band is localized due to one-dimensionality,
which enhances the effects of interfacial disorder. Depending
on the wire direction, either the dxz or dyz band will be lifted
in energy and will not participate in transport, justifying the
model of a single 1D band interacting with localized spins.
Coulomb interactions generate a ferromagnetic coupling be-
tween localized dxy and itinerant (either dxz or dyz) elec-
trons, thereby leading to a ferromagnetic Kondo model – but
one in which the itinerant electrons have significant Rashba
spin-orbit coupling. By analyzing a spin-orbit-coupled ferro-
magnetic Kondo lattice, we argue that the localized electrons
develop magnetic order. Thus, in our picture, the magnetic
moment of the system is due primarily to localized electrons.
A model for two-dimensional magnetism at LAO/STO inter-
faces was also proposed in Ref. 11. It also has both localized
and itinerant electrons but the coupling between them is an-
tiferromagnetic when they are both in dxy bands, the case on
which they focus.

Our picture for superconductivity is the following. We as-
sume that superconducting pairing is due to electron-phonon
interaction in the STO substrate and consider two-fluid model
of itinerant electrons at the interface coupled to superconduct-
ing electrons in STO. We suppose that the superconducting
state in STO is inhomogeneous: there are droplets of local su-
perconductivity. If the STO were doped, then these droplets
would grow and percolate across the system, giving rise to
superconductivity. In the absence of doping, this cannot oc-
cur, and the STO substrate is insulating. However, these
droplets can interact with the itinerant electrons at the inter-
face. Through the proximity effect, superconducting droplets
in the STO substrate can induce a gap in the itinerant electrons
at the interface. Thus seeded, the itinerant electrons at the
interface can develop long-ranged or quasi-long-ranged su-
perconducting order. However, these itinerant electrons must
move in the magnetic background created by the localized

electrons. Naively, the magnetism should destroy the super-
conductivity. However, the strong spin-orbit coupling of the
interface electrons allows these two competing phenomena
to coexist peacefully 23 (see also [10]). Spin-orbit coupling
mixes s-wave and p-wave superconductivity, so that the s-
wave superconductivity which is present in the droplets in
STO can induce a mixture of s-wave and p-wave supercon-
ductivity at the interface. This mixture can tolerate a magnetic
moment, unlike pure s-wave superconductivity. This is very
similar to the situation in proposals of topological insulators
in contact with s-wave superconductors24–26, superconductor-
semiconductor heterostructures27,28, and spin-orbit-coupled
quantum wires29,30. Therefore, according to our theory, even
though superconductivity is s-wave in STO, interfacial super-
conductivity is unconventional, as a result of magnetism and
spin-orbit coupling.

An especially exciting consequence of the unconventional
nature of the interfacial superconductivity is the possibility of
realizing Majorana fermion physics. Indeed, the fabrication of
narrow quasi-one dimensional conducting channels on an oth-
erwise insulating LAO/STO interface31–33 by ‘writing’ them
with an atomic-force microscope (AFM) tip suggests a natu-
ral implementation for the proposals of Refs. 29 and 30. In
the following sections we show that our model naturally gen-
erates a ‘helical’ interfacial band structure that can be driven
into a topological phase when in proximity to ordinary s-wave
superconductivity. As shown by Kitaev [34], 1D spinless su-
perconductor with p-wave (or effectively p-wave) pairing sup-
ports Majorana zero-energy modes at the ends. Although our
droplet model can at best lead to quasi-long ranged supercon-
ducting order, signatures of Majorana physics still remain, as
shown in Refs. [35–37].

In Section II, we set up and justify a model of spin-orbit-
coupled itinerant electrons interacting with Kondo spins. In
Section III, we give a saddle-point analysis of a large-N limit
of this model. In Section IV, we solve this model numerically
by the density-matrix renormalization group (DMRG) in the
one-dimensional limit. In Section V, we analyze the super-
conducting proximity effect in the presence of a helical wire
due to the presence of ferromagnetic Kondo interactions and
spin-orbit coupling. We show that such an interfacial super-
conducting state might support Majorana zero-energy modes.
We conclude in Sec. VI with the discussion of our results and
proposing a schematic phase diagram for LAO/STO interface.

II. SPIN-ORBIT-COUPLED FERROMAGNETIC KONDO
MODEL

We will now argue for a model of spin-orbit coupled
electrons interacting with localized spins to describe the
LAO/STO interface. The emerging consensus is that the elec-
trons active at the LAO/STO interface come from the t2g
bands of Ti 3d orbitals in the STO3,12,19,38–43. Furthermore,
band structure calculations38 and density functional theory41

suggest a picture of successive Ti 3d sub-bands near the in-
terface being occupied as LAO thickness is increased (or gate
voltage decreased).
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Due to the inversion symmetry breaking at the interface,
the lowest sub-band is predicted to be dxy . It contains most of
the charge required by the polarization catastrophe, but these
electrons are thought to be localized, as seen from the low mo-
bile carrier densities extracted from Hall transport measure-
ments. We thus model these electrons as localized spins. Fur-
ther indirect evidence for a picture involving localized spins
in LAO/STO comes from transport experiments on a related
system consisting of pure STO, with the doping effect of the
LAO simulated by an polarized gel overlayer44. The longi-
tudonal resistance in this system exhibits a Kondo minimum
as a function of temperature, indicative of the presence of lo-
calized impurity spins.

The lowest extended interface states are thought to have dxz
and dyz symmetry. Due to the geometry of their orbitals, their
Fermi surfaces are highly anisotropic, with heavy and light
carrier directions. Spin-orbit coupling also plays an important
role in determining the electronic band-structure, with the au-
thors of Ref. 38 arguing for an atomic spin orbit (ASO) effect
of about 10meV. Furthermore, there is a Rashba contribution
arising from the broken inversion symmetry of the interface
and gating. Its magnitude is expected to be dependent on the
gate voltage and the details of the sample, but in Ref. 13 a
value of α ≈ 10 − 50 meVÅ is obtained through a fit to a
weak anti-localization measurement. (Larger values close to
50meVÅ are obtained for larger gate voltages; smaller values,
for smaller gate voltages.) The Rashba nature of the coupling
was deduced from the dependence of the spin relaxation time
on the elastic scattering time. The electronic band-structure
for the two dimensional interface depends on the precise ratio
of Rashba and ASO coupling.

Motivated by recent experiments fabricating one dimen-
sional conducting channels on otherwise insulating LAO/STO
interfaces32,33, as well as by our desire to realize Majo-
rana physics, we find it useful to examine one-dimensional
channels at the LAO/STO interface. In a 1D channel, the
anisotropy of the dxz, dyz orbitals suggest that for a very nar-
row channel along the x direction, transport should primarily
be through the dxz states14. Therefore, the neglect of the dyz
band is justified in this situation. In Ref. 32 and 33, con-
ducting channels of thickness ∼ 10 nm are constructed. For
an effective mass of order the electron mass, such channels
correspond to a transverse confining energy of ∼ 2 meV, and
hence in principle we need to consider many subbands at the
energy scales in which we are interested. However, if nar-
rower conducting wires could be constructed (e.g. 2 nm, cor-
responding to∼ 40 meV), a one dimensional model would be
more readily applicable.

We are thus led to a analyze a minimal model of a single
spinful band interacting with a large density of localized spins.
The localized spins, which give the dominant contribution to
the magnetic moment come from the dxy band. However,
their tendency to order is driven primarily by their interaction
with dxz, dyz electrons. Although the experiment of Ref. 44
suggests an antiferromagnetic coupling between conduction
and impurity spins, we believe that it is more natural, accord-
ing to Hund’s rule, take the interaction between dxy electrons
and dxz, dyz electrons to be ferromagnetic. In either case, the

a) b)

FIG. 1. (a) Sample one dimensional electronic band-structure. We
expect a magnetic instability at ordering wave-vector q = 0, where a
gap can open in the spectrum at the crossing point between the two
bands. When this occurs, the band structure takes the form in (b)

Hamiltonian takes the form

H =
∑

kx,λ,λ′

[
ε(kx)δλ,λ′c

†
kx,λ

ckx,λ + αkxσ
y
λ,λ′c

†
kx,λ

ckx,λ′
]

+ J
∑

kx,q,λ,λ′

c†kx+q,λ~σλ,λ′ckx,λ′ · ~S(q) (1)

where σi is the Pauli matrix acting on a spin degree of free-
dom, ~S corresponds to classical spins due to localized mag-
netic impurities, and we have suppressed spin indices in the
notation. In a lattice version of this Hamiltonian the kinetic
term is modeled by a nearest neighbor hopping t, whose mag-
nitude is determined by band structure calculations19,40 to be
about 0.2 eV. From magnetoconductance experiments13,14 we
take α ≈ 10 − 50 meVÅ, which translates to a lattice spin
orbit coupling αa−1 ∼ t/20 or even as large as t/4 (see be-
low). The final term is the interaction between the itinerant
electrons and localized spins. Although we believe that it is
more natural, according to Hund’s rule, to have a ferromag-
netic coupling, J < 0, we will also, for completeness, con-
sider the case of antiferromagnetic coupling, J > 0, with a
magnitude of roughly one third of the bandwidth, as obtained
in Ref. 44.

Motivated by recent SQUID5 and torque magnetometry4

experiments, which find at least local ferromagnetism, we
are interested in examining the magnetic instabilities of the
Hamiltonian (2). The one dimensional spin-orbit coupled
electronic band-structure in figure 1 shows that it is natural
to expect ordering at wave-vector q = 0, since it is there that
a gap can be opened and the electronic energy lowered. Of
course, ordering could also occur at the wavevectors that con-
nect various pairs of Fermi points. In the next section we will
study a large-N limit of this model and find a tendency to-
ward in-plane ferromagnetism, consistent with [4 and 5]. In
the following section we will reach a similar conclusion with
DMRG.
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III. LARGE-N ANALYSIS OF THE MODEL

We now analyze magnetic instabilities of a generalization
of the Hamiltonian (2) to N species of fermions cakx , with
a = 1, 2, . . . , N :

H =
∑

kx,λ,λ′,a

[
ε(kx)ca†kxλc

a
kx,λδλ,λ′ + αkxσ

y
λ,λ′c

a†
kx,λ

cakx,λ′
]

+ J
∑

kx,q,λ,λ′

ca†kx+q,λ~σλ,λ′c
a
kx,λ′ · ~Sq

=
∑

kx,λ,λ′,a

ca†kxλM(kx, ~S)λλ′c
a
kxλ′ (2)

where the matrix M(kx, ~S) is given by

M(kx, ~S)=

[
ε(kx)+JSz iαkx + J(Sx + iSy)

−iαkx + J(Sx − iSy) ε(kx)− JSz

]
.

(3)

We now integrate out fermions in Eq.(2):

exp
(
−Seff [~S]

)
=

∫
Dcdc† e−S0[~S]−

∫
dτ

∑
k(ca†kx i∂τ c

a
kx
−H)

= e−S0[~S]−N tr ln(iωn−M(kx,~S))

(4)

where S0[~S] is the Berry phase term for the localized spins.
In the large-N limit, the functional integral

Z[~S] =

∫
DS exp

(
−S0[~S]−N tr ln

[
iωn −M(kx, ~S)

])
(5)

is equal to its saddle-point value. The saddle-point equations
are given by:

∂

∂~S

(
S0[~S]−N tr ln

[
iωn −M(kx, ~S)

])
= 0. (6)

The S0[~S] term is O(1) and is much smaller than the sec-
ond term which is O(N), so it can be neglected. Since the
temperature of interest is much lower than the energy scales
associated with the couplings in (2), we can effectively set it
to zero and convert Matsubara sum to an integral. Thus, we
arrive at the following mean-field equations:

∂

∂~S

∫
dω

2π

dkx
2π

log [( iω − E+(kx) )( iω − E−(kx, ~S) )] = 0,

(7)

where E±(kx) are the two eigenvalues of M(kx, ~S):

E±(kx, ~S) = ε(kx)±Q(kx, ~S) (8)

Q(kx, ~S) =
√
J2S2

z + J2S2
x + (αkx + JSy)2 (9)

The explicit evaluation of derivatives yields∫
dω

2π

dkx
2π

∂Q(kx, ~S)

∂~S

[
1

iω−E+(kx, ~S)
− 1

iω−E−(kx, ~S)

]
=0.

(10)

One can notice that we only obtain a non-zero contribution
if E+(kx, ~S) and E−(kx, ~S) have opposing signs, so that the
saddle point equation reduces to∫
dkx
2π

[
Θ(−E+(kx, ~S))−Θ(−E−(kx, ~S))

] ∂Q(kx, ~S)

∂~S
= 0.

(11)

Here Θ(x) is the unit step function (Θ(x) = 1 for x > 0) and

∂Q(kx, ~S)

∂~S
=

J

Q(kx, ~S)

 JSx
αkx + JSy

JSz

 (12)

The ~S-dependent contribution to the energy of a particular
background spin configuration at one loop reads

E ∝
∫

dk

2π

(
E+
k Θ(−E+

k ) + E−k Θ(−E−k )
)

(13)

To diagonalize, we take nearest neighbor hopping with ampli-
tude normalized to 1, resulting in a kinetic term

ε(kx) = cos(kx)− µ (14)

For convenience we also absorb ~S into J : ~J ≡ J ~S, and drop it
from the following discussion. We then compute the one loop
energy as a function of ~J, µ, and α, and determine the propen-
sity for magnetic ordering in various directions. From (8) we
see that the x and z directions become equivalent at one loop,
so it suffices to set Jx = 0 and work with nonzero Jy and Jz .
Symmetry considerations show that ~J = 0 is an extremum of
the one loop energy. In fact, we empirically see that it is a
global maximum, and that the energy is unbounded from be-
low, becoming more negative with increasing |J |. This makes
sense since the saddle-point Hamiltonian treats ~S as a clas-
sical field with no dynamics, and larger |~S| leads to lower
electronic energy. Physically, we expect that |~S| ultimately
saturates. For the purposes of the saddle-point approximation
we pick an appropriate value for | ~J | and evaluate the energy
difference between ordering in the y and z directions:

δE(α, µ) = E(J, 0, α, µ)− E(0, J, α, µ)

≈ J2 (cz(α, µ)− cx(α, µ)) (15)

In figure 2 we plot δE/|E| at a specific value of J , and note
that it is everywhere negative. Although the percentage dif-
ference in energies is small, it is robustly negative over a very
large range of physical values of µ, α, and J . We conclude
that in saddle-point approximation the spins prefer to develop
magnetic order in the (in-plane) y direction.
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FIG. 2. −(δE)/|E|, where δE is defined in (15), plotted at J = 0.4
as a function of chemical potential µ and spin-orbit coupling α for a
one dimensional conducting wire aligned in the y direction sitting on
the 2 dimensional xy plane. We note that this quantity is everywhere
negative, implying a propesity towards magnetic ordering in plane,
perpendicular to the wire i.e. along the x direction. Other values of
J give similar results.

We can perform a similar analysis for a two dimensional
version of (2), obtaining a similar result: the spins prefer to
order in-plane in the large-N limit.

One very interesting part of our analysis is that we find fer-
romagnetic order developing at weak coupling. The underly-
ing reason for this is that the band structure in the presence of
Rashba spin-orbit coupling has a crossing at k = 0; a small
magnetic moment opens a gap there. This occurs even at arbi-
trarily weak coupling, if the chemical potential passes through
this crossing. This is very similar to the case of other Fermi
surface instabilities, such as the BCS instability or density-
wave ordering for nested Fermi surfaces. If the chemical po-
tential does not pass through the k = 0 crossing, then a small
minimum coupling must be exceeded, as in the case of small
detuning away from a nested Fermi surface. This scenario
stands in stark contrast to the usual case of the Stoner insta-
bility: ordinarily, ferromagnetism does not open a gap at the
Fermi surface, and only occurs when the coupling exceeds the
inverse of the density of states.

IV. DMRG SOLUTION OF THE 1D LIMIT

In our picture the localized spins are randomly distributed,
but for the purpose of numerical simulations we consider a
1D lattice Hamiltonian describing itinerant electrons coupled
to localized impurity spins. Our model should be understood
as an effective model which incorporates the key physics of
ferromagnetic exchange between localized spins and itinerant
electrons. However, the density of impurity spins and their
locations is not realistically implemented in our model. While
this would be an interesting direction for future work, we be-
lieve that the physics of a ferromagnetic state is not qualita-

- 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
0 . 0

0 . 1
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F u l l y  P o l a r i z e d
   ( i s o t r o p i c )

FIG. 3. (color online) Ground state phase diagram of the model
Hamiltonian in Eq.(16) at filling ρ = 1/6, determined by accurate
DMRG simulations with system size up toN = 192 sites. Changing
coupling parameters J and αa−1, three different phases are found,
including the fully polarized phase, the partially polarized phase, as
well as the easy-plane partially polarized phase. Here Jchain = 0.1t
and U = 40t.

tively affected by this simplification. The Hamiltonian takes
the form:

H = −t
∑
i,α

(c+iαci+1α + h.c.) + J
∑
i,α,β

~Si · c+iα~σαβciβ

− Jchain

∑
i

~Si · ~Si+1 (16)

+
α

a

∑
i

(c+i↑ci+1↓ − c+i↓ci+1↑ + h.c.)

+ U
∑
i

ni↑ni↓ − hz
∑
i

(Szi + τzi )− hy
∑
i

(Syi + τyi ).

Here c+iα (ciα) is the electron creation (annihilation) opera-
tor with spin index α = (↑, ↓) at site i; ~Si is the S = 1

2
spin operator, representing the localized magnetic moment; t
denotes the nearest neighbor (NN) tunneling matrix element
(henceforth we set t = 1) and a is the lattice constant. J
is the Kondo coupling between localized magnetic moments
and itinerant electrons, Jchain is the ferromagnetic exchange
coupling between NN localized magnetic moments, and α is
the spin-orbit coupling. U is the on-site Hubbard repulsion
for the itinerant electrons, and we have also included Zeeman
terms for both the localized spin and itinerant electron spin
along the z and y directions. In the Hamiltonian (16), impu-
rity spins have their own dynamics and the ground-state of the
is determined by taking into account both electron and spin
degrees of freedom on equal footing. If we use mean-field
approximation for impurity spins, i.e. 〈~Si〉 = ~S(xi), and ne-
glect electron-electron interaction, we obtain the Hamiltonian
(2) considered in the previous section. As we show below, our
conclusions regarding preferred magnetization persist in the
strongly interacting limit U � t.
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FIG. 4. (color online) Relative polarization M/Ms as functions of
αa−1 and J , along y direction (M = Sy) and z direction (M =
Sz), for the system in Eq.(16) at filling ρ = 1/6 and system size
N = 192 sites. Relative polarization M/Ms for J = 0.3 in (a),
αa−1 = 0.0 in (b), αa−1 = 0.1 in (c), and αa−1 = 0.2 in (d). Here
Jchain = 0.1t, U = 40t, and Ms is the saturated magnetization.
Note that the polarization is induced by applying a small magnetic
field hy = 0.005t along y direction or hz = 0.005t along z direction
separately.

In our picture, most of the electrons required by the po-
larization catastrophe argument become localized dxy spins,
with a much lower density of itinerant electrons. Therefore,
we focus on the low density case, taking ρ = 1/6 for the sake
of concreteness in most of our calculations. The coupling pa-
rameters are taken to have values U = 40t and Jchain = t/10.
(However, our results are not very sensitive to the value of
Jchain.) We then map out the phase diagram as a function of
αa−1 and J . By the arguments given in Sec. II, we expect
that αa−1 ≈ t/40 and J ≈ −0.3t. However, given that there
is some uncertainty in these parameters, it behooves us at this
stage to see how the physics of our Hamiltonian changes as
we vary them. We have included small magnetic fields in the
y- and z−directions. These fields are necessary to break time-
reversal symmetry and rotational symmetry about the Sy-axis;
otherwise, we would necessarily find 〈Sy〉 = 〈Sz〉 = 0. In an
infinite system, but in the absence of these symmetry-breaking
fields, the system can spontaneously choose to order along
Sy or −Sy or it could spontaneously pick a direction in the
Sz − Sx plane (if it orders at all). Employing the unbiased
density matrix renormalization group45 method, we determine
the ground-state phase diagram of the system (16).

We find the following phase diagram, depicted in Fig.3. For
J large and negative (i.e. a ferromagnetic coupling between
localized and itinerant spins) and αa−1 large, the system is
partially-polarized and the moment points in the y-direction
(i.e. in plane, but perpendicular to the nanowire, and corre-
sponding to the light blue region in the upper left corner of
Fig.3). For J < 0 but lying below the blue phase boundary
in Fig. 3, we have a fully-polarized phase in which the spins
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FIG. 5. (color online) The Fermi surface of our 1D model at three
points in the phase diagram. (a) The occupation number n(k) =

〈c†↑c↑+c
†
↓c↓〉, which shows the region of momentum space occupied

by the filled Fermi sea. (b) The equal-time density-density correla-
tion function, which has singularities at 2kF .

can point equally-well in any direction (the grey region near
the middle of Fig.3). For J > 0, there is a partially-polarized
phase at small J or small αa−1 (narrow purple region). In this
region, the spins can point can point equally-well in any di-
rection. Finally, if J is positive and either J or αa−1 is large,
then the system is partially-polarized and the spins point in the
y-direction (light blue region in upper right of Fig. 3).

We now examine the magnetically-ordered state in more
detail. The occupation number n(k) = 〈c†↑c↑ + c†↓c↓〉 clearly
shows a filled Fermi sea with approximately one electron in
each occupied state, with |k| < kF , as illustrated in Fig. 5a, at
the parameter values listed in Fig. 5b. The Fermi wavevector
is consistent with kF = π/3, in agreement with Luttinger’s
theorem. The structure factor ρ(q)ρ(−q) shown in in Fig. 5b
has cusps at±2kF , from which we can more precisely extract
the Fermi wavevector kF = π/3. The occupation numbers
and Luttinger volume are consistent with the chemical poten-
tial depicted in Figure 1. There are two Fermi points and there
is a single state at each Fermi point because the spin is locked
to the momentum. Such a 1D electron gas is often called a
“helical wire”. (Note that our system is not simply fully spin-
polarized; we have checked that, at these parameter values,
neither 〈c†↑c↑〉 nor 〈c†↓c↓〉 is ever equal to one, so the spins are
not polarized in the z-direction; they are also not equal to each
other, so the spins are not polarized in the x- or y- directions.)
Therefore, an odd number of bands (in fact, just one) crosses
the Fermi surface; as we discuss in Section V, this means that
the system is primed for the development of topological su-
perconductivity.
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V. PROXIMITY-INDUCED SUPERCONDUCTIVITY

We propose the following picture for superconductivity at
the LAO/STO interface. Our starting point is superconductiv-
ity in STO, which occurs when insulating STO is doped. We
assume that insulating STO has small islands or droplets of lo-
cal superconductivity, which are too far apart and too weakly-
coupled to develop long-ranged superconducting order. We
suppose that these droplets are caused by unintentional local
defects in STO. When STO is doped, the islands of local su-
perconductivity grow in size and become more strongly cou-
pled, until long-ranged superconducting order sets in. How-
ever, the presence of an interface with LAO changes matters.
Itinerant electrons at the interface can mediate a coupling be-
tween superconducting droplets in STO that are close to the
interface. As we will show, this can enable superconductivity
to develop even when the droplets are too weakly-coupled to
percolate across STO on their own.

We show how this can occur with a calculation in a simpli-
fied model. We suppose that there are some superconducting
droplets in STO that are near the LAO/STO interface. In each
droplet, a single-particle gap is assumed to be well-developed,
but the interactions between the droplets are assumed to be too
weak for superconducting order to set in. A 1D channel at the
interface couples to a subset of these droplets, which form a
linear array. The 1D channel induces interactions between the
droplets, so that the linear array can be modeled as a 1D spin-
gapped electron system, which we assume to be just slightly
on the disordered side of the Kosterlitz-Thouless transition.
(Since doped STO superconducts, this is a reasonable approx-
imation.) The coupling between this system and a 1D channel
at the LAO/STO interface can nudge the system into the basin
of attraction of the quasi-long-range ordered superconducting
phase on the other side of the Kosterlitz-Thouless transition.
We thereby see how proximity to a metallic interface can sta-
bilize long-ranged or quasi-long-ranged superconducting or-
der.

Once superconductivity is established in STO, it is induced
at the interface by the proximity effect. This mechanism of es-
tablishing superconducting order works for generic conduct-
ing 1D channels. However, the interesting scenario for us
occurs when, due to Rashba spin-orbit coupling and ferro-
magnetism, the 1D channel realizes the helical band struc-
ture in Fig 1, and the induced superconductivity is topolog-
ical. Hence, we begin with a bosonized helical 1D channel at
the interface, coupled to an array of isolated, i.e. effectively
zero dimensional, droplets:

S =
vF
2π
Kw

∫
dx dτ

[
(∂xθ)

2 + vF
−1(∂τθ)

2
]

+
1

2Uj

∑
j

(∂τθj)
2 + ∆P,j

∑
j

(
e2iθ(xj) e−i

√
2θj + c.c.

)
(17)

Here, vF is the Fermi velocity in the 1D channel and Kw is
its Luttinger parameter. The 1D channel is assumed to have
repulsive interactions, soKw < 1. The factor of

√
2 in the ex-

ponent in the third line has been inserted for later convenience
so that it agrees with the convention for the charge boson of a
spin-gapped electron system (see, for instance, Ref. 35). The
droplets are assumed to have an average spacing a, an average
Josephson coupling ∆P to the 1D channel, and an average
charging energy U . We will neglect random variations in the
spacing between droplets, in the Josephson couplings, and in
the charging energies, and simply set xj = ja, ∆P,j = ∆P ,
and Uj = U . Random variations in these parameters are cer-
tainly important in the physical system but are an unnecessary
complication for this calculation. Note that if ∆P = 0, then
the droplets are completely decoupled from each other and
there is no quasi-long-ranged superconducting order.

We now integrate out fluctuations of θ at length scales
shorter than `. This generates a coupling between droplets. At
length scales much longer than `, we can take the continuum
limit for the array of droplets, thereby leading to the following
effective action:

S =
1

2π

∫
dx dτ

(
vFKw

[
(∂xθ)

2 + vF
−2(∂τθ)

2
]

+ vKρ

[
(∂xθρ)

2 + v−2(∂τθρ)
2
]

− ∆P

a
cos
(

2θ −
√

2θρ

))
(18)

The droplets are now effectively described by a 1D wire with
a spin gap; θρ is the charge boson for such a wire. Since we
assume that there is, initially, a weak interaction between the
droplets and the 1D channel, we assume thatKρ < 1. In other
words, although the wire has a spin gap, we do not assume
that it can superconduct without further mediation on the part
of the 1D channel at the interface. Indeed, the parameters Kρ

and v can be related to the effective superfluid stiffness ρs
and compressibility κ of the array: Kρ = 2π

√
Awρsκ and

v =
√
Awρs/κ with being Aw the cross-sectional area. We

assume here that the superfluid stiffness is such that Kρ < 1.
If the two velocities were equal, v = vF , one could analyze

the model by forming the combinations θ± = (
√

2θρ±2θ)/2.
In terms of new variables θ± the action reads

S =
v

2π

∫
dx dτ

((
Kw
4 +

Kρ
2

) [
(∂µθ+)2 + (∂µθ−)2

]
− 2

(
Kw
4 −

Kρ
2

)
∂µθ+∂µθ− − 2y cos (2θ−)

)
. (19)

Here, we have rescaled the time coordinate by v and have in-
troduced the dimensionless parameter y = ∆Pa/2v. We can
now see, at a heuristic level, how the coupling between the
droplets and the 1D channel can stabilize quasi-long-ranged
superconducting order. Let us suppose, for a moment, that
the coupling y is relevant. Then θ− is pinned, and we can ig-
nore its fluctuations. Then we are left with θ+, which exhibits
algebraically-decaying superconducting order. This order is
stable if weak impurity-backscattering or, equivalently, vor-
tex tunneling is irrelevant. Because the wire is helical, we can
only tunnel hce vortices35, i.e. θ → θ+2π. Since θ− is pinned,
this means that θρ must also wind θρ → θρ + 2π

√
2. Conse-

quently, in such a process, θ+ → θ+ + 4π. The operator that
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accomplishes this is sin(4φ+), where [φ+(x), ∂xθ+(y)] =
iπδ(x − y). This operator is irrelevant if 2Kρ + Kw > 1,
and when this inequality is satisfied, the system exhibits quasi-
long-ranged superconducting order. Note that this can be sat-
isfied even ifKρ < 1 andKw < 1. So two systems, neither of
which could sustain superconductivity on their own, can de-
velop superconductivity when in proximity to each other. The
key to this is the topological nature of the superconductivity:
since only hc

e vortices can tunnel through a helical wire, the
stability condition is less strict than for an ordinary supercon-
ductor46.

To support the aforementioned scenario, we need to show
that that Cooper-pair tunneling term is relevant. The corre-
sponding RG equation for y is:

dy

d`
=
[
2− (K ′)−1

]
y, (20)

where (K ′)−1 ≡ 1
2Kρ + 1

Kw
. If (K ′)−1 < 2, y will grow

from the initial small value y(0) � 1 to y(l) ∼ 1 at which
point θ− gets pinned. Given that K ′ also flows under RG, we
need to compute its flow equation and complete the system of
RG equations for this model. To do that we rewrite Eq. (19)
in the following form:

S =
v

2π

∫
dx dτ

(
K+(∂µθ+)2 +K−(∂µθ−)2

− 2K+−(∂µθ+∂µθ−)− 2y cos (2θ−)

)
(21)

where, initially, K+ = K− = Kw
4 +

Kρ
2 , K+− = Kw

4 −
Kρ
2 . The reason that we have introduced three couplings
K+,K−,K+− when there are, seemingly, only two cou-
plings Kw and Kρ is that the RG flow for this theory will
carry the system away from the initial point K+ = K−. A
real-space RG calculation yields the following equations for
K−,K+,K+−:

dK−
d`

= y2 ,
dK+

d`
=
dK+−

d`
= 0. (22)

The coupling K ′ can be expressed in terms of K−, K+ and
K+− (or equivalently in terms of K− and the initial parame-
ters Kρ and Kw since K+− and K+ do not flow):

K ′ = K− −K2
+−/K+ = K− −

(2Kρ −Kw)2

4(2Kρ +Kw)
. (23)

Since K ′ monotonically depends K−, the growth of K− un-
der the RG flow results in

dK ′

d`
= y2. (24)

Thus, the y-coupling becomes more and more relevant, and
eventually pins θ− as assumed above.

We now consider more general case of unequal velocities
v 6= vF . Proceeding as before, we find that Eq. (19) can be

written as

S =
1

2π

∫
dx dτ

(
K̃
(
ṽ(∂xθ−)2 + ṽ−1(∂τθ−)2

)
+ K̃+

(
ṽ+(∂xθ+)2 + ṽ−1

+ (∂τθ+)2
)

− 2K̃+−
(
ṽ+−(∂xθ+)(∂xθ−) + ṽ−1

+−(∂τθ+)(∂τθ−)
)

− 2y cos (2θ−)
)

(25)

where the coupling constants are defined as

K̃+ =
1

4
√
vvF

√
(KwvF + 2Kρv) (Kwv + 2KρvF ) (26)

ṽ+ =

√
vvF

2Kρv +KwvF
2KρvF +Kwv

(27)

K̃+− =
1

4
√
vvF

√
(KwvF − 2Kρv) (Kwv − 2KρvF ) (28)

ṽ+− =

√
vvF

KwvF − 2Kρv

Kwv − 2KρvF
(29)

The parameters K̃ and ṽ are initially equal to K̃+ and ṽ+,
respectively, but they flow under RG as explained above.

We now sketch the real-space RG procedure. We start out
by integrating out short-distance modes, but allowing arbitrar-
ily short times. Thus, we have an effective action in which
there are modes θ(k, ω) with |k| < a−1 and |ω| < ∞, where
a−1 is the momentum cutoff. Following a real-space RG ap-
proach46, we integrate shells a < r < as while keeping
time integrals unconstrained and eventually rescale r → sr,
τ → sτ . Here s = edl. Our RG procedure involves calculat-
ing the correlation function

〈
e2iθ−(x1,τ1) · e−2iθ−(x2,τ2)

〉
. To

do it safely one has to normal order the exponent:

e2iθ−(1) · e−2iθ−(2) =: e2i[θ−(1)−θ−(2)] : e−2〈[θ−(1)−θ−(2)]2〉
(30)

where θ(1) ≡ θ(x1, τ1), and the average 〈...〉 is computed
with respect to the bare action (y = 0) defined in Eq. (25).
Initially, when K̃ = K̃+ and ṽ = ṽ+, the correlation function
in Eq. 30 can be easily calculated

e−2〈[θ−(x,τ)−θ−(0,0)]2〉 =
a

1
2Kρ

+ 1
Kw

(x2 + v2τ2)
1

2Kρ (x2 + v2
F τ

2)
1
Kw

.

(31)

However, in general it is a complicated function of the cou-
pling constants (26) as well as K̃ and ṽ . One can show that
at the tree-level the RG equation for y becomes

dy

d`
=
[
2− (K ′)−1

]
y (32)

where, again, (K ′)−1 ≡ 1
2Kρ + 1

Kw
.
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We now compute the RG equations for this model at one-
loop level. Using Eqs.(30) and (31), we find

d

d`

(
K̃ṽ
)

=
√
vvF f2

(
vF
v

)
y2, (33)

d

d`

(
K̃ṽ−1

)
=

1
√
vvF

f0

(
vF
v

)
y2, (34)

where y = ∆Pa/
√
vvF and the dimensionless function

fn(κ) =
1

8π

∫ ∞
−∞

dz
zn

(κ−1 + z2)
1

2Kρ (κ+ z2)
1
Kw

. (35)

As follows from Eqs.(33), the RG equations for K̃ and ṽ are
given by

dK̃

d`
=
y2

2

[
ṽ
√
vvF

f0

(vF
v

)
+

√
vvF
ṽ

f2

(vF
v

)]
(36)

dṽ

d`
=

1

2K̃

[
√
vvF f2

(vF
v

)
− ṽ2

√
vvF

f0

(vF
v

)]
. (37)

Thus, according to these Kosterlitz-Thouless-type RG equa-
tions, Eqs. (32),(36) and 37, we see that K̃ grows. The pa-
rameter K ′ has a complicated dependence on K̃ and ṽ which
follows from Eq. (31). However, at small initial velocity mis-
match |δv| ≡ |v − vF | � vF , one finds

(K ′)
−1 ≈

[
K̃ − (2Kρ −Kw)2

4(2Kρ +Kw)

]−1

(38)

−
32K̃(K2

w − 4K2
ρ)Kρ(3Kw + 2Kρ)[

4(2Kρ +Kw)K̃ − (2Kρ −Kw)2
]3 δv2

v2
F

One can see that the δv2-correction is quickly decaying with
K̃ and thus do not change qualitatively our results obtained for
the v = vF case, cf. with Eq. (23). In general, we find that K ′

is a monotonically increasing function of K̃, see Fig.6. Thus,
the growth of K̃ implies the growth of K ′. Therefore, once
relevant, y will grow to strong coupling y(l∗) ∼ 1 and pin
θ−. In this case, θ− drops out from Eq. (25) and the effective
action now reads:

S=
1

2π

∫
dx dτ K̃(l∗)

(
ṽ(l∗)(∂xθ+)2+ṽ(l∗)

−1
(∂τθ+)2

)
.

(39)

Following the argument that we used for v = vF , we observe
that quasi-long-ranged order is stable so long as flux hc/e vor-
tex tunneling is irrelevant, i.e. when sin(4φ+) is irrelevant.
This occurs when 4K̃ > 1. Note that this can be satisfied
even if Kρ < 1 and Kw < 1. As in the equal velocity case,
two systems, neither of which could sustain superconductivity
on their own, can develop superconduct when in proximity as
a result of the helical nature of one of the systems.

We thereby arrive at the model of Ref. 35: a 1D chan-
nel that is proximity-coupled to a quasi-long-range-order su-
perconducting wire. As shown there, such a wire supports
Majorana zero modes. We also expect our results discussed

FIG. 6. Dependence of K′ on the flow parameters K̃ and ṽ. Here
we used Kw = 0.8, Kρ = 0.2 and v = 0.5vF . The function K′ is a
monotonically increasing function of K̃.

in this section to apply to multichannel nanowires with an
odd number of occupied subbands coupled to superconduct-
ing droplets, see, e.g., Refs. 47–49.

The model considered in this section does not include gap-
less degrees of freedom originating from the dxy band. In
general, gapless fermionic degrees of freedom can spoil topo-
logical protection (e.g. they split ground state degeneracy).
However, in our one dimensional model the dxy band is local-
ized. Low-energy localized excitations are generically present
in topological phases in the presence of disorder (e.g. the
quantum Hall states) but they do not spoil topological pro-
tection because they cannot move. In such a situation, the
localization length plays the role of the correlation length be-
yond.

VI. DISCUSSION

In this paper, we have adopted the point of view that
SrTiO3 has the seeds of both magnetism and superconduc-
tivity. However, these local tendencies only come to fruition
when brought into contact with a metallic layer or 1D channel.
We have focussed on the latter case, for reasons of tractabil-
ity as well as potential relevance to the experiments of Refs.
32 and 33, but we believe that our general mechanism works
in 2D as well. We have shown that local moments in SrTiO3

that are near the LAO/STO interface can order ferromagneti-
cally, as a result of their interaction with mobile electrons at
the interface. We have also shown that droplets of local su-
perconductivity in STO – which would interact too weakly to
develop superconducting order if left to their own devices –
can develop superconducting order as a result of their inter-
action with mobile electrons at the interface. Finally, we have
noted that the interface electrons can form a topological super-
conducting state as a result of their proximity to ferromagnetic
and superconducting order.
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We have shown that our model leads to ferromagnetism by
two different calculations: a large-N calculation and a DMRG
calculation. Both calculations find a ferromagnetic state with
spins pointing in the plane, i.e. along y-axis with x being the
direction along the wire. (In the DMRG calculation, the polar-
ization may be either partial or full, depending on the strength
of the spin-orbit coupling.) Interestingly, our large-N calcula-
tion finds a ferromagnetic state even at weak coupling, which
is a feature of the band structure in the presence of Rashba
spin-orbit coupling. A 1D wire with sufficiently strong spin-
orbit coupling and Zeeman field will form a helical wire. Our
calculations – both large-N and DMRG – show that our model
gives rise to a helical wire. Remarkably, recent transport mea-
surements can be interpreted as evidence that 1D channels at
the LAO/STO interface are helical wires50.

In a helical wire, it is possible for s-wave superconductiv-
ity to coexist with a magnetic moment. As a result our model
allows for a proximity coupling between s-wave supercon-
ducting droplets in STO and ferromagnetic electrons at the
LAO/STO interface. We have analyzed our model for super-
conductivity by mapping it to the theory of a single 1D bo-
son in the vicinity of the Kosterlitz-Thouless transition. We
find that such a model could be on the disordered side of
the Kosterlitz-Thouless transition for very weak coupling be-
tween the droplets and a 1D channel at the interface but it
could be on the ordered side of the transition if the coupling is
sufficiently strong.

Our results on magnetism and superconductivity imply that
the superconducting state of a 1D channel at the LAO/STO
interface is in a topological superconducting state. This ac-
tually stabilizes the system against quantum phase slips: 2π
phase slips are forbidden, and only 4π phase slips, which
are less relevant in the RG sense, could disrupt the super-
conductivity. Furthermore, this topological superconducting
state supports Majorana fermion zero modes, whose presence
would lead to a 4π-periodic ac Josephson effect29,34. It is
important to contrast our LAO/STO proposal for topological
superconductivity with previous ones (e.g. the 1D semicon-
ductor/superconductor proposal 29,30). One drawback of our
proposal is the rather low superconducting transition tempera-
ture in LAO/STO heterostructure: Tc ≤ 300mK. On the other
hand, it also has some advantages. In particular, the LAO/STO
system intrinsically contains all the ingredients (ferromag-
netism, superconductivity and strong spin-orbit interaction)
necessary for engineering Majoranas, eliminating the prob-
lems associated with the SM/SC interface. Furthermore, the
electron density at the LAO/STO interface is gate-tunable.
Also, it is possible to pattern complex networks of nanowires
on the LAO/STO interface using the AFM technique31–33, pro-
viding a distinct advantage for ultimately implementing braid-
ing and topologically protected quantum gates.

The main goal of our work has been to show why mag-
netism occurs, why superconductivity occurs, and why they
can coexist. However, magnetism is probably not found at all
carrier concentrations above the metal-insulator transition51.
Neither is superconductivity. A plausible schematic phase di-
agram is given in Fig. 7, based on the phase diagram in Refs.
52–54. Therefore, it is also important to understand when and

FIG. 7. A schematic phase diagram for the LAO/STO interface as a
function of carrier concentration.

why they do not occur. If the magnetic order is too strong, so
that the spins are fully polarized, then our mechanism does not
work. This may explain why superconductivity is suppressed
at large carrier concentration. However, a more detailed un-
derstanding of the phase diagram is definitely an important
target for further investigation.

We note that our calculations rely heavily on simplifying
features of one dimensional systems – the applicability of
DMRG calculations to the magnetic ordering of the system
and the applicability of bosonization to the superconducting
ordering of the system. It would be interesting to give a fully
two-dimensional analysis of a model similar to ours. Further-
more, it would be useful to investigate other related materials
exhibiting the same phenomena. In particular, recent work
on epitaxially grown GdTiO3-SrTiO3 interfaces53 indicates
that ferromagnetism and superconductivity can also coexist
in such systems. Being much cleaner than LAO/STO from
a materials point of view, these interfaces might provide an
attractive environment for the investigation of the ideas pro-
posed in this paper.
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