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The phase-field crystal (PFC) method is an emerging coarse-grained atomistic model that can be
used to predict material properties. In this work, we describe procedures for calculating isother-
mal elastic constants using the PFC method. We find that the conventional procedure used in
the PFC method for calculating the elastic constants are inconsistent with those defined from a
theory of thermoelasticity of stressed materials. Therefore, we present an alternative procedure for
calculating the elastic constants that are consistent with the definitions from the thermoelasticity
theory, and show that the two procedures result in different predictions. Furthermore, we employ
a thermodynamic formulation of stressed solids to quantify the differences between the elastic con-
stants obtained from the two procedures in terms of thermodynamic quantities such as the pressure
evaluated at the undeformed state.



2

I. INTRODUCTION

The phase-field crystal (PFC) method1 is an emerging model that has been employed to simulate many non-
equilibrium processes such as nucleation,2 phase transformation,3–6 thin film growth,7,8 elastic and plastic deformation,9–12

and glass formation.13–15 There are two main advantages of this method that makes it attractive for materials mod-
eling. One is that it can simulate crystalline solids without a restriction on their lattices and orientations, just as
molecular dynamics (MD) can, but at diffusive time scales that can be several orders of magnitude larger than those
associated with MD. The other reason is the fact that the PFC method provides a unified and thermodynamically
consistent framework that naturally incorporates elastic and crystalline symmetry effects. As a result, the method can
be used to model a wide variety of phenomena including spinodal decomposition,16 grain-boundary premelting,17,18

dislocation dynamics,19 and the Kirkendall effect.20

These aforementioned benefits suggest that the PFC method can potentially be used to predict non-equilibrium
behaviors of a material system over experimentally relevant time and length scales. However, before the PFC method
can be applied to predict the non-equilibrium behaviors of the material system, it must be parameterized with the
known equilibrium properties of the materials of interest and be verified that the model accurately predicts the
thermodynamic properties of the system at equilibrium beyond those used in parameterization. Therefore, in this
paper, we focus on how equilibrium properties should be calculated within the PFC framework

The equilibrium properties considered in this work are isothermal elastic constants, which were calculated from the
PFC approach in Refs. 1, 21, and 22. These elastic constants, which will be referred to as the PFC elastic constants,
are calculated from variations in the free energy density (total free energy per actual volume) associated with various
types of quasi-static deformation at a constant average number density. However, we have found that this procedure
is inconsistent with the definitions from a theory of thermoelasticity of stressed materials.23–25 These definitions are
thermodynamically derived and are widely adopted. Therefore, we propose an alternative procedure for calculating the
elastic constants as defined by the thermoelasticity theory, which will be referred to as the TE elastic constants. The
TE elastic constants are instead calculated from variations in the total free energy per undeformed volume associated
with quasi-static deformations at a constant number of particles in the system. To give numerical examples, we use
an existing PFC model for iron (Fe) to show that the PFC and TE elastic constants can be significantly different
from one another. Therefore, we conclude that the conventional and the proposed procedures are not interchangeable
and, more importantly, one should calculate the elastic constants using the proposed procedure in order to make fair
comparisons with values from other approaches such as classical density functional theory,26–28 Monte Carlo,29 MD,30

and ab initio density functional theory.31–33

Furthermore, by comparing the conventional and the proposed procedures, we identify two differences in the calcu-
lation procedures that contribute to the discrepancies between the PFC and TE elastic constants. The first is due to
the frame in which the free energy density is calculated; the PFC elastic constants are calculated from the free energy
density measured with respect to the deformed frame of reference while the TE elastic constants are calculated from
the free energy density measured with respect to the undeformed frame. The difference arises due to the different
volumes in these two frames. The second difference is due to the constraint imposed on the quasi-static deformations;
the constraint for the PFC elastic constants is a constant average number density, whereas the constraint for the TE
elastic constant is a constant number of particles.

Finally, we employ a thermodynamic theory of stressed solids34–36 to systematically define the PFC and TE elastic
constants in the same framework. This formulation allows us to obtain the relationships between the PFC and TE
elastic constants. These relationships not only facilitate conversions between the PFC and TE elastic constants but
also provide the quantitative measures of the differences between the PFC and TE elastic constants in terms of
thermodynamic quantities such as the pressure of the undeformed state. For a cubic material, our current technique
only yields the correct relationships between 11- and 12-type elastic constants due to a restriction in defining a
volume ratio as a function of the elements of a strain tensor. We will address the relationships between 44-type elastic
constants, as well as general relationships, in a future work.

The paper is organized as follows. In Section II, we provide background material on the PFC method, continuum
mechanics, and the theory of thermoelasticity of stressed materials. Next, we review the conventional procedure for
calculating the PFC elastic constants in Section III A and propose the alternative procedure for calculating the TE
elastic constants using the PFC method in Section III B. We then present numerical comparisons between the PFC
and TE elastic constants, and present further discussions in Section III C. Furthermore, we present a more general
procedure for calculating the PFC elastic constants and propose formal definitions of the PFC elastic constants in
Section IV. We then derive the relationships between the PFC and TE elastic constants of a system with cubic
symmetry using the thermodynamic theory of stressed solids in Section V. Lastly, we conclude this paper with a
short summary in Section VI.
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II. BACKGROUND

This section provides the background necessary in developing the analyses presented in the remainder of the paper.
In Section II A, the PFC free energy functional and its one-mode approximation are introduced. We introduce the
definitions of strain tensors in Section II B, and then introduce the elastic constants derived from the thermoelasticity
theory in Section II C. In Section II D, we present the three types of deformation that will be used to extract three
values of the elastic constants of a cubic material.

A. PFC Method

We consider the following free energy for the PFC method:21

F =

∫
w(φ) dR, w(φ) ≡ φ

2

[
at + λ(q20 +∇2)2

]
φ+ gt

φ4

4
, (1)

where, w(φ) is the free energy density, and at, gt, λ, and q0 are fitting parameters. The number density field, φ, can
be expressed in a Fourier expansion of the form:

φ(R, φave) = φave +
∑
i

Aie
iGi·R + c.c., (2)

where Ai is the amplitude, φave is the average number density, R is the real-space position vector (R = R1i +R2j +
R3k, where i, j and k constitute an orthonormal Cartesian basis), Gi is the reciprocal lattice vector (RLV) that is
constructed from the reciprocal basis of a periodic structure, and c.c. denotes the complex conjugate. We define the
following dimensionless parameters:21

R̃ ≡ q0R, ε ≡ − at
λq40

, φ̃ ≡
√

gt
λq40

φ,

F̃ ≡ gt

λ2q8−d0

F , h̃ ≡ gt
λ2q80

h, (3)

where d is the dimensionality of the problem. The PFC free energy can then be written in a simpler form:

F̃ =

∫
w̃
(
φ̃
)
dR̃, w̃

(
φ̃
)

=
φ̃

2

[
−ε+

(
1 + ∇̃2

)2]
φ̃+

φ̃4

4
. (4)

In this work, we will consider a body-centered-cubic (BCC) crystal, of which the set of smallest RLVs has the

magnitude of 2π
√

2/La, where La is the side length of a cubic unit cell. We will therefore set q0 = 2π
√

2/La in order
to make the PFC free energy functional favor the BCC structure. The simplest analytical expression for the BCC
structure, the so-called one-mode approximation, can be obtained by keeping only the terms with |Gi| = 2π

√
2/La

in the expansion of Eq. (2):

φ̃one(R̃, φ̃ave) = φ̃ave + Ãs

[
cos
(
q1R̃1

)
cos
(
q1R̃3

)
+ cos

(
q1R̃2

)
cos
(
q1R̃3

)
+ cos

(
q1R̃1

)
cos
(
q1R̃2

)]
, (5)

where Ãs is the nondimensionalized amplitude and q1 = 1/
√

2. Henceforth, we will omit the tilde notation for the
nondimensionalized quantities.

B. Measure of Deformation

We denote the undeformed state of a material as the state prior to the deformations of the material. In other
words, the material is subjected to zero strain, but not necessarily zero stress. We use (R1, R2, R3) to denote the
undeformed coordinates of the position of a volume element in the material while using (r1, r2, r3) to denote the
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deformed coordinates of the position. Since we assume that both coordinates share the same basis, the deformation
gradient tensor, αij , and the displacement gradient tensor, uij , are written as

αij =
∂ri
∂Rj

, (6)

and

uij =
∂(ri −Ri)

∂Rj
, (7)

where the subscripts i and j vary from 1 to 3, and it follows that uij = αij − δij . The symbol δij is the Kronecker
delta and the Einstein summation notation is used throughout the paper unless stated otherwise. The deformation
considered in this work is the affine or homogeneous deformation, and thus we can write37

ri = αijRj = (uij + δij)Rj . (8)

Conversely, we can write Ri in terms of rj :

Ri = α−1ij rj , (9)

where α−1ij = ∂Ri/∂rj . For brevity, we write the above transformation in tensor notation: R = α−1 · r, where
r = r1i + r2j + r3k. The Lagrangian strain tensor is expressed as

Eij =
1

2
(αkiαkj − δij) =

1

2
(uij + uji + ukiukj) , (10)

and is employed in a nonlinear elasticity theory. In a linear elasticity theory, one assumes infinitesimal deformations
and defines the symmetric small-strain tensor,

εij =
1

2
(uij + uji) , (11)

and the antisymmetric small-strain tensor,

ωij =
1

2
(uij − uji) . (12)

Equations (11) and (12) can be used to calculate uij from

uij =
1

2
(εij + εji + ωij − ωji). (13)

C. Definitions of Isothermal Elastic Constants from the Thermoelasticity Theory

The definitions of the isothermal elastic constants from the theory of thermoelasticity of stressed materials23–25

depend on the choice of the independent variables of the Helmholtz free energy, F (not necessarily identical to F
introduced earlier). The Helmholtz free energy of a nonhydrostatically stressed system can be written in the form:

F (θ, aij , N,Ri), (14)

where θ is temperature, aij denotes either Eij or εij , N is the number of atoms or particles, and Ri is the reference
or undeformed coordinates. Since we consider Ri as constant, we will omit this dependence subsequently.

The elastic constants, as well as other thermodynamic quantities, can be defined from the Taylor expansion of
the free energy around the undeformed state and we refer to Appendix A for more details. The coefficients of the
first-order terms with respect to the elements of the strain tensors give the following definitions:25,38

Tuij =
1

V
∂F

∂Eij

∣∣∣∣∣
u

θ,E∗mn,N

=
1

V
∂F

∂εij

∣∣∣∣∣
u

θ,ε∗mn,N

, (15)

where V is the volume at the undeformed state and Tuij are the elements of the symmetric second Piola-Kirchhoff

stress tensor38 evaluated at the undeformed state. The subscripts E∗mn and ε∗mn indicate that the elements of the
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strain tensors other than those involved in the partial derivative are held constant, and the superscript u indicates
that the partial derivatives are evaluated at the undeformed state.

The coefficients of the second-order terms with respect to the elements of the strain tensors yield the definitions of
elastic constants:25,38

Cijkl =
1

V
∂2F

∂Eij∂Ekl

∣∣∣∣∣
u

θ,E∗mn,N

, (16)

and

Kijkl =
1

V
∂2F

∂εij∂εkl

∣∣∣∣∣
u

θ,ε∗mn,N

, (17)

in the nonlinear and linear elasticity theories, respectively. The elastic constants Cijkl and Kijkl, both referred to as
the TE elastic constants, are fourth-order tensors with the complete Voigt symmetry for the indices, i.e., Cijkl = Cjikl,
Cijkl = Cijlk, and Cijkl = Cklij , and similarly for Kijkl. For a cubic material, each set of Cijlk and Kijkl reduces to
three independent values which are (no summation) C11 = Ciiii, C12 = Ciijj and C44 = Cijij = Cijji with the other
elements being zero. Similar notation apply to the elastic constants Kijkl.

For a cubic material under hydrostatic pressure, Pu, of the undeformed state, which is considered in this work, the
relationships between Cαβ and Kαβ are25

C11 = K11 + Pu, C12 = K12, C44 = K44 +
Pu
2
, (18)

where the details of the derivation are shown in Appendix A.
The above relationships reveal the fact that the elastic constants defined by the linear and nonlinear elasticity

theories are not in general equal to one another even at the limit of zero strain (undeformed state). Only when the
pressure of the undeformed state is zero do these two set of elastic constants become identical. For simulations of
materials under ambient pressure, the magnitude of the pressure is typically much smaller than that of the elastic
constants, and therefore, the two sets of elastic constants are approximately equal. However, for simulations of
materials under high pressure,33,39,40 the two sets of the elastic constants can differ significantly. We find that, for
the parameterized PFC model used in this work, the magnitude of the pressure is not negligible compared with that
of the elastic constants.

D. Deformation Types

In this work, we will calculate both the PFC and TE elastic constants using the PFC approach. Since the PFC free
energy is not an explicit function of the elements of a strain tensor, one cannot directly calculate the elastic constants
by taking the second derivatives of the free energy with respect to the element of the strain tensors, as shown in Eqs.
(16) and (17). Instead, one extracts the values of the elastic constants from variations in the free energy density with
respect to various types of quasi-static deformations, as will be shown in Section III. For the elastic constants of a
cubic material, we need three deformation types in order to obtain a set of linearly independent equations to solve
for three unknowns. We choose to consider the following types of deformation:

• isotropic deformation characterized by uij = δijξ, where ξ is a parameter quantifying the amount of deformation
(hereafter referred to as the “small deformation parameter”),

• biaxial deformation where the nonzero elements are u11 = ξ and u22 = −ξ,

• simple-shear deformation where the nonzero element is u12 = −ξ.

These deformations are chosen because we are aiming to make a direct comparison with the previous PFC studies.21,22

We note that we could use any other types of affine deformation to extract the elastic constants as long as they give
three linearly independent equations. For example, we could use a volume-conserving biaxial deformation, where the
nonzero elements are u11 = 1 + ξ and u22 = 1/(1 + ξ), instead of the biaxial deformation presented above. If the
volume-conserving biaxial deformation were used along with the isotropic and simple-shear deformations, we would
obtain a different set of three linearly independent equations; nevertheless, the solution to the system of equations
would be the same, yielding the same values of the elastic constants.
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III. CALCULATIONS OF THE ISOTHERMAL ELASTIC CONSTANTS USING THE PFC FREE
ENERGY

In this section, we review the conventional procedure for calculating the PFC elastic constants and propose the
alternative procedure for calculating the TE elastic constants using the PFC free energy. We present numerical results
from an existing PFC model for BCC Fe to show that the PFC and TE elastic constants can be significantly different,
and then discuss the implications of the results.

A. PFC Elastic Constants

We describe the procedure for obtaining the PFC elastic constants of a BCC crystal using the PFC free energy and
the one-mode approximation as a density profile.22 We first write φone(R, φave) in terms of the deformed coordinates,
or φone(α

−1 ·r, φave), and then obtain the total energy by integrating w(φone) over the deformed unit cell at a constant
average density φave:

Fn(ξ, φave) =

∫
Vn(ξ)

w
(
φone

(
α−1 · r, φave

) )
dr, (19)

where the limit of the integration is shown in Table I and the variable Vn(ξ) is the deformed volume. We have assumed
an isothermal condition and thus omitted the dependence of the free energy on θ. The subscript n(= 1, 2, 3) denotes
the types of deformation shown in Table I, and we evaluate the quantities with the subscript n separately for each
deformation type. The PFC elastic constants are obtained from calculating the following quantities:

∆hn(ξ, φave) ≡
Fn(ξ, φave)

Vn(ξ)
− Fn(0, φave)

Vn(0)

= hn(ξ, φave)− hn(0, φave), (20)

where hn(ξ, φave) can be interpreted as the “bulk” free energy density because it is spatially independent. The second-
order coefficient of the Taylor expansion of ∆hn(ξ, φave) around ξ = 0 is related to the cubic elastic constants, Hαβ ,
as follows:

∆h1(ξ, φave) = ...+
1

2
(3H11 + 6H12) ξ2 + ...

∆h2(ξ, φave) = ...+
1

2
(2H11 − 2H12) ξ2 + ...

∆h3(ξ, φave) = ...+
1

2
(H44)ξ2 + ..., (21)

where we use the subscript αβ to denote 11, 12, or 44. We note that Hαβ are functions of φave, which is not explicitly
indicated for brevity. To put the above calculation in the same context as that in the next section, we note that the
method in finding the elastic constants in Eq. (21) is equivalent to calculating the second-order partial derivative of
the free energy density with respect to the small deformation parameter,

QPFCn (φave) ≡
∂2

∂ξ2

(
Fn(ξ, φave)

Vn(ξ)

) ∣∣∣∣∣
ξ=0

θ,φave

, (22)

and solving for the elastic constants from

QPFC1 (φave) = 3H11 + 6H12

QPFC2 (φave) = 2H11 − 2H12

QPFC3 (φave) = H44. (23)

We emphasize that the partial derivatives in Eq. (22) are performed at constant φave, as indicated in the subscript
at the vertical line. We also note that the two procedures described above are only valid for the density profiles
that minimize (or maximize) the bulk free energy density with respect to deformations at a constant average number
density. For these density profiles, the first derivative of the free energy density with respect to a small deformation
variable at a constant average number density is zero. In the context of this work where the density profiles are
described by the one-mode approximation, the two procedures above are only valid for the density profiles that
minimize hn(ξ, φave) with respect to ξ at constant φave. However, in Section IV, we will present a more general
procedure to calculate the PFC elastic constants that applies to a density profile that does not necessarily minimize
hn(ξ, φave) with respect to ξ at constant φave.
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B. TE Elastic Constants

We now propose the alternative procedure for obtaining the TE elastic constants defined in Eqs. (16) and (17)
from the PFC free energy. We evaluate the integral similar to that from Eq. (19), but with a condition that the total
number of particles,

NT =

∫
V
φone(R, φave)dR, (24)

remains constant during the deformations. This means that the average density φave will no longer remains constant
and we write

φave ≡ φave,n(ξ) =
NT
Vn(ξ)

=
NT /V
Vn(ξ)/V

=
φ′ave
Jn(ξ)

, (25)

where Jn(ξ) = Vn(ξ)/V and φ′ave is the total number of particles per undeformed volume. Because the undeformed
volume V is constant, holding φ′ave constant during the deformations is equivalent to holding NT constant. The
integration of the PFC free energy with respect to the deformed coordinates is then

Fn(ξ, φ′ave) =

∫
Vn(ξ)

w

(
φone

(
α−1 · r, φ

′
ave

Jn(ξ)

))
dr, (26)

where we have assumed that Fn is the total Helmholtz free energy. We then proceed to calculate

QTEn (φ′ave) ≡
∂2

∂ξ2

(
Fn(ξ, φ′ave)

V

) ∣∣∣∣∣
ξ=0

θ,φ′ave

, (27)

where we emphasize that Fn(ξ) is obtained from the deformations with constant φ′ave. We note that in the limit of
ξ = 0, we have V = V and therefore, φave = φ′ave. Using the chain rule, one can write the second derivative with
respect to ξ as

∂2

∂ξ2
=
∂2Eij
∂ξ2

∂

∂Eij
+
∂Eij
∂ξ

∂Ekl
∂ξ

∂2

∂Eij∂Ekl
, (28)

where the derivative is performed with constant θ and φ′ave. Using the transformation in Eq. (28) with Eq. (27), one
arrives at a system of equations to solve for the elastic constants Cαβ (Refs. 26 and 29):

QTE1 (φ′ave) = 3C11 + 6C12 − 3Pu,

QTE2 (φ′ave) = 2C11 − 2C12 − 2Pu,

QTE3 (φ′ave) = C44 − Pu, (29)

where it is assumed that the material has cubic symmetry and is under the hydrostatic pressure, Pu, of the undeformed
state.41 The elastic constants Cαβ are functions of φ′ave or, equivalently, φave because they are evaluated at the
undeformed state. The pressure can be calculated from the isotropic deformation (n = 1):

Pu = −1

3

∂

∂ξ

(
F1(ξ, φ′ave)

V

) ∣∣∣∣∣
ξ=0

θ,φ′ave

. (30)

After obtaining Cαβ , we can simply calculate Kαβ from Eq. (18). We emphasize that we do not calculate Kαβ from the
procedure similar to the one used to obtain Cαβ because the procedure will yield values of Kαβ that are inconsistent
with the definition in Eq. (17). We discuss this issue in Appendix B.

C. Numerical Comparison Between PFC and TE Elastic Constants

To elucidate the implications of the above analysis, we proceed to numerically compare the PFC and TE elastic
constants. We use a PFC model for BCC Fe since it has been more extensively studied. There have been two studies
of BCC Fe using the PFC method; one study was performed by Jaatinen et al.42 and the other study was conducted
by Wu et al.43 We do not examine the PFC model from the former study here because the corresponding free energy
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is the energy difference from that of the reference liquid state. As a result, we would need to consider the quantities
pertaining to the reference liquid state, which is beyond the scope of the present work. On the other hand, the
PFC free energy used by Wu et al.43 (described in Section II A) is based on a phenomenological model1 and can
be considered as the total energy of the system. Therefore, we will use the parameterization of the PFC method
presented in the study by Wu et al.43 The values of the PFC fitting parameters used in this work are as follows:43

q0 = 2.985 Å−1, λ = 0.291 eVÅ7, ε = 0.0923, and gt = 9.703 eVÅ9 (see also a footnote44).
Figure 1 shows the plots of the PFC elastic constants, the TE elastic constants, and the pressure at the undeformed

state as functions of φave; the values of these elastic constants at the liquid-solid coexistence density (φave = −0.201)
are reported in Table II in Rows (i) to (iii). In Row (iv), we tabulate the PFC elastic constants calculated in Ref. 22
for comparison with those calculated in the present study (Row (i)). The small differences in values of the two sets of
the elastic constants are due to the slight difference in the values of gt. The values of the elastic constants calculated
from MD simulations22 are also tabulated in Row (v) of Table II. The procedure for obtaining these MD results is
similar to that used in Ref. 45 to obtain the elastic constants of Ni.46 Lastly, we find that this parameterization of
the PFC method yields the pressure at the solid-liquid coexistence of Pu = 184.5 GPa = 1.821× 106 atm.

We note that Hαβ can be directly compared with both Cαβ and Kαβ only because the density profile used in this
work is constructed so that hn(ξ, φave) is minimized with respect to ξ at constant φave. This construction makes the
values of the PFC elastic constants, defined by the linear and nonlinear elasticity theories, identical; this justifies our
comparisons between Hαβ and Cαβ and between Hαβ and Kαβ . For a general form of a density profile, however, we
can only directly compare the elastic constants that are defined from the same measure of deformation; in this work,
the measure of deformation is either the Lagragian strain tensor or the small-strain tensor. Therefore, in the next
section, we will propose a general procedure for calculating the two sets of PFC elastic constants: one defined by the
linear elasticity theory and the other one defined by the nonlinear elasticity theory.

By comparing the PFC and TE elastic constants, we find that the PFC elastic constants, Hαβ , are equivalent to
neither Cαβ nor Kαβ ; both sets of the TE elastic constants are significantly larger than Hαβ , especially for the 11-type
constants. Therefore, we find that the PFC and TE elastic constants cannot be used interchangeably. Consequently,
since the thermoelasticity theory is widely adopted, one should only use the TE elastic constants to make consistent
comparisons of the elastic constants from the PFC method with those from other theories such as classical density
functional theory,26–28 Monte Carlo,29 MD,30 and ab initio density functional theory.31–33

The reasons for the discrepancies between the PFC and TE elastic constants can be understood by comparing Eqs.
(22) and (27). The first difference is the frame in which the free energy density is measured. The difference leads to
the different volume that divides the total free energy. The PFC elastic constants are derived from the free energy per
unit deformed volume, while the TE elastic constants are obtained from the free energy per unit undeformed volume.

The second difference is whether or not φave or φ′ave is held constant when taking the second derivative of the
free energy density with respect to the small deformation parameter. The constant-φave condition, which is used
to obtain the PFC elastic constants, causes the number of particles in the system to change when the volume of
the system is changing during the quasi-static deformations. However, the constant-φ′ave condition, which is used to
obtain the TE elastic constants, is equivalent to keeping the total number of particles in the system constant during
the deformations. Therefore, we find that the choices of the frame of reference and the different constraints imposed
upon the quasi-static deformations contribute to the different values between the PFC and TE elastic constants.

Since Hαβ cannot be compared with the elastic constants calculated using other theories, we will instead compare
the TE elastic constants with those from the MD simulations.22 We find that the values of 11- and 44-type constants
for both Cαβ and Kαβ are significantly larger than those of the MD results. This discrepancy is not unexpected
considering the fact that the model predicts a large pressure at the liquid-solid coexistence density (1.821 × 106

atm)47, while the potential in the MD simulations is constructed so that the predicted pressure is close to zero to
model normal experimental conditions.48 This indicates that the systems described by the PFC and MD simulations
are in very different thermodynamic states. Therefore, a different set of PFC parameters that yields a reasonable
value of pressure should be obtained to improve the prediction of the elastic constants.

IV. A GENERAL PROCEDURE TO OBTAIN THE PFC ELASTIC CONSTANTS

Up to this point, we have introduced the TE elastic constants defined by the linear and nonlinear elasticity theories,
which are Cijkl and Kijkl, respectively. However, we have not specified whether Hijkl is defined by the linear or
nonlinear elasticity theory. As we have mentioned in the previous section, this specification is not necessary for the
particular form of the density profile used in this work because it minimizes hn(ξ, φave) with respect to ξ at constant
φave. However, for a general form of a density profile, we need to be able to calculate the PFC elastic constants
defined by both the linear and nonlinear elasticity theories. Therefore, a more general procedure than those presented
in Section III A is needed.
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We first propose formal definitions of the PFC elastic constants from the second derivatives of the free energy density
with respect to the elements of the strain tensors; these definitions are analogous to how the TE elastic constants are
defined. By considering the procedure in Section III A, the two possible choices are

∂2

∂Eij∂Ekl

(
F
V

) ∣∣∣∣∣
θ,φave,E∗mn

≡ HE
ijkl (31)

and

∂2

∂εij∂εkl

(
F
V

) ∣∣∣∣∣
θ,φave,ε∗mn

≡ Hε
ijkl. (32)

The elastic constants HE
ijkl (Hε

ijkl) are analogous to Cijkl (Kijkl) in the sense that they are defined by the nonlinear

(linear) elasticity theory.
We then outline the procedure for calculating HE

αβ and Hε
αβ . Using a procedure similar to that used to obtain Cαβ ,

we can obtain HE
αβ from

QPFC1 = 3HE
11 + 6HE

12 − 3P gu
QPFC2 = 2HE

11 − 2HE
12 − 2P gu

QPFC3 = HE
44 − P gu . (33)

where

P gu = −1

3

∂

∂ξ

(
F1(ξ, φave)

V1(ξ)

) ∣∣∣∣∣
ξ=0

θ,φave

. (34)

We emphasize that the partial derivative is performed with constant φave. Finally, similar to how Kαβ is related to
Cαβ from Eq. (18), we can relate Hε

αβ to HE
αβ from the following relationships:

HE
11 = Hε

11 + P gu , HE
12 = Hε

12, HE
44 = Hε

44 +
P gu
2
. (35)

When P gu = 0, HE
αβ = Hε

αβ , which is the case for the choice of the density profile used in this work. The term P gu
is analogous to Pu in that it is proportional to the first derivative of the free energy density with respect to the
deformation variable. However, the deformation process to obtain P gu is performed with constant φave instead of φ′ave.
Furthermore, the free energy density to obtain P gu is measured with respect to the deformed frame instead of the
undeformed frame. For the PFC free energy and the one-mode approximation given in Eq. (5), the value of P gu is
equal to zero for all values of φave because the form of the density profile minimizes hn(ξ, φave) with respect to ξ at
constant φave. However, P gu = 0 does not correspond to Pu = 0 as we have shown in Fig. 1(d).

V. THERMODYNAMICS OF STRESSED SOLIDS

In this section, we use a thermodynamic formulation to define the PFC and TE elastic constants in a systematic
manner. We then derive the relationships between the PFC and TE elastic constants, as well as those among other
thermodynamic quantities resulting from Taylor expansions of thermodynamic energy functions. We discuss the
implications of the relationships among the thermodynamic quantities and then present numerical verifications of the
relationships between the PFC and TE elastic constants.

A. Formulation

In addition to the thermoelasticity theory,23,25 we employ a thermodynamic theory of stressed solids by Larche and
Cahn34,35 which considers the solid as a network of lattices and allows a description of vacancies. In this work, we
consider only substitutional lattices which can be occupied by atomic species A and vacancies. The Helmholtz free
energy of such a system can be written in the following form:

Fs = Fs(θ,NA, aij , Ri), (36)
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where NA is the number of lattice sites occupied by atomic species A (not to be confused with the Avogadro’s number),
and the subscript s denotes that the material is a crystalline solid. The fact that Fs depends on only NA and not
the number of lattice sites occupied by vacancies comes from the assumption that the total number of lattice sites
are conserved in all thermodynamic states. This assumption applies when there is no consideration of defects such
as surfaces, grain boundaries, and dislocations that can alter the total number of lattice sites by acting as sources or
sinks of vacancies.34 Again, since we consider Ri as constant, we will omit this dependence subsequently.

From the form of Fs, we now redefine the stress and elastic constants in Eqs. (15), (16), and (17):

Tuij =
1

V
∂Fs
∂Eij

∣∣∣∣∣
u

θ,E∗mn,NA

=
1

V
∂Fs
∂εij

∣∣∣∣∣
u

θ,ε∗mn,NA

,

Cijkl =
1

V
∂2Fs

∂EijEkl

∣∣∣∣∣
u

θ,NA,E∗mn

,

Kijkl =
1

V
∂2Fs
∂εijεkl

∣∣∣∣∣
u

θ,NA,ε∗mn

, (37)

where the subscript N has been replaced by NA and F has been replaced by Fs.
The next step is to formulate thermodynamic energy functions that allow different sets of elastic constants to be

defined in a systematic manner. The energy function that can be used to define HE
ijkl or Hε

ijkl is

gs ≡
Fs(θ, aij , ρA)

V
, (38)

where ρA = NA/V is the number of the lattice sites occupied by atomic species A divided by the volume of the
deformed system. On the other hand, the energy function that can be used to calculate Cijkl and Kijkl is

f ′s ≡
Fs(θ, aij , ρ

′
A)

V
, (39)

where ρ′A = NA/V = JρA is the number of lattice sites occupied by atomic species A divided by the volume of the
undeformed system. The reason for defining ρ′A is that the condition of constant ρ′A is the same as constant NA
because V is constant.

For completion, one could define the other two energy functions:

g′s ≡
Fs(θ, aij , ρA)

V
,

fs ≡
Fs(θ, aij , ρ

′
A)

V
, (40)

which can be used to define the other two sets of elastic constants that are different from the PFC and TE elastic
constants. We will not address these additional two sets of elastic constants in this work.

Regarding the notation, we use the letters g and f to indicate that the energy functions depend on ρA and ρ′A,
respectively. The use of a prime in f ′s, g

′
s and ρ′A indicates that the corresponding variables are quantities per unit

volume of the undeformed system. Without the prime, fs, gs and ρA are quantities per unit volume of the deformed
system.

Lastly, we define the quantities at the undeformed state as follows:

θ → θu, aij → 0, ρ′A → ρ′Au,

ρA → ρ′Au, gs → gsu, f ′s → f ′su, (41)

where gsu = f ′su.

B. Taylor Expansions of the Energy Functions

We are now in the position to define the elastic constants as well as other thermodynamic quantities from the Taylor
expansions of the energy functions. We expand the energy functions around the undeformed state with respect to aij
and ρA or ρ′A. For f ′s, we write the expansion as follows:

f ′s(θu, aij , ρ
′
Au + ∆ρ′A) = f ′su + Ufps ∆ρ′A + Pfpij aij +Dfpij ∆ρ′Aaij

+
1

2
Afps (∆ρ′A)2 +

1

2
Lfpijklaijakl, (42)
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where ∆ρ′A = ρ′A − ρ′Au, and

f ′su = f ′s(θu, 0, ρ
′
Au), Ufps =

∂f ′s
∂ρ′A

∣∣∣∣∣
u

θ,aij

, Pfpij =
∂f ′s
∂aij

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

,

Dfpij =
∂

∂aij

∣∣∣∣∣
u

θ,ρ′A,a
∗
mn

 ∂f ′s
∂ρ′A

∣∣∣∣∣
θ,akl

 , Afps =
∂2f ′s
∂(ρ′A)2

∣∣∣∣∣
u

θ,aij

, Lfpijkl =
∂2f ′s

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

. (43)

The superscript u denotes that the partial derivatives are evaluated at the undeformed state, and the superscript fp
denotes that the quantity is obtained from the expansion of f ′s. For the expansion of gs, we write

gs(θu, aij , ρ
′
Au + ∆ρA) = gsu + Ugs∆ρA + Pgijaij +Dgij∆ρAaij

+
1

2
Ags(∆ρA)2 +

1

2
Lgijklaijakl, (44)

where ∆ρA = ρA − ρ′Au, and

gsu = gs(θu, 0, ρ
′
Au), Ugs =

∂gs
∂ρA

∣∣∣∣∣
u

θ,aij

, Pgij =
∂gs
∂aij

∣∣∣∣∣
u

θ,a∗mn,ρA

,

Dgij =
∂

∂aij

∣∣∣∣∣
u

θ,ρA,a∗mn

 ∂gs
∂ρA

∣∣∣∣∣
θ,akl

 , Ags =
∂2gs
∂(ρA)2

∣∣∣∣∣
u

θ,aij

, Lgijkl =
∂2gs

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,ρA

. (45)

The superscript g indicates that the corresponding quantity is from the Taylor expansion of gs. Furthermore, whether
aij refers to Eij or εij does not affect the values of Uxs , Pxij , Axs , and Dxij , where the superscript x denotes either g or
fp. However, the choice of Eij or εij affects the values of Lxijkl, for a given x. Therefore, we define Cxijkl ≡ Lxijkl for
aij = Eij , and Kxijkl ≡ Lxijkl for aij = εij . As will be evident later, Lxijkl are the elastic constants.

We can relate the coefficients of the expansions to some of the quantities introduced previously. First, if we
substitute φave = ρA and F = Fs in Eqs. (31) and (32), it is clear from Eq. (45) and the definition of gs in Eq. (38)
that

Cgijkl = HE
ijkl, and Kgijkl = Hε

ijkl. (46)

In other words, Lgijkl (or Cgijkl and Kgijkl) are the PFC elastic constants.

Second, we show that Pfpij is equal to the stress tensor evaluated at the undeformed state by considering Eqs. (37)

and (43):

Pfpij =
∂f ′s
∂aij

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

=
1

V
∂Fs
∂aij

∣∣∣∣∣
u

θ,a∗mn,NA

= Tuij , (47)

where we emphasize that constant ρ′A is identical to constant NA. However, Pgij 6= Tuij because the constant-ρA
condition does not equal to the constant-NA condition and because gs is the free energy density measured with
respect to the deformed frame whereas f ′s is the free energy measured with respect to the undeformed frame. For
isotropic pressure at the undeformed state, or Tuij = −δijPu, the rotational invariance of the free energy requires the
quantities Pxij and Dxij to be represented as a scalar matrix and we denote the value of their diagonal entries to be Pxs
and Dxs , respectively.

Third, from Eq. (43) and the definition of f ′s in Eq. (39), we can write

Lfpijkl =
∂2f ′s

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,ρ
′
A

=
1

V
∂2Fs

∂aij∂akl

∣∣∣∣∣
u

θ,a∗mn,NA

. (48)

Comparing the above expression to that in Eq. (37), we obtain

Cfpijkl = Cijkl, and Kfpijkl = Kijkl, (49)

which means that Lfpijkl (or Cfpijkl and Kfpijkl) are the TE elastic constants.
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For a cubic material under isotropic pressure at the undeformed state, the relationships between Cxαβ and Kxαβ is

analogous to those in Eq. (18):

Cx11 = Kx11 − Pxs , Cx12 = Kx12, Cx44 = Kx44 −
Pxs
2
, (50)

where we note that the sign of Pxs is the opposite of the sign of Pu. These relationships are derived from the same
procedure described from Eq. (A1) to (A6) in Appendix A.

C. Relationships Between the Coefficients of Expansion

We can now derive the relationships between the coefficients of expansion. In particular, we are interested in the

relationships between HE
αβ (Hε

αβ) and Cαβ (Kαβ), which are essentially the relationships between Lfpαβ and Lgαβ . This

is obtained by substituting ρA = ρ′A/J and gs = f ′s/J into Eq. (44), using the following expressions for J :36

J → (1 + ε11)(1 + ε22)(1 + ε33) (51)

or

J →
√

(1 + 2E11)(1 + 2E22)(1 + 2E33), (52)

depending on whether Eij or εij is considered. We then expand the resulting expression around the undeformed state
and equate the coefficients of expansion with those from Eq. (42). We obtain the following relationships:

Ufps = Ugs
Pfps = Pgs − Ugs ρ′Au + gsu

Dfps = Dgs −Agsρ′Au
Afps = Ags . (53)

When we consider aij = Eij , we have

Cfp11 = Cg11 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs + Ugs ρ′Au − gsu
Cfp12 = Cg12 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs − Ugs ρ′Au + gsu (54)

and when aij = εij , we obtain

Kfp11 = Kg11 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs
Kfp12 = Kg12 +Ags(ρ′Au)2 − 2Dgsρ′Au + 2Pgs − Ugs ρ′Au + gsu. (55)

The relationships in Eqs. (54) and (55) above not only facilitate conversions between the PFC and TE elastic
constants, but also quantify the difference between the PFC and TE elastic constants in terms of thermodynamic
quantities. These thermodynamic quantities are the coefficients of the Taylor expansion in Eq. (44), which can be
related to the thermodynamic quantities from the Taylor expansion in Eq. (42) through the relationships in Eq. (53).
For example, the quantity Pgs in the above equation is related to Pfps which in turn equal to the negative pressure
evaluate at the undeformed state (−Pu).

The thermodynamic quantities that quantify the difference between the PFC and TE elastic constants depend on
the specific parameterization of the model and in general are nonzero. Furthermore, these quantities pertain to the
undeformed state that is characterized by the limit of strain approaching zero (or the limit of ξ approaching zero).
Therefore, we conclude that these quantities do not generally vanish at the zero-strain limit, which also implies that
the PFC and TE elastic constants are not generally identical at this limit.

We now present verifications of Eqs. (54) and (55) from numerical calculations. Specifically, we compare the values

of Cfpαβ and Kfpαβ calculated from two different procedures. The first procedure is described in Section III B, which is

how we obtained the TE elastic constants. We denote the resulting quantities Cfp1αβ and Kfp1αβ . The second procedure

is to use Eqs. (54) and (55), and we denote the resulting values Cfp2αβ and Kfp2αβ . To use the second procedure, we

calculate Cgαβ and Kgαβ from the procedure in Section IV, which is the general procedure to calculate the PFC elastic

constants. We also need to calculate the values of Pgs , Dgs , Ugs , Ags , gsu, and ρ′Au from the following equations:

Pgs =
1

3

∂

∂ξ

(
F1(ξ, φave)

V1(ξ)

) ∣∣∣∣∣
ξ=0

θ,φave

, (56)
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Dgs =
1

3

∂

∂ξ

∣∣∣∣∣
ξ=0

θ,φave

 ∂

∂φave

(
F1(ξ, φave)

V1(ξ)

) ∣∣∣∣∣
θ,ξ

 , (57)

Ugs =
∂

∂φave

(
Fn(ξ, φave)

Vn(ξ)

) ∣∣∣∣∣
ξ=0

θ,ξ

, (58)

Ags =
∂2

∂φ2ave

(
Fn(ξ, φave)

Vn(ξ)

) ∣∣∣∣∣
ξ=0

θ,ξ

, (59)

gsu = Fn(ξ, φave)
∣∣ξ=0

, (60)

ρ′Au = φave
∣∣ξ=0

= φ′ave. (61)

We note that since Cgαβ and Kgαβ and the quantities from Eqs. (56) to (60) are evaluated at the undeformed state,

they can be equivalently expressed as functions of φave or φ′ave. Also, Eqs. (56) and (57) only apply to the isotropic

deformation (n = 1) whereas Eqs. (58) to (61) is valid for all types of deformation. We verify that Cfp111 = Cfp211 and

Cfp112 = Cfp212 from Figs. 2(a) and 2(b), respectively. We also show that Kfp111 = Kfp211 and Kfp112 = Kfp212 from Figs. 2(c)
and 2(d), respectively. These results validate the relationships in Eqs. (54) and (55).

We do not report the relationship between Lfp44 and Lg44 from the method used to obtain Eqs. (54) and (55) because
the method does not yield a correct result. The reason is that the definitions of J in Eqs. (51) and (52) only apply
to the deformations where the angles of the cubic unit cell are not distorted,36 which is apparent from the fact that
no off-diagonal elements of the strain tensors are present in either Eq. (51) or (52). Unfortunately, there is no general
form of J in terms of Eij and εij that would apply to all types of affine deformation. Therefore, we can only obtain
the correct relationships for the elastic constants that are defined from the second derivatives of the diagonal elements
of the strain tensors. We will address this issue in a future work.

VI. SUMMARY

We have investigated the methods for calculating the isothermal elastic constants using the PFC method and
found that the procedure outlined in Refs. 1, 21, and 22 is not consistent with the definitions from the theory
of thermoelasticity of stressed materials.23–25 The PFC elastic constants (from the procedure outlined in Refs. 1,
21, and 22 ) are calculated from variations in the free energy density associated with various types of quasi-static
deformations at a constant average number density. In this work, we proposed an alternative procedure for calculating
the elastic constants (termed the TE elastic constants in this article) that are consistent with the definitions from
the thermoelasticity theory. The TE elastic constants are calculated from variations in the total free energy
per undeformed volume associated with quasi-static deformations at a constant number of particles in the system.
Comparing the conventional and the proposed procedures, we found that the discrepancies between the PFC and TE
elastic constants result from the choices of the frame of reference used to calculate the free energy density and the
different constraints imposed upon the quasi-static deformations. The numerical results using an existing PFC model
for BCC Fe show that the two procedures can yield significantly different values of the elastic constants. Therefore,
the TE elastic constants should be used when parameterizing the PFC model.

Furthermore, we derived the relationships between the PFC and the TE elastic constants using the energy functions
formulated from the thermodynamic theory of stressed solids.34–36 These relationships were obtained by performing
Taylor expansions of and changes of variables to the energy functions. From the relationships, we have quantified the
differences between the PFC and TE elastic constants in terms of thermodynamic quantities such as the pressure of
the undeformed state.

In the present work, we have only derived the relationships between the 11- and 12-type constants due to the
restriction in defining a volume ratio as a function of the elements of the strain tensor. The relationship between the
44-type constants, as well as general relationships, will be addressed in a future work.
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Appendix A: Taylor Expansion of the Helmholtz Free Energy

In this section, the Taylor expansion of the Helmholtz free energy in Eq. (14) is performed in order to derive
the definitions shown in Eqs. (15), (16) and (17). The expansion of F (θ,Eij , N) with respect to Eij around the
undeformed state gives38

F (θ,Eij , N) = F (θ, 0, N) + VTuijEij +
V
2
CijklEijEkl + ..., (A1)

where Tuij and Cijkl are the coefficients of expansions written as

Tuij =
1

V
∂F

∂Eij

∣∣∣∣∣
u

θ,E∗mn,N

, (A2)

and

Cijkl =
1

V
∂2F

∂Eij∂Ekl

∣∣∣∣∣
u

θ,E∗mn,N

, (A3)

respectively. These are the definitions in Eqs. (15) and (16).
From the expansion in Eq. (A1), one can change the variables from Eij to uij using Eq. (10), and subsequently

change the variables from uij to εij and ωij by using Eq. (13). The resulting expansion is

F (θ, εij , N) = F (θ, 0, N) + VTuij
(
εij +

1

2
(εmi + ωmi)(εmj + ωmj)

)
+
V
2
Cijklεijεkl + ..., (A4)

where we omit the higher-order terms in εij and ωij for brevity, and we also use the symmetric property of εij and
antisymmetric property of ωij to simplify the above expression. Despite the fact the above expression contains both
εij and ωij , the free energy must still be dependent on only εij and not on ωij due to the requirement that the free
energy be rotationally invariant.25 By rearranging the above expression and omitting terms with ωij , we obtain

F (θ, εij , N) = F (θ, 0, N) + VTuijεij +
V
2
Kijklεijεkl + ..., (A5)

where

Kijkl = Cijkl +
1

4
(Tuikδjl + Tuilδjk + Tujkδil + Tujlδik). (A6)

For a cubic material under isotropic pressure, Pu, where Tuij = −Puδij , Eq. (A6) simplifies to Eq. (18).
From Eq. (A5), we can write an alternative definition of Tuij ,

Tuij =
1

V
∂F

∂εij

∣∣∣∣∣
u

θ,ε∗mn,N

, (A7)

and define another set of elastic constants,

Kijkl =
1

V
∂2F

∂εij∂εkl

∣∣∣∣∣
u

θ,ε∗mn,N

. (A8)

These are the definitions in Eqs. (15) and (17).
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Appendix B: Calculations of Kαβ

In this section, we discuss two issues that arise when Kαβ are calculated from the procedure similar to the one
used to obtain Cαβ in Section III B. We illustrate the first issue by using this procedure to calculate Kαβ . We first
calculate QTEn (φ′ave) from Eq. (27) and then use the chain rule to transform the partial derivative as follows:

∂2

∂ξ2
=
∂2εij
∂ξ2

∂

∂εij
+
∂εij
∂ξ

∂εkl
∂ξ

∂2

∂εij∂εkl
, (B1)

Using the above equation to transform the partial derivative in Eq. (27), we obtain

QTE1 (φ′ave) = 3K11 + 6K12 = 3C11 + 6C12 − 3Pu,

QTE2 (φ′ave) = 2K11 − 2K12 = 2C11 − 2C12 − 2P,u

QTE3 (φ′ave) = K44 = C44 − Pu, (B2)

where the second equality in each line is taken from Eq. (29) for comparison. From Eq. (B2), we find that the
relationship between K44 and C44 is different from that given in Eq. (18), which indicates that K44 calculated from
the procedure above is inconsistent with the definition given by the thermoelasticity theory in Eq. (17). The second
issue when using the above procedure to calculate Kαβ is that the resulting value of Kαβ will depend on the choice
of deformation, which contradicts the fact that the elastic constants are material properties.

In order to understand the cause of these issues, we first consider why the procedure from Eqs. (26) to (29) can be
used to calculate Cαβ . The reason is that the Taylor expansion of Fn(ξ, φ′ave) from Eq. (26) with respect to ξ around
the undeformed state,

Fn(ξ, φ′ave) = Fn(0, φ′ave) +
∂Fn(ξ, φ′ave)

∂ξ

∣∣∣∣∣
ξ=0

ξ +
V
2
QTEn (φ′ave)ξ

2 + ..., (B3)

is equivalent to the Taylor expansion,

Fn(Eij(ξ), φ
′
ave) = Fn(0, φ′ave) + VTijEij(ξ) +

V
2
CijklEij(ξ)Ekl(ξ) + ..., (B4)

for all deformation types up to the second-order terms in ξ. This equality is the underlying assumption in Eq. (29)
and we confirm this equality by the fact that we obtain the same values of Cijkl for all types of deformation.

However, we find that, due to the small-strain approximation, the expansion in Eq. (B3) is not equivalent to the
Taylor expansion,

Fn(εij(ξ), φ
′
ave) = Fn(0, φ′ave) + VTijεij(ξ) +

V
2
Kijklεij(ξ)εkl(ξ) + ..., (B5)

for all deformation types up to the second-order terms in ξ. Therefore, the equality in Eq. (B2) will not be valid in
general, and we have to instead calculate Kαβ from Eq. (18). With this alternative method, we confirm that the same
values of Kαβ are obtained regardless of the choice of deformation types.
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FIG. 1. The plots of different sets of elastic constants and hydrostatic pressure as functions of φave, or equivalently φ′ave. (a)
The PFC elastic constants. (b) The TE elastic constants in the nonlinear elasticity theory. (c) The TE elastic constant in the
linear elasticity theory. (d) The hydrostatic pressure of the undeformed state.

(i) Deformation (ii) φ
(
α−1 · r

)
(iii)

∫
Vn(ξ)

dr (iv) Vn(ξ)

Isotropic (n = 1) φ
(
α−1 · r

)
= φ

(
r1
1+ξ

, r2
1+ξ

, r3
1+ξ

) ∫ La(1+ξ)

0

∫ La(1+ξ)

0

∫ La(1+ξ)

0
dr1dr2dr3 L

3
a(1 + ξ)3

Biaxial (n = 2) φ
(
α−1 · r

)
= φ

(
r1
1+ξ

, r2
1−ξ , r3

) ∫ La

0

∫ La(1−ξ)
0

∫ La(1+ξ)

0
dr1dr2dr3 L3

a(1− ξ2)

Simple Shear (n = 3) φ
(
α−1 · r

)
= φ (r1 + ξr2, r2, r3)

∫ La

0

∫ La

0

∫ La−ξr2
−ξr2

dr1dr2dr3 L3
a

TABLE I. A list of (i) types of deformation, (ii) functional forms of density profiles in terms of the deformed coordinates,
φ
(
α−1 · r

)
, (iii) expressions for the integration over the deformed unit cell, and (iv) the deformed volume of the unit cell,

Vn(ξ). The unit cell is cubic with a side length of La in the undeformed state.
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FIG. 2. The plots of elastic constants as functions of φave, or equivalently φ′ave. The elastic constants Cfp1αβ and Kfp1αβ are
calculated from the procedure described in Section III B, which is similar to how the TE elastic constants are obtained. The
elastic constants Cfp2αβ and Kfp2αβ are obtained from Eqs. (54) and (55) which in turn employ the values of Cgαβ and Kgαβ calculated
from the procedure in Section IV.

Elastic Constants 11-Type 12-Type 44-Type

(i) Hαβ 89.8 44.9 44.9

(ii) Cαβ 542.0 128.1 229.4

(iii) Kαβ 357.5 128.1 137.2

(iv) PFC-WAK 90.0 45.0 45.0

(v) MD 128.0 103.4 63.9

TABLE II. The elastic constants of BCC Fe at the melting point. The unit of the elastic constants is GPa. (i) The PFC elastic
constants calculated in this work using slightly different parameters from those in Ref. 22 (see also a footnote43). (ii) The TE
elastic constants in the nonlinear elasticity theory. (iii) The TE elastic constants in the linear elasticity theory. (iv) The PFC
elastic constants reported in Ref. 22. (v) The elastic constants predicted by the MD simulations.22 For (i) to (iv), the elastic
constants are evaluated at φave = −0.201.


